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SVAZEK 16 (1971) APLIKACE MATEMATIKY ClsLo 4

SOME CASES OF NUMERICAL SOLUTION OF DIFFERENTIAL
EQUATIONS DESCRIBING THE VORTEX-FLOW THROUGH
THREE-DIMENSIONAL AXIALLY SYMMETRIC CHANNELS

MiLosLAV FEISTAUER
(Received October 1, 1970)

Studying the interior aerodynamics of stream machines, we often meet with the
problem of the determination of a stream field in various channels which are elements
of the machines.

With respect to the increasing demands for the efficiency of systems of power
the results of one- and two-dimensional theories are not sufficient and it is necessary
to investigate the three-dimensional flow through stream machines.

In this article some cases of vortex-flows through axial, axially radial, radially
axial and other three-dimensional axially symmetric channels are studied.

1. GEOMETRIC DESCRIPTION OF THE CHANNEL AND SOME ASSUMPTIONS

We shall use a cylindrical coordinate system z, r, ¢ for the geometric description
of a channel and in the following parts of the article for the solution of the whole
problem. Let z be the axis of symmetry of the channel defined as follows:

In the closed plane (z, r) (ie. in S = E, U {0}, see [3]) curves A,, 4, with the
following properties are defined:

a) A; (j = 1, 2) are smooth enough') simple closed curves that do not intersect
each other at finite points. Their initial and terminal points let be co. Let 4; be the
mapping of the interval {a, b) into S. We shall use the symbol {A) to denote the
geometric image of the curve A. Let us put {A4;> = L;.

b) It holds r = 0 for all points (z, r) e L;. {z;(z,0) e L;} has in E; at most one
component.?) (This means that both curves lie in the upper closed half-plane (z, r).)

1) We do not give precision to the notion of smoothness as we need it if we study the existence
and regularity of the solution of the respective differential equations; we shall not deal with this
question.

2) This second assumption in b) is mathematically not essential. Nevertheless a larger number
of components is impossible from the technical point of view.

265



¢) A; = a} + a} + aj, where (a}y, i = 1,3 are half-lines and {a}) is parallel
to <ay) which is parallel either to the axis z or the axis r. a} are such that a) and b)
are fulfilled and (af} lie in the circle K with its centre at the origin of coordinates
and with radius which is not too large. Let af, a} (i = 1, 3) have the same orientation
(i.e., if t passes from a to b, then a{(f) and aj(t) change both in the positive or both
in the negative direction of the axis parallel to (a}). If (a})“ axis z, let a} be oriented
in the positive direction of the axis z. If (a})” axis r, then it follows from the foregoing
argument that a; are oriented in the negative direction of the axis r.

The complement of the set L, u L, with respect to E, has three components.
Exactly one of them satisfies the following condition: The distance of any point X
of this component from L; (let us denote it by XL,) satisfies the inequality XL; < ki,
where k, is a positive constant which is the same for all X of this component. We shall
denote it M. The boundary of M is #(M) = L, U L,, the closure of M is M =
=MulL, ulL,.

Let G be a set in E; in cylindrical coordinates defined by G = {(X, ¢); X € M,
¢ € €0, 2m)}. We shall call G the interior of the channel, or briefly the channel.
G is obtained by the rotation of M round the axis z. With respect to the axial sym-
metry it will be possible to solve the following problem in the region M.

Let us denote by U the exterior of a circle with its centre at the origin in the (z, r)
plane (U is a neighbourhood of the point o). Let U n K = 0. It follows from
a) to c¢) that U n M has in E, exactly two components. We shall call that one con-
taining the points of {a}» ({a}») the neighbourhood of the inlet (exit) of the channel.
We shall say that X — inlet (exit), if X passes through all neighbourhoods of the
inlet (exit) sufficiently distant from the origin.

We shall call the inlet (exit) axial or radial one, if <a;) ({a}»)| axis z or axis r
respectively.

If both the inlet and the exit are axial, we shall say that the channel is axial. Simil-
arly, the channel with the axial (radial) inlet and the radial (axial) exit will be called
axially radial (radially axial).

Let us further assume: If the inlet is axial (radial), then L, lies under (to the left
from) L, in a neighbourhood of the inlet.

Remark 1. In numerical solution it will be necessary to consider the inlet and
the exit in a finite distance from the origin.

Finally let us assume that the fluid considered is incompressible and non-viscous
and the flow is stationary.

