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RELATIONS BETWEEN DISTRIBUTIONS
OF RANDOM VIBRATORY PROCESSES AND DISTRIBUTIONS
OF THEIR ENVELOPES

OvLpRicH KrOPAC

(Received July 31, 1970)

1. INTRODUCTION AND PROBLEM STATEMENT

Very often in the present technical practice vibratory processes having relatively
high resonance frequencies and randomly modulated amplitudes are to be treated.
For a great number of practical applications especially in the field of strength and
reliability calculations, the knowledge of the amplitude alternations is satisfactory
while the information about the phase relations is not required. It is then usual to
consider only the envelope of the given processes. This approach involves some
useful simplifications both in the analytical work and in the treatment of the experi-
mentally acquired data.

Introduction of the envelope conception into the analytical considerations results
in decreasing the order of the corresponding differential equations. In the case of
a one-degree-of-freedom system, the second-order differential equation of the vibra-
tory motion will be reduced to a first-order differential equation for the envelope. Such
a simplification may be found to be very useful when solving some more complex
problems. This approach has made it possible to solve e.g. one class of parametrically
random excited nonlinear vibratory system, see [5], [6], [12].

With regard to the experimental analysis of random vibratory processes it has been
shown (see [11]) that estimates of statistical parameters of a vibratory process may
be found if the envelopes of this process are measured and statistical parameters of
these envelopes are evaluated.

To allow the widest applicability of the method of envelopes, the relations between
distribution functions of the vibratory processes and those of the corresponding
envelopes are needed.

It will be assumed first that the vibratory random process Y(¢) is stationary with
zero mean value M[ Y] = 0. The probability density function f,(y) is then symmetrical
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with respect to the line y = 0. It is defined for real numbers y € (— oo, + o0) and
its parameters are time-invariant.

For the vibratory random process Y(t), the envelope process 4(f) may be defined
in different ways (see e.g. [4], [13]). For the purposes of our study, the process Y(¢)
is assumed to be expressible in the form

(1.1) Y(t) = A(1) . cos o(1) = A(1) . cos (wot + O(1)),

where both A(t) and ©(r) are random functions.
Considering the Hilbert transform of ¥(r)

(1.2) X@=—ifﬁ0+ﬂ—m—ﬂl%,

one may write the adjoint process X(f) to be
(1.3) X(1) = A(t) . sin o(1) .

From Egs. (1.1) and (1.3), the expression for the envelope A(f) may be written in
the form

(1.4) A() = JX*() + V(1)

Note that for slowly varying A4(t) and ©(1), the adjoint process X(7) may be appro-
ximately expressed by

(1.5) X(t) ~ - . ¥()

so that the practical relation for the envelope A(t) of the vibratory process Y(r) may
be written as follows:

(L6) aoz/@ﬂo+%.wm)
Wo

When solving the problem of finding the relationship between the statistical
parameters of the process Y(t) and those of the process A(f), the supposition men-
tioned above is made, namely that the characteristics of the envelope are known and
the characteristics of the corresponding vibratory process are to be estimated. Thus,
it will be assumed that for the distribution function or for the probability density
of the envelope, a suitable analytical expression may be found resulting either from
a theoretical consideration or as a close approximation to the empirical distribution
obtained experimentally.

The relation between f,(a) and f,(y) has been derived elsewhere, see e.g. [14].
For the convenience of the reader, a concise derivation of this relation will be given
here.
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The characteristic function of Y(7) is defined by

(1.7) 4,(s) = j ) exp (isy) dy

which gives after substituting for y from Eq. (1.1)

w M2n
g,(s) = J fa(a, 9) . exp [isa . cos (wot + 9)] . da.d9.

0J0O

Let us express f,(a, 9) using the conditional distribution of 0, i.e. fy(a, 9) = f,(a)
.f5(9 | @) and the expression exp [ ] using the Fourier expansion

+ o0

exp [isa . cos (wot + 9)] = Y i". J,(sa).exp [in(wet + 9)]

(where Jo( ) is the Bessel function of the first kind of order n). Thus,

(18) g,(5) = 3 ;".rJ"(sa).f,,(a).da J Texp [in(ot + 9)] - £o(9 | a). d5 .

n=-o 0

The supposition that Y(r) is stationary implies the independence of g,(s) on t which
may be fulfilled only if f4(9 | a) = const = 1/27. It follows that f,(a, t) = (1/27) .
.f{a), i.e. the random processes A(f) and O(r) are both stationary and statistically
independent.

