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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

EXPERIMENTAL PROPERTIES OF SOME ADDITIVE PSEUDORANDOM 

NUMBER GENERATORS WITH RANDOM SHUFFLING 

JAROSLAV KRAL 

(Received April 29, 1970) 

The work reported in this paper was induced by an urgent practical request to 
construct a pseudorandom number generator for the LINK 8 computer. Doubts 
sometimes occur whether such a generator can be constructed. We show that it is 
possible. We shall not give any theoretical treatment — the found generators are too 
complex from the theoretical point of view. This disadvantage was compensated 
with a complex testing. The best generator found is now used on the LINK 8 computer 
with very good results. 

As mentioned above the generators were designed for the LINK 8 computer. The 
properties of the computer (a short word and a very slow multiplication) excluded 
multiplicative generators. It was therefore decided to design an additive generator or 
a generator based on shift and addition. The further study has shown that shifting 
does not improve substantially the quality of the generators. The interest was 
therefore focused on additive generators in which the computation mod 2k is 
performed. 

The first generator of such type studied was a generator based on the Fibonacci 
sequence, i.e. a generator using a sequence 

ah ai+u . . . where ai + l = a{ = a r _ x (mod 2 2 2 ) for i = 2, 3, . . . 

It is known that such sequences have bad statistical properties (see [3]). It was there­
fore decided to use the random shuffling technique, which can be described as follows. 
Let us have a sequence of n = 2m numbers A0, Au ..., A„_1 and two numbers a 
and h. The generator can be given by the following Algol procedure (instead of 
Fibonacci sequence au a2, a3, . , , « „ the sequence b( = at x 2~ 2 2 is used): 
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real procedure random; 

begin integer i; real d; 

real procedure Fib; 

begin real c; c : = if (a + b) — 1 then a + b else 0 + b — 1; 

a :— b; Fib := b := c end This procedure generates a Fibonacci 
sequence in the scale 2~2 2 , the addition being performed in the fixed 
point arithmetics; 

i := entier (16 x Fib); comment on a binary computer realisable by 
a disjunction and a shift; 
d := A[i] ; A\i\ := Fib ; random := d; 

end; 

a, b, A\0\, ..., ^4[15] are nonlocal variables of the values less than 1 and not less 
than 2~ 2 2 . At least one number a x 22 2 or b x 22 2 must be odd. Although the above 
given program seems to be a little complicated it can be realized on a binary machine 
by few machine code instructions .Note that the procedure Fib is called twice. At 
first it is called when an "address" i in the array A is computed. The value of A\i\ is 
a new value of random. To the A\i\ is then assigned the result of the second calling 
of Fib. The generator just described will be called FRS-generator (Fibonacci with 
Random Shuffling). 

It is very difficult to study the properties of the FRS-generators from the theoretical 
point of view. It can be exptected that the period of the FRS-generator is very large 
because FRS-generator produces the same sequence of pseudorandom numbers only 
after all the values of numbeis a, b, A\o\, ..., A\15\ are the same. It follows that the 
length of the period of the FRS-generator is not great than 2a, where a = 18 x 22. 
The question how close is the length of the period of the FRS-generator to this very 
great value is open. Tests on the length of the period were performed for FRS-
generators with different choice of the values a and b (the starting values of A\o\,... 
. . . ,A [15] do not affect the properties of the FRS-generator substantially). It was 
found that the period in all the tested cases was greater than 4 . 106. Tests of statistical 
properties (see [1,3]). 

The following statistical tests were performed for the generators (see [ l]) . 

(A) Uniformity tests. Using /2-test for the sequencies of the pseudorandom 
numbers of the length 21 3 , the uniformity of the distribution of the numbers produced 
by the generators was tested, 256 classes. 

(B) Uniformity of the maximum. It is the test (A) for the pseudorandom numbers 
of the form Cj = (max (b3j, b3j+1, b3y+2))

3
3 where bk is the /c-th number produced 

by the generator. 

(C) Test of uniformity of pairs. It was tested for various k ^ 1 whether the pairs 
(xb *i+k) are uniformly distributed on the unit square. Number of classes 256. 
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(D) Runs above and below the median for the sequences of the length 21 3 , number 
of classes (for the x2 t e s l ) seven. 