2. EQUATIONS OF VORTEX-FLOW

A general vortex-flow of incompressible, non-viscous fluid is governed by ([1], [2])
1. equation of continuity

(2.1) V.Vv=0,
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2. Euler’s equations of motion

(2.2) W_f_ V.
dt 0

where V = (v,, v,, v,) is the velocity of fluid, p — pressure, F = (F, F,, F,) — vector
of exterior volume force, ¢ = constant — density. V is the operator “nabla”, in
Cartesian coordinates x, y, z, V = (0/dx, 0[0y, 0[dz). Let us put V = |V|.

To rewrite the equation (2.2), we use the formula

dv oV ov 1
2.3 — =+ (V.V)V =24 -V(V) =V x (VxV).
ey Y =D v vy

Let us consider F to be conservative. Hence the existence of the potential @ follows,
so that

(2.4) F=-Vo.

Let us denote

(2.5) H=ylyig.
o 2

(H is usually called total enthalpy.) By the use of (2.3)—(2.5) and the assumption
of stationarity, we can write (2.2) in the form

(2.6) Vx(VxV)=VH.

(2.1) and (2.6) form the system of four equations containing four unknowns v,
v,, U,, H.

Boundary value conditions consist of the conditions at the inlet and the exit of the
channel (see further) and the condition of the flow on the walls of the channel:

2.7 V.n=0,

where n is the normal to the wall. In our axially symmetric case n = (n_, n,, 0) and
the vector (n,, n,) is the normal to L;.

Now, let us express the equations (2.1) and (2.6) in the cylindrical coordinates,
taking into account the assumption of the axial symmetry, which implies that the
quantities considered do not depend on the coordinate ¢. Hence, all functions
considered depend only on the variables z, r.

Equation of continuity:

(2.8) 6(6’;’) + a(ar”’) -0,
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Euler’s equations:

299 (200 ) _on
oz or r oz 0z
(2.9b) v Arvg) | (00, v\ _OH
r or 0z or or
(2.9¢) _ 0 Arvy) v, Arv,) _
r 0z r or
(if r + 0).

In technics we meet also with such cases that points (z, r), with coordinate r = 0
belong to the channel. According to our definition these points lie on the boundary
of the channel. Let us show that this does not lead to contradiction. If the point
(z, 0) lies inside the stream field and both the velocity and its first derivatives are
continuous at this point, then putting r = 0 in (2.8) we obtain v, = 0. Since
n|(r = 0) = (0, n,, 0), (2.7) is valid.

We shall say that the curve S is a stream line, if {(S) = G and the direction of S
at its each point where V = 0 is the same as that of V (see [1], [2]).

Let f be a function defined on G. Let df/ds mean the derivative of f in the direction
V(=0). We shall call it the derivative of f along a stream line. If f has continuous
derivatives at the point X € G, then

V(x)

V) VI(X).

(2.10) g{ (x) =

Let us assume that V and H have continuous derivatives at least of the first order.
It is not difficult to find two first integrals of the system (2.8), (2.9). (2.9¢) can be
written in the form

-V.V(rv,) =0,

from which we have d(rv,)/ds = 0 and hence
(2.11) rv, = const. along a stream line .
Let us multiply (2.9a) by v,, (2.9b) by v, and add. We get the equation

V.VH =0,
so that

(2.12) H = const. along a stream line .

On the basis of (2.11) and (2.12), we shall transform our system to one differential
equation of the second order.
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The equation (2.8) implies the existence of a so called stream function y with

(2.13) 5_1/1 =rv,, g! = —rv,.
or 0z

Ifv = (uz, v,) has continuous derivatives of the k-th order, then ¥ has continuous
derivatives of the (k + 1)-st order. Let us put Q = 0v,/0z — dv,[or. If we multiply
(2.9a) by v,, (2.9b) by —v, and add, then we have

(0 + 02 @ + le (e, Arv) \ _OH - OH
r 0z or 0z or

2 .

Let us denote V' = (0/0z, 0[or). If V' # 0, then we can write the last equation
in the form

(214) 0= {—V’H(—v,, ) + %2 (V(rv,) . (<o vz))} /(v: ey

In view of (2.13),
VY = (—ruo, rv,),
so that
V'H. (—v,, v,) _ VH.V'Y

(13 N (2%

Let V' % 0 at the point X, = (z,, ro). Then V'{/(X,) * 0 and the system
(2.16) dz/dt = z = oylor, dr[dt =F = —0dy[oz
has in a certain neighbourhood O(XO) of the point X, exactly one solution passing
through a given point X € O(X,) (see [6]), ¥ being constant along this solution:
0 )/
dz/z/dt:m’b . ooy  opay