The expression for g,(s) looks then like this:
(1.9 g,(s) = J. Jo(sa) . f(a) . da .
0

From gy(s), the probability density may be obtained by the Fourier transform:

0

(1.10) f(y) = %rj g,(s) . exp (—isy) ds,

-

which after substituting from Eq. (1.9) gives

0

(1.10a) £,y = 21; J:fa(a) . da'[ Jo(sa) . exp (—isy) ds.

—

It is known that

ij Jo(sa) . exp (—isy) . ds = I for a = |y,

2n n/(a® = »?)

=0 for a < |y|.
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The final expression giving the relation between fy(y) and f,(a) is then

(1.1 Hy) = ! J’m La(ﬁ)_i;’z_) (fory 2 0).

TJy N'/(az -

The analytical solution of the relation (1.11) in a closed form or one using some
special functions is known only for some simple and analytically suitable functions
f.- Nevertheless, a set of functions f, may be selected which cover a great part of
technically important problems or which at least may be used as certain limiting
cases.

If we do not succeed in finding the analytical solution of f,(y) from Eq. (1.11), some
simple relations valid for even moments (with respect to the origin) of the probability
densities £, and f, may be used, see e.g. [3]:

It follows from the properties of the characteristic functions that the n-th moment
wa(y) of £,(») is given by
i 4'9,(s)

n

w(y) = &5 oo

which after substituting for g,(s) from Eq. (1.9) gives

o

w(y) = i J9(0). J & fi(a) . da = i7" J90) . ufa)

0
It is known that

J§(0) = %;2 (222’;)1 for

=0 for n

2k,

It

2k + 1,

so that the final expression for the relation between the moments has the form:

(2k)!

(1.12) paly) = (—W

Hai(a) .

Owing to the symmetry of £,(v), i.e. f,(=¥) = f,(y)s
Haksr = 0.

After a detailed rewriting of Eq. (1.12) we have:

for the second moments

(1.12a) 1a(y) = 1. nx(a) .
for the fourth moments
(1.12b) ta(y) =3 - nala)
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and for the sixth moments

(1.12¢) 1o(r) = 5 - me(a) -

It may be expected that only the simplest one-parametric distributions will be
adequate for the analytical treatment following Eq. (1.11). Therefore, in the next
chapter. ten one-parametric distributions of the envelopes will be given, for which
the analytical forms of the probability densities of the vibratory processes may be
established without difficulties. In the third chapter, analytical expressions for distri-
butions with threshold values are given. In the fourth and fifth chapters, some two-
parametric and generalized gamma-distributions of the envelope are considered and
even moments of the probability densities of the corresponding vibratory processes
are evaluated. These even moments are then used for approximate expressions of
the probability densities by means of the Gram-Charlier series (see Chapter 6).

2. ONE-PARAMETRIC DISTRIBUTIONS

The probability densities and their moments of ten selected one-parametric distri-
butions of envelopes and the corresponding data of the vibratory processes distribu-
tions are summarized in Tables 1.1 to 1.10. Here some additional remarks are added
both of general meaning and those related to the individual distributions.

The functions f, according to Eq. (1.11) were computed either directly or by means
of tables of integrals ([ 7], [8]). The moments of f, were calculated from the definition

(2.1) 1u(a) = j Y & ffa).da

- 0

and again tables were used whenever it was found useful. To make a comparison of
different shapes of distributions possible, some further characteristics of symmetric
distributions of envelopes are also given in Tables 1.1 to 1.10, viz. the central moments
i, according to the relation

k

_ k )
(2.2) W = Z ( ) - Mg - ("’.“1)’ s
o \J
fo = py — s
Ay = py = 3uyuy + 23,
fig = py — duspy + Ouops — 3pf,

fis = pts — Spapty + 10usp — 1003 + 43,

fle = pe — Ouspty + 15papy — 20usp; + 15u,p% — 5p5,
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and characteristic invariants
(2.3a) Iy = figlii3 — 3 (excess),
(2.3b) I = Rolit; — 15(fa[3) + 30

(invariant of the sixth degree).

The even moments of f, were determined by means of Egs. (1.12) and the cor-
responding invariants I, and I from Egs. (2.3).

2.1. Dirac unit impulse function (deterministic or causal distribution)
This is a limiting case where the random function becomes deterministic, the
envelope A(f) becoming constant and the vibratory process Y(t) thus being harmonic

with constant amplitude A4,. The resolution of the characteristics and the evaluation
of f, is evident.

2.2. Uniform distribution
This is another simple type of limiting cases, corresponding e.g. to alternated
increase and decrease of amplitudes in the range <0, 4.
2.3. Triangular distributions
Three types are considered, viz. triangular increasing, triangular decreasing and
triangular combined (equiangular). In all these cases, the expressions for the distribu-

tion functions of the vibratory processes have the forms similar to those derived
in §2.2.