(E) Runs up and down, number of classes for the x2-test seven, the length of 
sequences 24 000. 

(F) For each test mentioned above, a "global" test (see [1]) was performed, i.e. 
the values p = P(x} > xl)> where x2 is the obtained value of the test statistic, was 
computed for each test. 

For the sequence of p (for the given test), it was tested whether p is uniformly 
distributed on (0, 1). 5 classes. 

Autocorrelation coefficients for produced sequences of random numbers were also 
computed. The generator (1) was tested for the following starting values of a and b 
(the values are given in the octal form) 

a . 2 b.222 

1 1453631 77 2517 

2 1453631 77 0117 

3 1453631 77 2617 

4 1453631 77 2516 

5 1453631 77 2511 

6 1453631 77 2514 

7 1453631 77 2515 

It was discovered that the properties of FRS-generators essentially depend on the 
starting values of a and b. The properties of generators with the values of a, b equal 
to 1, 2 , . . . , 6 were bad. The choice 7 yielded almost satisfactory results. The greatest 
influence is exerted by changes in the last bits. It was confirmed that the test of runs 
up and down is the most sensitive one, but this fact is not too distinct. The global 
test is very sensitive. It discovers deviations from randomness, which cannot be dis­
covered by separate tests (e.g. "too good" results of separate tests). It is likely that 
by a proper choice of the values of a and b even better properties of the FRS-generator 
can be achieved. 

The strong dependence of FRS-generators on the starting values of a, b seems to 
be a little surprising, because in all cases the corresponding Fibonacci sequence has 
the period 2 2 0 (see [3]). This is probably caused by the fact that there are (222 — 1) . 
. (22 1 — 2) 2 ^ 2 4 1 possibilities of the choice of the starting values of a and b and 
during one period with the given starting values only 22 0 pairs of values of a, b appear. 
Therefore it exists about (for the word length 22 bits) 22 0 Fibonacci generators, which 
can have different properties. The above given values of a and b can be used as the 
starting values for a FRS-generator using a sequence given by the recurrence a'i+1 = 
= a'i -f- a j _ ! (mod 219). It is interesting that this generator has for the same starting 
values very similar properties as the 22 bit generator discussed above. A pseudo­
random number generator was also tested, the structure of which can be described in 
Algol 60 as follows. 
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real procedure random; 

begin integer i; real d; 

real procedure Perron; 

begin d : = a + b; if d = 1 then d := d - 1; 

a := b; b := c; Perron := c := d end; 

i := entier (16 x Perron); 

a := -4[i]; random := A[i] := Perron; 

end; 

This generator yields better results than FRS-generator for all the above discussed 
tests excluding the run test, which yields a very bad result. The generator has a ten­
dency to form long increasing and decreasing sequences. It is quite likely that this 
property could be avoided by other choice of the starting values. 

Since for FRS-generator a satisfactory choice has not been found, another additive 
generator was studied. We shall call this generator PRS-generator. It can be described 
as follws (The design of the generator was influenced by [3]. However, we use the 
random shuffling technique and, moreover, entries from the shuffling table are sub­
stituted into the basic additive generator). 

real procedure random; 

begin integer i; real c; 

c := a + b, i f c g r l then c := c — 1; i = entier (16 x c); 

b := c + A[i]; if b = 1 then b := b - 1; 

random := A[i] := b; 

a := c; comment A is a nonlocal array declared as real array A[0 : 15]; 

end; 

This generator is realizable by the following program ( © i s addition mod 1): 
c := b; a := a ® b; i : = entier (16 x a); b := b + -4[i]; random := A[i] := b; . 
On many computers it is faster as usuall multiplicative generator. 

The PRS-generator was tested for the starting values a = 145 3631, b -= 1, c = 
= 77 2515 (in the octal representation). This generator has very good statistical 
properties — see Table I. 

In the above mentioned generators the array A contains 16 elements. PRS gen­
erators in which A contains 32, 64, 128 elements were also tested. The statistical 
properties of them were not better than those of the above described generator. 
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Worse properties were obtained only for the table length eight, especially for 
autocorrelation coefficients. Again it was observed that for the word length not less 
than 18 the properties of the generator do not vary substantially when the word 
length is increased. 