— z — = —— =

0z or 0z Or or 0z

On the other hand, the equation |l/(z, r) = Yo, where ¥, is a suitable constant
defines a curve determined by this solution. For various ¥, we get curves that do not
intersect each other in O(X,). By (2.13), the system (2.16) can be written in the form

Z=rv,, F=ry,

which is the system describing the projection of the stream lines into the (z, r) plane
in the circumferential direction ¢. It is evident that a function f(z, r) is constant along
a stream line, iff it is constant along the projection of this stream line into the (z, r)
plane. Therefore we shall call this projection a stream line, too. By the rotation
of a stream line round the axis z we obtain a stream surface. Hence, { is constant
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along the stream lines and y = const. is the equation of a stream line (in O(X,)).
It follows from (2.12) that H is a function of the variable ¥, i.e. H = H(y).
To express dH/dy, let us consider a curve % described by the equations

z = 81,0/52 , F= 61///6r

and passing through the point X,. Exactly one stream line passes through every
point of <%) lying in O(X,). Hence, if ¢ = (1), then Y|<%> = y(t), where y(r)
is a one-to-one function. The finite derivative
dv _
dt
exists. Then H|(%)> = H(y(t)) = H(t) and

(Vy)? +0.

aH _dH di_dH

=— == <ﬂ>_l=v'1{.v'¢(vn//)*2.
dy  dt dy  dr

dt

This implies that the expression at the right hand side of (2.15) equals r dH|dy.
If we also apply this process to the next term in (2.14), we come to the following
equation:

dH d
(2.17) Q=—-r=—+u, (roy).

dy dy
Now, let us express Q by means of (2.13). After some simple operations we obtain
the fundamental equation describing the stationary axially symmetric three-dimen-
sional vortex-flow of the non-viscous fluid:

(2.18) Py LW, <d_H _ d(r0¢)2>_

0z2  or*  ror dy  2r? dy

Functions H() and (rv,)? () are determined by the relations in a neighbourhood
of the inlet, where V and p and thus also y and H are supposed to be given. Other
details follow.

Physical interpretation of the stream function :

Let o be an axially symmetric surface in G, obtained by the rotation (round the axis z)
of a finite arc I lying in the plane (z, r) with the initial point from L, and the terminal
point from L,. Let all other points of I" belong to M. Let S,, S, be two stream lines
(in (z, r) plane) determined by the equations Y(z, r) = y; (j =1,2) and &; the
surfaces obtained by the rotation of S; round the axis z. &; are stream surfaces.
The flow £ through the surface, which is the part of ¢ lying between %, and &,
(let us denote it by 04, 4,), is given by the surface integral

.W’:'[ V.ndo,
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where n is the normal to the surface gy,s,- The axial symmetry, if we denote Iy,
the part of I' between S, and S, (dy,¢, €3N be obtained by the rotation of Is,s),),

implies that
0 0
P =2n r(vz, v,) . (nz’ nr) dr = 27ZJ. <ip n, — —l// n,> dr =
rS,SZ ar 62

I's,s,

_ Y ar = ol —
=2n frs,sz ar r (s — ¥y).

It means that the difference between two values of the stream function is equal
to the whole flow between the stream surfaces, defined by these values of the stream
function, divided by 2n. Let 2nG, be the minimal flow through the channel, 272G,
the maximal flow. Then we can assume that € (G, G,»>. In many “‘reasonable”
cases G; = 0, G, = Q = the whole flow through the channel divided by 2x.

We shall further mention the boundary value conditions for . | L; is given
in virtue of the above result, by the whole flow between L; and L,. Hence, we have

(2.19) Y|L =0, y|L,=0Q.

If Y has continuous derivatives of the first order in M, then (2.19) is equivalent to the
condition (2.7), which, in virtue of (2.13) and the existence of continuous derivatives
of , is equivalent to dys/ds = 0 along L;. This condition with respect to the former
paragraph is equivalent to (2.19).