2.4. Parabolic distributions

Two types are considered, both leading to expressions similar to those given in
§§2.2 and 2.3.
2.5. Exponential distribution
In the technical practice, the so-called gamma-distributions are often used. As
a rule, the gamma-distribution is defined as a two-parametric one and it will be dealt

with in this form in Chapter 4. For some particular values of the parameter m, the
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analytical solution of f, may be found and these cases are shown in this part of the
paper. These solutions are expressed by means of modified Bessel functions of pure
imaginary argument of the second kind K. Tables of these functions see e.g. [1], [9]:
Other names of the K, functions also used are: modified Hankel function or Mac-
Donald function. In this case we deal with the gamma function with m = 1, which
is called the exponential distribution. The probability density f, for this case is given
by the MacDonald function of zero order, K.

2.6. Gamma function with m = 2

The probability density is given by the MacDonald function of the first order, K.

2.7. Rayleigh distribution

The couple given by the Gaussian distribution of the vibratory random process
and the Rayleigh distribution of its envelope forms the basis for all considerations
related to the envelope method. The Gaussian distribution corresponds to a typical
random process occuring in practical applications and at the same time, the analytical
solution of some more complex problems of statistical dynamics is, as a rule, possible
only for this distribution function. The derivation of both distributions was made
in both directions, the evaluation according to Eq. (1.11) becoming very easy by the
substitution a®> — y? = x?. Tables of the Gaussian distribution and its derivatives
are given iu [15]. Note that the Rayleigh distribution differs from the first derivative
of the Gaussian one only by a multiplier.

3. DISTRIBUTIONS WITH THRESHOLD VALUES AND THE PIECEWISE —
CONTINUOUS APPROXIMATION OF THE ENVELOPE PROBABILITY DENSITY

In the technical practice the distributions with the so-called threshold values are
of a considerable importance. Random processes with the threshold value probability
density are typical e.g. for envelopes of parametrically excited vibratory processes
with small variance ratio.

The threshold value A4, has the following meaning: for a € <0, 4,), the probability
density f, is identically equal to zero, for a € (4,, w), it has the form of a suitable
distribution discussed above. Analytically, we have

(3.1) fda) =0 ;oa < A
=h(a — Ay); Ay £a< .
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By substituting Eq. (3.1) into Eq. (1.11), we obtain

(3:2) : 1y = ;T J'w ﬁ%‘(igﬂf)—yﬁgf syl < 4

— J,j ﬁ(i——?/:il)‘,d*a ; lvl = AO
Ty \/(a - yz)

In some simple cases when the derived expressions may be integrated without
difficulty, the function h(a — A,) may be used directly in this form. If it is impractic-
able to integrate Eq. (3.2) directly after substituting h(a — A,), while the integral
transforms for h(a) and its derivatives h’(a), h"(a), etc. may be easily found, the
Taylor expansion of h(a — A,) at a may be used so that h(a — A,) = h(a) — A, .
ch'(a) + 1A% . h(a) — ...

3.1. Uniform distribution with the threshold value

This is some generalization of the uniform distribution treated in § 2.2 in the sense
that the nonzero values of f, are defined in {A,, 4,> where 44 > 0. For 4, = 0 this
distribution changes into the uniform one-parametric distribution (§ 2.2),for A, — A,
it approaches the Dirac impulse function (§ 2.1). For the generalized uniform distri-
bution, the probability density f, may be derived by direct evaluation of Eq. (3.1):

(34

1 Ay + (A = Y Ay — J(45 — y?
7(y) = .1n|:1 \/(; -Vz). e ‘/(‘2’ yz)]; 0=y < 4,
Zn(Al——AO) Al—'\/(Al—,V) Ao+\/(A0_y)
2 2
271(A1—A0) Ax“\/(Al")’)
=0; A1<|y|.

3.2. Triangular distribution with the threshold value

Let be
(3-5) fa) =0; 0<acsA,,
=H; Ay £asA4,,
1 = 0
=0; Ay <a.

This distribution has been chosen for demonstrating the derivation of f,(») using
both ways mentioned in § 3.
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By direct substitution into Eq. (3.1), we get
for |y| < Ao:

_ 2 o ada B 4 _*_g‘l,,,_, _
(3-63) f’(‘) - n(A; — Ao)? [.[Ao \/(al - %) AOJ‘Ao \//(az - ,‘"2)]

2 VAT = %) = V(45 = »?)] =

(A, — Ao
e e
w4, — Ao A, — J(A2 = y?) Ay + (42— )]’
for |y| = Ao:
2 4 ada 4 da
(3.6b) £y = A A Uy N AOL 3(—[12”_—y2)] =
BN G s N SN TN ke

n(A, — Ao)*  m(A, — Ay A, — J(42 — y?)’