The generator can be easily implemented on all computers, for example even on 
the byte computer of today without decimal arithmetics, and can be also easily 
implemented in firmware. It is convenient that the generator works for small word 
lengths. On computers with multiplication in hardware it can be slower than multi­
plicative generators. 

The testing of the above discussed generators has shown that the most sensitive 
test is that on runs down and up and the global test. It seems that especially the global 
test which is not often used in literature is very useful, because it discovers deviations 
from "randomness" which cannot be discovered by other tests; see for example 
results for the PRS-generator in the appendix, viz. the case of pairs with k = 31, or 
the results of the up and down test for the FRS generator. In Tables 1 and II results 
are given not for all the studied generators. A great experimental evidence shows 
that in all cases when some individual test fails, the same holds also for the test (alt­
hough not necessarily for the given test — see Table II). When the global test gave good 
results, then for example the autocorrelation coefficients of the produced sequence T 
as well as those of pseudorandom chains produced from Thad the expected properties. 
There were cases, when individual tests gave "good" results, but the global test 
failed. On the other hand, the global test is not sensitive to exceptional (extreme) 
values of individual tests. For example the case occured when one individual test 
twice produced (in a run of 50 tests) a value of statistics rejecting the randomness 
hypothesis on the level 10"5 . 

APPENDIX 

The results obtained for the above mentioned generators are given below. 
For each test we give: the number of tests performed, number of cases when the 

hypothesis is rejected on the level l°/0o>o n lr1e ^eve^ 1% but not l°/0o> on the level 3% 
but not 1% and on the level 5% but not on the level 3%, In the last column the pro­
bability (for the global test) of obtaining "worse" values of the statistic under the 
randomness hypothesis is given. 
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Table I - PRS-generator 

Number of tests 17 
* loo 

\% 3% 5% Global test % 

Uniformity 
53 — 2 — 4 23 

Paiгs (xh xi + k) 
* • = = 1 53 — 1 2 __ 93 

2 53 — — 3 2 21 
3 45 — — 1 — 11 
7 51 — 2 — __ 36 

31 51 — — — — 4 
127 53 — __ __ 1 97,5 
255 50 __ — __ — 62 

1023 55 — — — 2 29 
8191 53 — — __ — 95 

65535 50 — — 2 _ 7 
Runs up and down 

71 __ 1 1 2 94 
Runs above and below the median 

82 l 1 ) — 3 1 60 
Triplets 

52 — — — — 69 
(max (xЗJ, x зj+i> x 31 + 2)) 

56 l 2 ) — — — 95 

») 0-8°/00

 2 ) 0-7°/0 

Table II — FRS generator 

Uniformity 
53 — 1 2 2 7 

Paiгs 
k= ì 52 — 1 1 — 10 

2 56 _ 2 — _ 30 
3 51 _ 2 _ 2 6,6 
7 52 — — 1 _ 17 

19 63 __ 1 2 1 10 
31 58 1 — 1 1 34 

127 56 — 1 — 1 65 
1023 53 — — — 2 25 
8191 51 — — 2 1 26 
6535 52 2 — — 1 231) 

Runs up and down 
94 — 2 4 7 002 

Runs above and below the median 
227 - 3 _ _ 75 

(max (Ъji xъ Ѓ + ľ xЪj+2^У 
54 '_ 1 3 3 8-5 

Triplets not performed 

' ) A value of statistics was obtained which rejects the randomness hypothesis on the level 10 
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Souhrn 

EXPERIMENTÁLNÍ VLASTNOSTI JEDNOHO ADITIVNÍHO 
GENERÁTORU PSEUDONÁHODNÝCH ČÍSEL S NÁHODNÝM POSUVEM 

JAROSLAV KRÁL 

V článku je uveden algoritmus pro vytvoření generátoru pseudonáhodných čísel 
hlavně s použitím operací sčítání a posuvu, který je možno naprogramovat na libo­
volný počítač. Jsou uvedeny některé statistické testy a je doporučen optimální způsob 
implementace. 

Authoťs address: Dr. Jaroslav Král, Ústav výpočtové techniky ČVUT, Horská 3, Praha 2. 
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