To determine the inlet and exit conditions, i.e. the behaviour of ¥ in a neigh-
bourhood of the inlet or the exit, we shall use an experimentally proved fact that
the ripples, caused by the irregularity of the part of the channel determined by af,
vanish quickly with the increasing distance from this part. Therefore we shall assume
that in a sufficient distance in the direction to the inlet or to the exit (this distance
in view of ¢) from Chapter 1 is not “too large”) the flow is nearly parallel to the
boundary walls of the channel, i.e., in our case, parallel to (a}} or (af-). It means
that in case of the axial inlet (exit)

(2.20) gll;(—x) -0 as X — inlet (exit),
0z

and in case of the radial inlet (exit)

(2.21) @(Q -0 as X — inlet (exit) .
r

In view of (2.20), in a sufficient distance from the circle K (see c), Chapter 1.)
equation (2.18) becomes a simplified form of the ordinary equation:

(2.22) ﬂ_ld_‘/’zr2<dﬂ_i‘l(f_"g)_z),
dr? r dr dy  2r* dy
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If the channel is formed in the mentioned part by two coaxial cylinders with radii
r; < r,, then we solve this equation under the boundary value conditions t//(rl) =0,
Y(r), = Q. Similar equation is obtained as a consequence of (2.21).

However, (2.21) yields some restraints on the function H. If dH/dy # 0, then
the right hand side of the equation (2.18) tends to oo as r — + o0, whereas the left
hand side is bounded. Therefore, in case of the radial inlet or exit, we shall suppose

(2.23) dH|dy = 0.

Instead of (2.20) or (2.21) at the inlet, it is possible to give directly the function y,
which in view of (2.20) or (2.21) depends only on the variable r or z respectively.
Then we put

(2.24) Y | inlet =y = given function .

Remark 2. The right hand side of the equation (2.18) determines the vorticity
of the field. If the flow is not vortical, i.e. if

VxV=0,

then equation (2.6) implies VH = 0 in G, so that H = const. in G. From (2.9a)
and (2.9b) it follows that V(rv,) = 0 in G and thus rv, = const. Hence the right
hand side of the equation (2.18) is equal to zero (see [1]).

3. NUMERICAL SOLUTION OF THE PROBLEM

Many concrete computations have proved that it is convenient to solve the equation
(2.18) with conditions (2.20), (2.21) or, if need be, with (2.24) approximately by the
finite-difference method. We shall not deal with the existence of the exact solution
and its properties (some results applicable to our case are e.g. in [16]), but we shall
study the system of finite-difference equations, prove the existence and uniqueness
of the solution for the case of non-linear vorticity and show that it is possible to find
this solution by a “simple iterative method”.

Let us write the equation (2.]8) in the form

(3.1) Ly = f(r,¥),

where Z is the differential operator
(3-2) P = + - =2

and f is the function

(3.3) : f@m=ﬂGMW_iﬁWWW»_

dy 2r? dy
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Remark 3. If the function f is determined by its values at the inlet, then it
is defined for Y € <G, G,>. With respect to our further considerations it will be
necessary to define f for all y € E; in order that the extension of f may have pro-
perties which will be required in the following. If we prove the uniqueness of the
solution of our problem and if the corresponding solution y is such that l//(z, r)e
€ {G,, G,y for all (z, r)e M, then it is evident that y(z, r) does not depend on the
extension of f with respect to . In the following let f already denote the considered
extension.

We shall assume that f is continuous on the set M x E| (Cartesian product of M
and E,), the derivative df [0y exists on M x E, and

(3.4) (. ¥) =0 forall (z,r)eM andall YeE,.
oy

It is impossible to solve the problem by the finite-difference method in the un-
bounded region M. We shall consider a finite subset M, = M defined as follows:
Let U, and Uj; be the neighbourhoods of the inlet and the exit respectively, ‘suf-
ficiently” distant from the origin of coordinates, so that we can suppose that the
influence of the curved parts of the channel will be small there. Let K; be a neigh-
bourhood of the origin such that U; n K, (i = 1, 3) contains a finite arc I'' with
the following properties: The initial point of I'’ lies on {(a}), the terminal point lies
on (a4 and I''(I'®) | axis r or axis. z, if the inlet (exit) is axial or radial respectively.
Let us denote l:j the part of L; lying between the points of intersection of I'' with
A;and I'* with A;. If Ej is the geometric image of the curve A; and A; has the same
orientation as A;, then A = ANI N pL s /1~2 = I'! is Jordan’s curve. We shall denote
its interior by M. Denoting (4> = L, we have #(M,) = L. In the finite-difference
conception we shall consider M, the projection of the channel in the circumferential
direction into the plane (z, r), I'* the inlet and I'* the exit. This definition is con-
venient from the technical point of view, because the parts of stream machines are,
of course, finite; nevertheless, we started from the ideal model, which is more
common.

From the inlet and exist conditions (2.20) and (2.21) we obtain the equations

(35) Wlpri—o
0z

(axial inlet or exit) and

(3.6) Wlpi—o
ar

(radial inlet or exit — under the assumption (2.23)).
(2.24) has the form

(3.7) Y|t =y



and (2.19)
69) YL =0, ¥|L=0.