Using the Taylor series for f,(a) and taking h(a) = 2a/B* for 0 < a < B, h'(a) =
= 2/B?, we have for f,(y), |y| < 4o:

_1 40+ g(a) . da A 4o+ B g’(a).dt_z_ _
G N e R PN o

T A et
nB? Ao nB? a — J(@® — y*)|4

Denoting A, + B = A,,i.e. B= A; — A, we have

BT 50) = T T =) = (=) -
Ao In I:A1 + \/(Af —y*) Ao — \/(AS - YZ)J

T a4y — A LAy — J(AE =37 Ag + (43~ y?)

which is identical with Eq. (3.6a). Similarly, for [y| 2 4, the expression identical
with that of Eq. (3.6b) is obtained.

The total coincidence of the expressions derived in both indicated ways results
of course from the fact that the derivatives h”, h”, etc. of the function h(a) = 2a/B?
are equal to zero so that by the first two terms of the Taylor series the
function h(a — A,) = 2(a — A,)/(A; — Ap)? is not only approximated but exactly
described.
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3.3. General form of the probability density of the envelope given by continuous parts
whose analytical expressions allow the evaluation of the integral transform

In is clear from the above discussion that the number of functions f,(a) for which
the analytical solution of the integral transform Eq. (1.11) is known is not very great.
The discussion concerning the threshold values suggests the possibility of an analytical
expression of Eq. (1.11) transform for a function f, given by piecewise-continuous
parts for which the transform Eq. (1.11) is known.

Let the function f,(a) be given as follows:

(38) o) = ful@) 0 Za< .
=fila); 4, =a< A,
= fila) i Aw_, £ a< A,
=fla) © A, sa<A4,,
=fola): 4, =£a<owo.

Applying mathematical induction to the preceding considerations, we get the follow-

ing expressions for f,(y):
_ 1 (" fo(a).da 1™ ffa).da 1 f.(a).da
(3.9) f,(y) =~ _«‘0,(,2_)_*}_. +- 3 J _ (,2) 4 ,;J w_(Z)_T .
rly @ =) wi= ) V@ =) m ), V(e -y

0=y =4,
V(% Ad@)da g ffa).da 11T (@) da
n), @ =y widd ), @ =) . Je =)
Ay = |,\’| < Ay,

|
i

Il

A

Sl A =Sy <.

—
<
8
—~
INY
~
oL
<
A

It is clear that the requirements imposed on the functions f,(a) are more restrictive
than those for the functions defined on the whole interval <0, o). For f,, it is suffi-
cient to know the definite integral in the range (y, o), but for each f,, the indefinite
integral of the transform Eq. (1.11) must be known. This is fulfilled e.g. for a polyno-

n

mial in a, i.e. f, = Y k;.a'. Odd powers lead then to expressions containing powers
i=1

of \/(a* — y?), even powers lead to expressions containing In {[a + /(a* — y?)]:
[a — /(a®> — y?)]}. It follows from Eq. (3.7) that with a greater number of sections,
the expression for f, becomes cumbersome. On the other hand, when intervals 4;, | —
— A; are chosen to be equal and the probability density function f, is approximated
by a polygon, a theoretical basis is built up for writing an algorithm for a digital
computer.
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4. TWO-PARAMETRIC DISTRIBUTIONS

The distributions given in this chapter were obtained by a generalization of some
distributions given in Chapter 2. In Tables 2.1 to 2.4, moments of the probability
densities of the envelopes and the corresponding densities of the vibratory processes
up to the sixth order and the invariants I, and I, are given. When evaluating these
quantities, the same approach was adapted as that in Chapter 2. It may be shown
that in the invariants defined by Egs. (2.3) the number of independent parameters
is reduced by one, i.e., for two-parametric distributions these invariants depend only
on one characteristic quantity. These relationships are given graphically in Fig. 1
instead of distribution functions f, whose analytical expressions are not known.

4.1. Gaussian distribution of the envelope

This is some kind of generalization of the case given in § 2.1 in the sense that
instead of a deterministic and constant value A4,, a random variable with the mean
value u and the variance ¢ is assumed. For f, which is defined for a = 0 only, one
may assume only the cases with pfo > 3.2 for which the part of the distribution cor-
responding to a < 0 is negligible (it forms only approx. 0.1% of the whole area
of the probability integral).