W |L, uT* v L, is a continuous function. ( is continuous in M,.)

3.1. Finite-Difference Model

Let us introduce some notions and assumptions (usual in numerical methods, see
[7]-[11].

Let (2, F) e Ey, h > 0. @, = {X,; = (2 + ih, F + jh), i, j, =0, 1, £2,...}.

If Py = (X0, yo) € 24, then we shall call the points Py, P, = (xo + h, yo), P, =
= (xo, yo + h), P3 = (xo — h, yo), Ps = (xo, yo — h) a neighbourhood of P,
and denote it by 0,(P,). P, and P; (j = 1,...,4) are called the neighbour points
(in the following let Py, ..., P, always denote the neighbour points of P,).

Let M, = {PeQ,; PeM,}, M, = {P = (2, 7o) € @, segments zo — h <z <
Szo+hr=rqandry—h<r=<ry+h, z=1z4liein My}, #, = M, — M,

Evidently M, = M, and if P e M,, then O,(P) = M,, #, consists exactly of all
points from Q, N M, whose distance from J#(M,) in the direction of the axis z
or the axis r is less than h.

M, and M, have a finite number of elements. Let M, = {Q,, ..., Q,.}, M, =
={Qy ..., Q). Then m < n’ and ), = {Qps1s ..., On}

Let us further assume that h is so small that it holds:
(39) PyeM, P;e0,P,), Pj¢M,=if P,e O,(P,) lies on the opposite side
of P, than P;, then P; € M,.

(3.10) Let I'* be chosen so that I'' n @, # 0 (it is possible to choose such I™).
Then, if Pe #, and PT* < h, it follows that Pe I,

(3.11) Let to two arbitrary points P, P'€ M, such a (finite) sequence of points
R,, ..., R, € M, exist that its two arbitrary successive points are neighbour
points, P = R;, P = R, and R,,...,R,_; € M,.

The definition of M, and b) from Chapter 1 imply the inequality

(3.12) h< min r.

(z,r)eMp

If F is a function defined on M,, Q; = (z;, r;) € M,, then we shall denote F(Q;) =
= F;. If a function F is defined on M,, we shall also use the symbol F to denote
F | M,. Then we shall write F = (F,, ..., F,.) and consider F a vector (or point)
from E,.. This notation will not lead to any misunderstanding.
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Let us express the derivatives of the function ¥ in (3.1) by finite differences. If
P, € M, then we write

01//

(3.13) ~ (Po) > ((P1) = w(P3))[2h = (D.4) (Po) .

%‘é (Po) % (4(P2) — W(P)2h = (D) ().
TV () = (9(Pr) = 20(Po) + Y(P)H* = (Do) (o)

— (Po) & (W(P2) = 20(Po) + Y(Pa))/h* = (D) (Po) -

If  has continuous derivatives of the fourth order in M,, then the order of the
approximation is O(h?). We shall use the notation (D,¥) (Q;) = (D.¥); e.t.c.

The transcription of the boundary value conditions will be made after Collatz ([9])
because of sufficient exactness and preservation of stream line character of L

a) If Pye o), N Lj, then we use the boundary value condition (3.8) unchanged.
With respect to (3.10), the condition (3.7) is also preserved.

b) If Pye #), n M, then there exists P;e 0,(P,) — M, and the segment PoP;
intersects (in virtue of (3.10)) L, or L,. Let A; be the intersection.

If PoA; = & h(6 €(0, 1)), then taking into account (3.9), we get by the linear
interpolation of the function ¥ on the segment A4;P; the equation

(3.14) Y(Po) = I"f_"é W(P;) + l*i'r‘) W(4;) .

If there exist two points P;, Pje 0,(Py) — M,, then it is possible to find P;, P}, 4;

A’, 8, &' with the above properties and instead of (3.14) we can put
5 U))-

c) Let Pye #), n I'. Then we rewrite the conditions (3.5) and (3.6) in the form

(3.15) Y(P,) = % <—1~§——5 Y(P) + ]—i— ¥(4;) +

é 1+

(3.16) Y(Po) = Y(P}), P;e O0yPy) " M,
and
(3.17) W(Po) = W(P). Pie O,(Po) A M,

respectively. (0,(P,) N M, contains exactly one point in both cases.)
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Now, if we replace the derivatives in (3.1) by the expressions from (3.13) for all
Q; € M, and rewrite the boundary value conditions for all Q; € #, according to the
formulae (3.7), (3.8), (3.14)—(3.17), and if we put (3.7) and (3.8) into other equati-
ons, we obtain exactly n equations for n unknowns (in general non-linear), n < n’.

In particular, for a point Q; = Py, e M, we have

(e = e wea (1= ) e wea (14 51)) -

h?
- (‘/’f + Zf(”j’ ‘Pj)) =0,

élfﬂ‘*”k = (A5 + A() = g,

which can be written as

where A, A;, g; have an evident meaning. Z’ A, denotes Z Ay (3.12) yields

1 — h2r; z Oforall Q; € M,,and thus A, = 0, 4;; > 0. In view of(3 4),d4;[du =
on E,. Furthermore, we have Z A, £ Aj;. Similarly we can also write the equations

(3.14)—(3.17). For (3.7), (3. 8) (3 14), (3.15) we get in the last inequality the sign <;
e.g. 8/(1 + 8) < 1 in case of (3.14).

Hence the system of the finite-difference equations can be written in the following
way:

(3.19) (AV); = é;"’jk‘//k = (A + AW) =95, J=1,...m,
or in a short form

(3.19) M =g,

where

(320) A;; >0, Aj =0, 4;is continuous in E,,

445 0in E, for all jk =1,...n
du

YA S A i=15n,
there exists an index j, (1 < jo < n) such that S A < A (WC shall say
k=1

Jjojo

that the point Qj, is of the first order;
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the matrix
—Ayy, Az ey Aqn

Auts Anzs -

is irreducible.

The irreducibility (see [8]) follows from (3.11). .# is a continuous operator trans-
forming E, into E,.

3.2. Uniqueness and Existence of Solution of Equation (3.19)

The results of this and the following sections are valid for all systems (3.19) satisfying
(3.20). It means that it is possible to apply methods mentioned below to all differential
equations which can be approximated by finite-difference equations with non-
negative coefficients satisfying (3.20). See [15].

Definition. We shall say that d = (d,,...,d,) =2 d = (di,...,d;) (d,d €E,),
if d; z dj for all j = 1, ..., n. Let us define the norm on E, by the equality Hd“ =
= max |dj|. For y, d € E, we put

=1 n

J=1,..0

(3.21) dy = (dyy, ... dab,),
M, = —d
ie.
(M); = (Mp); —dpp;, j=1,..,n.

If d = 0, then .#, can be written in an analogous form as .# and the statement
similar to (3.20) is valid. ./#, = /.

a) Let f be linear with respect to y. Then /Tj are also linear functions and (3.19)
can be written as follows:

(3.22) (), =Y A — Aj;=9g;, j=1,...,n.
k=1

If A(u) = A;u + bj, then A4;; in (3.22) was obtained by addition of A4;; from (3.19)
and 4;, g; by addition of g; frem (3.19) and b;. It is evident that (3.20) is valid.

Lemma. If y € E, and .4y = 0 (£0), then y <0 (=0). The same statement holds
for Myif d = 0.
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Proof. Let .4y = 0 and let there exist such j that y; > 0. If {; = max y, then
¥, >0and y; <y, forallj = 1,..., n. It follows from (3.20) that

(3'23) kZ; Ayl £ Z, Ay = A
= k=1

and consequently (), < 0. If the point Q, is of the first order, then even (.#y), < 0
which contradicts the assumption.

If Q, is not of the first order, then (3.23) holds, iff ¥(Q,) = ¥, for all neighbour
points Q, of Q, for which A, + 0. The former consideration can be carried out
for the point Q, e.t.c. and after a finite number of steps, in virtue of (3.11), we come
to a point of the first order and get again a contradiction. If .Zy < 0, then it will
do to consider — instead of .

Theorem 1. Equation .My = g where d 2 0 (in particular the equation (3.19))
has a unique solution.

Proof. /) = g is a system of linear equations, so that it is sufficient to prove
that the system .#a/ = 0 has only a trivial solution. If # a2/ = 0, then, by our
Lemma, < 0 and = 0 at the same time and consequently = 0.

Theorem 2. There exists a constant C > 0 such that for an arbitrary ¥, d € E,,
d = 0 the following inequality is valid:

(3:24) lv| = claaw].
Proof. The matrix of the system .# ) = g is regular (as follows from Theorem 1).
G* = (GY))i j=1.....n let be its inverse matrix. Then
(3.25) Yo=Y Glg;, i=1,...,n,
=1
so that
029) Wlsclal. = mx fat
i=1,..., nj=

Let us choose an arbitrary fixed jand put g; = 1, g, = 0if l = {, ..., n, | * .