Fig. 1. Invariants /, and /g of the
vibratory processes Y(7) treated in
Chapter 4 plotted against the di-
mensionless parameters x where

M for the distribution func-

» = =
o tion treated in §4.1

o = Ay for the distribution func-
Aq tion treated in § 4.2

o o for the distribution func-

o tiontreated in § 4.3

x == m for the distribution func-
tion treated in § 4.4
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It is evident from the evaluated moments that for ¢ — 0 these characteristics turn
into the distribution described in § 2.1 with ¢ — A, as it was expected when defining
this distribution. As a characteristic quantity entering the invariants I, and I¢, the
expression x = pfo is adequate. '

4.2. Uniform two-parametric distribution (with a threshold value)

For this distribution, the analytical expression for the probability density f, was
derived in § 3.1. In this place, the moments of this distribution are added to point
out the connections with both limiting cases 4, — 0 (giving one-parametric uniform
distribution — §2.2) and A4, —» A, (giving Dirac impulse function — §2.1). The
characteristic quantity entering the invariants may be taken as x = 4,/4,.

4.3. Rayleigh-Rice distribution

This is one possible generalization of the Rayleigh distribution which is very often
used in technical applications. The parameter « characterizes the shift of the mean
value M[A] in the direction of the variable a. I,(.) is the modified Bessel function
(of the imaginary argument) of the first kind of zero order, the values of which are
given e.g. in [1] or [9].

It may be easily proved that for « = 0 the Rayleigh-Rice distribution turns into
that of Rayleigh. On the other hand, if «/¢ — oo, this distribution approaches the
Dirac impulse function with o — A,.

When deriving the moments of the Rayleigh-Rice distribution, the following
relations for the moments with respect to the origin may be found from the integral

tables
k k o?
w = . r{1+ =), F[-=, 1; — —"—],
Hi ( ) ( 5 141 5 (20_2)

where (F, is the confluent hypergeometric function which for the first argument
with k odd leads to the modified Bessel function I, and for even k (i.e. for even mo-
ments) leads owing to the relation ,F,(—n, 1; x) = L,(x) (where L,(x) are Laguerre
polynomials) to rational relations between parameters o and 6. As a characteristic
quantity entering the invariants, the expression «/o is suitable. Tables of integral
distribution functions of the Rayleigh-Rice distribution are given in [2].

4.4. Gamma distribution

The last analytically defined two-parametric distribution of the envelopes given
in this paragraph is the gamma distribution with parameters m and A. The necessary
moments may be derived without difficulty. One may also prove that by puttingm = 1

100



the exponential distribution is obtained while by putting m = 2 the distribution des-
cribed in § 2.6 is defined. it should be noted that *he invariants of the vibratory
process distribution f, related to the gamma distribution of the envelopes contain
the parameter m only.

5. GENERALIZED GAMMA DISTRIBUTIONS

In the technical practice, when analyzing some phenomena of statistical character,
two parameters of a distribution function are not sufficient in some cases so that
three- or even four-parametric distributions are to be taken into account. For pro-
blems connected with strength and reliability of machine parts or whole construc-
tions, some generalizations of the gamma-distribution have proved to be very useful.
One very important direction of generalization consists in introducing the threshold
value as shown in Chapter 3. Another direction of generalization affects the slope
and/or the shape of the distribution function, which in the case of the gamma distri-
bution may be realized by introducing a suitable power for the independent variable
entering the exponential function. For these two ways of generalization, moments
for the distributions f, and moments and invariants for the distributions f, will be
given.

5.1. Gamma distribution with the threshold value

The probability density function f,(a) has the form
(5.1) fda) = 0; a< Ay,

FE;) a — Ag)" ' exp[—Ma — Ay)]; a

I

Ay,

with parameters A, m and A, the lhatter being the threshold value. It may be easily
shown that the moments offa(a) may be expressed in the form

(5.2) u,(a) =ii () aye Tome ) s

v
=o \i 0 .)y".l"(m)’

1

For the moments of the distribution fy(y), the rela ions

101



may be derived according to Eq. (1.12) while for the invariants, the relations

(5.42)
FOREES Z <T> & %(nr?m)) .
R0 ]
(5.4b)
O ST RO

hold according to Egs. (2.3).

5.2. Gamma-distribution with the power function of the argument

The probability density function of the envelope f,(a) will be expressed in the form

(5.5) fa) = I?(r;}/:lrg) .a" ! exp[—(2a)]; az=0

with parameters A, m and k. For the moments the expression

(5.6) pnla) = ;‘ : l:%/?v))/-k] L ov=1,223 ..

may be easily found yielding the moments and invariants of the distribution of the
vibratory ptocess in the form

(5.72) na(v) = fiay) = 472 T[(m + 2)[K][T(m]k) .
(5.70) na(y) = faly) = 3 27* . T[(m + QK] (m[k).
(57¢) po(r) = fie(y) = 547 T[(m + 6)[k]/T(m]K).
(5-8a) Io(v) = 3 {1?[(m + 2)/k]} " A{T[(m + 4)[k] . I(m[k) = 2I?[(m+ 2)[K]} ,
(5:8b) Io(y) = 3 - {T°[(m + 2)kJ}~" . A{T[(m + 6)[k] . I*(m][k) —
— 9. I[(m + 4)k]. I[(m + 2)/k]. T(m[k) + 12. I*[(m + 2)/k]} .
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5.3. Four-parametric gamma distribution

Assuming both generalizations used in §§ 5.1 and 5.2, the four-parametric gamma-
distribution

(5.9) fa)=0; a< A,

k.i™ m— 1 Ky .
=F(m/k) a = A" iexp {—[Ma — 40)]*}: az=

vV
N
S

with parameters A, m, k and A, may be defined.

For the moments of f,(a) we may derive

(510) ,uv(a) = i (:) LAY Cﬁm_tik]

i=0

s =a0) =3 5 (H e L
(5.1 ) =i = 2% ().t [(m%]

and for its invariants accordingly

(4) o= TLm + K]

At I(mlk)

(7). c[<m_+_f>/_kJT )

(5.12a) 1) = .2. .
At r(111/k)
5 (0) g w00

(5.120) TR For(m

7 [ £ () s A 0y

PGS
QLG

103



The four-parameter gamma-distribution involves in the general formulation a very
broad class of distribution functions used in the technical practice. For m = k we get
the so-called Weibull distribution function which is often used in fatigue and reliability
studies.

As special cases some distributions already mentioned are also included. E.g. for
m=2k=2A4,=0 and A = 1/(c/2), the Rayleigh distribution described in
§ 2.7 is obtained. Let us consider another special case, i.e. the Rayleigh distribution
with nonzero threshold value 4, > 0, which has also practical applications in tech-
nical problems, e.g. when analyzing random parametric vibrations. Putting m =
=k = 2and 1 = 1[(c \/2) into Egs. (5.9) to (5.12), we get

(5.13) na) = Z <) Ay (0 2)" r(l * 2)

(142) () = m0) =% D <?).A§_i(a J2). r<1 ; i),

() <eerr(+)

(5-14c) 1e(¥) = fig(y) = el i (f) CAS (o J2)" . r<1 + i>,

16 i=o

é;o C).Ag-i(o— \/2)".r<1 +’E>
[2() e 3)]
5 io (f) 4870 /2) ‘r(l + ;)
[20) Aev ()]
4 Z() AT F( 2)

() v r (1)

(5190) ) =) =

M-

(15 10)=.

(5.15b) I(y) =
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6. APPROXIMATION OF THE DISTRIBUTION FUNCTION USING
THE GRAM-CHARLIER SERIES

For some purposes, especially for the analytical treatment of more complex pro-
blems, the knowledge of the numerical characteristics (moments) of a distribution
function is not sufficient and the probability density function is to be expressed at
least in an approximate form. In such cases an expansion of the probability density
function in a series, the terms of which are normal (Gaussian) function and its
derivatives which form an orthogonal set, is very useful.

Assuming the normal random variable 1 = [y — u,(y)]/[\/#2(»)], the best appro-
ximation of the distribution function f(r) by means of the set (1), ¢,(1), (1), ...

f
0.4 |
———— triangular distribution
0.3 — — — approximation using two terms of the series
------- approximation using three terms of the series
0.24
0.14
>
o
0 l1 l2 I3 -

Fig. 2. Approximation of a symmetrical triangular distribution (only the right half is plotted)
using the Gram-Charlier series
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-, @) = d'p[dt" is given by the so-called Gram-Charlier series, (see [10])

(6.1) 10 = o)) = £ 10 050 + o [l = 31 400 -

- T;‘d [1s(t) = 10u3(1)] - 5(1) + 7_;3 [io(t) — 15pa(2) + 30] . @4(t) — ...,

where ¢(t) is the probability density function of the Gaussian distribution with para-
meters 0, 1. All the moments given in Eq. (6.1) are central ones owing to the intro-
duced normalization.

The distribution functions of the vibratory processes are, as it was already told in
the introduction, symmetrical functions so that in Eq. (6.1) only even derivatives
occur. Analysing the constants belonging to the individual terms of the Gram-
Charlier series, one may state that they are just the invariants introduced in Eqgs.
(2.3a) and (2.3b).