In view of (3.25), ¥; = G{; and (M), = 1 for I = j, (M ), = O for | + J, so that
My = 0 and, in virtue fo Lemma, y < 0. Hence G{; <0 (for all i,j=1,....n,
since j was an arbitrary number from 1, ..., n)-

Let 0 < d’ £ d. It is evident that
GH <0, i,j=1,..,n.

ij =
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Let us again put g; = 1, g, = 0if | * j for fixed j. If

MY =g,
then

(3.27) ;=G <0, i=1,..,n.

My= My + (& —d) and thus MY — ') = My — MY — (@ =d)yy =
= (d — d') {'. With respect to (3.27) and the inequality d’ < d, it holds
MY =) =0
and then Lemma impliés
b— ¥ 20
which means
G4 < G, (<0),
so that
6% = |6t

ijl =

and finally, by (3.26),
C,<C, .

If we put C = C, the theorem is proved, since C, = C, for all d = 0.

b) Now, let us consider the general case when f is not linear with respect to V.

Theorem 3. If Y, ', de E,, d = 0, then
(3.28) lv — v

where C is the constant from Theorem 2.

< Clagy —

|,

Proof. By (3.21),
(A); — (Mp); ‘—‘k‘; Apbe = W) = (455 + dy) (b = ¥5) —
— (A(y)) — A,(v)) -

From the theorem of the mean value ([4]) it follows that there exists " € E, with
¥'; lying between V/;, ¥/ and

- - dA (v
) - Ay = Dy, .
Let us put

('/f?‘//).: =k‘=21' Aplry — (Ajj +d; + cl%f_)) Vi, j=1,..,n.
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A is a linear operator satisfying (3.20) (in a new suitable notation). (3.29) can be
written in the form

(“”ld‘/’)j - (“”MV);‘ = ("’7('# - ‘/"))j’
M — My = My~ ).

If we put  — V' instead of ¥ and .# instead of .#, in Theorem 2 and use the last
equality, we get

lv = v < claw - w)| = clta — A

)

q.ed.

Theorem 4. Equation M) = g where de E,, d = 0, has at most one solution.

Proof. Let , Y’ € E, satisfy the mentioned equation. Then, in view of (3.28),
[ — ¢'| = 0and thus = . If we put d = 0, then the uniqueness of the solution
of the equation (3.19) is proved.

Let us prove the existence of the solution of the non-linear problem now.

Theorem 5. System (3.19) has exactly one solution.

Proof. It is sufficient to prove the existence.

a) Let us consider ., instead of .#, where d € E,,

(3.30) min d; 25 >0,

Jj=1,...,n

and prove the existence of the solution of the equation

(3.31) Map =g .

In view of (3.20) and (3.30), the function (4;; + d;)u + A;(u) is continuous and
increasing on E,, it transforms E, onto E, and has on E, the first derivative 0.
This implies the existence of its inverse function, let us denote it f;, defined and
increasing on E,, having there a finite derivative. Let us further denote

0,(¥) =k;' Ap — g5 -

Then it is possible to write (3.31) in an equivalent form:

(3.32) 1//j=fj(Qj(lp)), j=1,..,n.
If we denote

(Fap); = fAQ,(¥)), Fab = (Fab)1s - (Fath)n) »
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we can write (3.22) simply as
(3.33) W= Fu.

With respect to the properties of f; and Q;, the functions (F); have the total dif-
ferential at every point y € E,. F, is a continuous operator transforming E, into E,.

Let us prove that the operator F, is contractive (see [14]). Let ¥, Y’ € E,. From
the definition of the norm and from the theorem of the mean value ([5]) applied
to (Fa);, it follows

n a(Fdl//”)
=) =
|E -

k

where 7" € E, and i is lying between i, and ;. Hence we have

(’(F

[Fab = Fa| < [ = ¢] max Z wk

.....

It holds:

(.30 AR _ Q) 20,0) _
' Oy dQ Oy

[A +d, +f ’(f(Q( )] Au(20), if j+k: =0, if j=k.
(We put 1/oo = 0 in case of an infinite derivative d4;/du.) Let us denote

g = max (Z A,k)(Z Ap+m)7hs

vl

and thus

Hence F, is a contractive operator and from the fixed point theorem it follows that
equation (3.33) a thus also the equation (3.31) have exactly one solution.