Hence the Gram-Charlier series if restricted up to the sixth derivatives (1), is
given in the form

(6.2) £ ~ o(t) + Ii‘i. oq(t) + :/{290- AR

This expansion contains three independent terms, which are for most cases sufficient
for a satisfactory approximation. In Fig. 2, a graphical example of an approximation
of a symmetrical triangular distribution is shown. It is evident that a distribution
with sharp changes in its shape (c.g. a uniform distribution over a short finite inter-
val) would be approximated rather improperly.

The basic requirement imposed upon every probability density function according
to the definition is that it cannot assume negative values. The applicability of Eq. (6.2)
is thus restricted by the relation

(6.3) o(1) + 124; Ca(t) + 7{26(5 Pe(1) = 0

which should be valid over the whole interval 1 € (0. co0). Putting a fixed value r = ¢,
into Eq. (6.3), we get (for the “‘equal to™ sign) an equation of a line in the variables
I, I, which separates the area of permissible application of the Gram-Chatrlier ap-
proximation from the area of not permissible combinations of I, and I,. Choosing 1,
on some discrete levels (e.g. in steps 0.1 over the range (0, 3)), a set of lines may be
drawn (see Fig. 3) which mark out the area of permissible combinations of I, and I,
where Eq. (6.3) holds. It is evident that with increasing ¢ the permissible area decreases.
It may happen that some not very suitable forms of distribution functions are to be
approximated using Gram-Charlier series. One must expect in such cases that the
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approximation formula will produce negative values for the probability density, as
a rule for some higher values of ¢. In such situations, the negative values are put equal
to zero and the distribution is normalized by means of the condition that the integral
of the density function in the interval (— oo, 4 00) is equal to one.

Fig. 3. Areas of permissible combinations for I, and /4 based on the requirement for the Gram-
Charlier approximation that f(¢) = 0

<20 —— — <25 meeeee- t< 3.0
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The values of the invariants I, and I, were given in Chapters 4 and 5 so that all
quantities in the Gram-Charlier series are fully specified. The reduction from the
normalized variable ¢ back to the original variable y will be accomplished with regard
to pt,(1) = 0 by means of the relation

(6.3) L) = it fy[N ) -

7. GENERALIZATION OF THE DESCRIBED METHOD TO SOME
NON-STATIONARY PROCESSES

Under the assumption used in Chapter 1 for the conditional probability density
f5(9] a) to be equal to 1/(27), the probability density f, may be taken as a time func-
tion, i.e. we write f,(a, t). Comparing with the procedure following Egs. (1.7) to
(1.10), we find that

1 (™ fda,t).da
) )= L[ B

7
Similarly, for the moments the relations

(2k)!

Zi\:)‘zja . [le(a, f)

(7-2) fia(y, 1) =
may be developed, their interpretation being evident.

With regard to Eq. (7.1), let us consider f,(a, 1) to be of the form f(a, 1) =
= f(a, o(1), o(1). «(t), ...), where ¢(1), (1), (1), ... are time dependent parameters of
the distribution. Then it is evident that f,(y, t) is of the form f,(y, t) = f,(». o(t), o(?).
(1), ...).

Let us consider e.g. the Rayleigh distribution with () being a funct’on of time:
fda, 1) = al[26%(1)] . exp [ — a*/(20°(1))]. Then the corresponding normal (Gaussian)
distribution has the form

S5 1) = [ @r) - o(n)] - exp [ »2[(20%(1)] -

8. SOME PRACTICAL REMARKS ON EVALUATING EXPERIMENTAL DATA

The ensembles of experimental data are processed, as a rule by means of standard
programmes, on a digital computer. As a result of this treatment, the empirical
probability density, the empirical distribution function and their first four moments
are obtained. The type of the analytical distribution function which approaches
best the empirical distribution will be found by plotting the empirical distribution
on the probability paper of the expected analytical distribution function. For a treat-
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ment of envelopes, the most useful probability paper is that of Rayleigh, in which the
Rayleigh distribution function is graphically represented as a straigh line. Other types
of distributions are represented also in certain characteristic shapes, so that a first
estimate of the analytical form may be drawn from this plot. To facilitate this process
in practice, most of the distributions dealt with in this paper are plotted on the Ray-
leigh paper in Fig. 4.

0.98 // , 7F = 7T
I ./%/ e ,/;/’
0.95} — /‘ );' 7 o
// / / A7 7 «/ e
o050} y 44 -/ P
/ ‘.,I' ' 4"/ / ,/:/ /
060 // A7 / 5 -
71/ & 4
0.70 // ,,// C J ()\/ %ﬁ ///
0.60 '44)‘-/“( 2 P} g
TS T
. 5 4 - >
040 4 / AN yd
ol LA 7
0.20 / g /‘/ v -
4 , +1
01004 v e ///
A ,’:/‘/7 d
0.02 / B — ]
oo KAA A o .

Fig. 4. Typical cumulative distribution functions of envelopes plotted in the Rayleigh probability

paper:
1 — triangular {0, 4¢) 5 — Rayleigh 9 — gamma, m = 4
2 — exponential 6 — uniform{A4y/2, 4y> 10 — Raylcigh-Rice,g =2
3 — gamma, m = 2 7 — Dirac impulse function 11 — gamma, m = 6
4 — uniform <0, 4¢) 8 — normal (Gaussian), g =5

After the analytical distribution function which is close enough to the empirical
distribution has been selected, the estimates of the parameters of the analytical
distribution function are calculated from the moments. If the number of unknown
parameters is less than the number of evaluated moments, the lower order moments
are to be preferred as the basis for the calculation. If the estimates of the same para-
meter obtained from moments of different order are too different, proof is to be
made (e.g. by plotting into the corresponding probability paper) whether the analytical
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distribution was properly selected or whether it is not necessary to smooth the empi-
rical distribution.

After the suitable expression for the distribution function of the envelope has been
found, the analytical form of the corresponding distribution function of the vibratory
process may be estimated, either directly, if known, or by means of the Gram-Charlier
series.

9. CONCLUSION

The method of analyzing the envelope of a random vibratory process instead of the
original process has some advantages both in the analytical and in the experimental
research. The knowledge of the relations between the distribution function of the
process and its envelope is evidently the basic supposition for a versatile use of this
method. Assuming that the distribution function of the envelope is known, a selected
set of distributions having expressive importance in technical practice especially in
the field of strength and reliability problems is summarized in this paper together
with the corresponding characteristics of the distribution functions of the related

lg

154, e

1...10: numbers refer to distributions given
in tables 1.1 to 1.10, respectively

————— transformed Rayleigh-Rice distributions
— — — transformed gamma-distributions
------- transformed Gaussian distributions

Fig. 5. Set of distributions of vibratory processes treated in
ot Chapters 2 and 4 characterized by their invariants I, I
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vibratory processes. Where the analytical solution of the integral transform was
inaccessible, the invariants of the fourth and sixth orders were evaluated allowing
an approximate analytical expression by means of Gram-Charlier series. All necessary
expressions are given in complete details facilitating the practical use for solving
particular problems.

Although a set of quite different one- and two-parametric distributions of the enve-
lopes was selected for the treatment, the corresponding distributions of the vibratory
processes have shown some relationship expressed by the fact that their invariants
I,and I, arelying close to the line 8 . I, + I + 2,5 = 0 (see Fig. 5) except the gamma
distributions with lower values of the parameter m. Another interesting conclusion
is that relatively great differences in envelope distribution functions result in much
smaller differences in distribution functions of the corresponding vibratory processes.
This effect is especially pronounced for low values of the variance ratio of the enve-
lope distribution. A practical hint follows from this statement that the expression of
the envelope distribution, e.g. when estimated experimentally, need not to be too
precise. It is advissable better to use less close approximation, which is, however,
justified by an easy analytical treatment either of the envelope probability density
or of the distribution function of the corresponding vibratory process.
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Souhrn

VZTAHY MEZI ROZDELENIMI NAHODNYCH KMITAVYCH PROCESU
A ROZDELENIiMI JEJICH OBALEK

OLpiRicH KrROPAC

Za predpokladu, 7ze kmitavy nahodny proces je uzkopasmovy a rozdéleni faze
je rovnomérné na intervalu (0,27), Ize najit integrdlni transformaci mezi rozdglenim
tohoto kmitavého nahodného procesu a rozdélenim jeho obalky, pfiCemz se vychazi
z predpokladu, Ze je zndmo rozdéleni obalky a hleda se rozdéleni kmitavého procesu.
Prispévek obsahuje slovnik dvojic pfidruZzenych rozd&leni obalek a procesii nejcastéji
pouzivanych v technickych aplikacich, a to 10 jednoparametrickych, ¢tyfi dvoupara-
metrickd, obecné rozdéleni s prahovou hodnotou a zobecnénd gama-rozdéleni. Pro
analyticky pfistupné tvary rozdéleni obalek jsou uvedeny analytické tvary rozdé€leni
procesti, v ostatnich ptipadech jsou pro kmitavy proces uvedeny momenty hustoty
pravdépodobnosti, které umoziuji analytickou aproximaci Gram-Charlierovou
fadou.

Author’s address: Ing. Oldrich Kropacé, CSc., Vyzkumny a zkusebni letecky ustav, Praha 9 -
Letiiany.

112



		webmaster@dml.cz
	2020-07-02T01:21:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