Let us prove the existence of the solution of the equation (3.19). Let {d,} be a
sequence of vectors from E, such that

(3.35) ldg] >0 as g— 40, (d);zZn,>0, j=1,....n
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To an arbitrary natural number g there exists the unique solution \, € E, of the
equation

(3-36) Mg =9
If we put d = d,, = ,, ' = 0 in Theorem 3, then by (3.21) we obtain
[wa]l = Cllg = #,0] = Clg — 0] < (|g] + [.#0]) = €, < +o0.

It means that the sequence {y,} is bounded with respect to the norm ”” and thus
we can choose a convergent subsequence from it. Nevertheless, we prove that even
{y,} converges:

‘//[lpq = '//[dql//q + dql//q = g + dql!’q
and in view of Theorem 3, putting there d = 0, we obtain the following relation

< CH'ﬂl//q - ‘//{l//r
d,

g = v
< Cy(|dg] +

= Clldapy — v,

)>0 as ¢, r— +o,

| <

which means that the sequence {y,} converges. Let Yo Y* as g - +oo. M is
a continuous operator on E, and therefore

MY* = Tim My = lim (M, + dp,) = g + lim d, .
q—+ o

-+ g+

It follows from the boundedness of {i,} and from (3.35), that the last limit is equal
to zzro, so that #Zy* = g, q.e.d.

3.3. Solution of Equation (3.19) by Simple Iterations

From the last paragraph we know that the equation (3.19) has a unique solution.
Some equations of a similar form are studied in [10], but neither [10] nor the above
paragraphs of our article give any effective method of finding the solution. The
simplest method of finding the solution is the so called simple iterations method,
usual for systems of linear equations (see e.g. [12]).

(3.19) is equivalent to the system of equations

(3'37) ‘/’j‘l"aj(‘//j): —bj+zajk‘//k’ ji=1..,n
k=1
where a; = A;/A;;, b; = g;|A;;, a; = AufA;; 2 0and aj; =0,/ =1,...,n.
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It holds:

(3.38) da; =0on E, a;

5 ; 1s continuous on E,
u

n
kZ1ajk < 1; for the points Q; of the first order even

n
Yoa, < 1.
k=1
The matrix A — E where A = (a;);x=1...., and E is a matrix unit is ir-

reducible. 7

(3.38) is equivalent to (3.20).

From 3.2. we know that (3.19) is equivalent to the equation (3.33) where d = 0,
ie.

(3.39) Y =Fob = F(y), F) = (F,(¥),.... F,(¥)).
By (3.34) the following estimation is obtained:
(3.40) 0= 6’;%—) < a; foral yeE,.

a) Let da;/du = 0 on E,. Then a; is a constant and (3.37) is a system of linear
equations, which can be written in the form

(3.41) b= —(b+a)+ Ay,
b=(by,...b), a=(ay...,a,).

The absolute values of all eigenvalues of the matrix A are < [ ([12]). In view of
(3.38), all eigenvalues of A are in the absolute value even smaller than 1 (see [8],
[11], [13]). Hence

(3.42) A'50 as - 4+
and the sequence of iterations
(3.43) Y9 e E, (arbitrary), ¢V = —(b + a) + Ay?

converges to the exact solution of the equation (3.41).

b) Let us prove now that the solution of (3.39) can be also found by the method
of simple iterations

(3.44) YO eE,, Yyt = FyW).
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Let us denote F'= Fx Fx...+ F, ie. F(y) = F(F...(F(}))...),
Neo— — ————

I-times I-times
aﬂ(w) . <6F5-(w)>
halV AN = D(y), . = D,(y).
(al//k jk=1,..., n () oY Jk=1,..., n (l//)
It holds
IF;(¥) _ <~ OF (F()) OF ()
Wi KT
and thus

D,(/) = D(F(y)) . D(¥) -

By repeated induction we get

(3.45) D(y) = D(F*"'(y)). D(F'"*())) . ... . D(¥) .
From the inequality (3.40), (3.42) and (3.45) it follows:
(3.46) D) - 0 uniformly (with respect to ¥) on E, as | > +co.

If y* is the solution of (3.19), then it also solves (3.39). We want to prove that
the sequence {y"} defined by (3.44) converges to y* as | - +oo. From the equality
y* = F(y*) it follows that y* = F'(y*) for arbitrary natural ] and, in virtue of (3.44),
we obtain the relation

(3.47) ,#m —Y* = F(qp“’”) _ F(l//*) — Fl(l/I(O)) _ F’(z,//*).

It is sufficient to prove that for arbitrary y(® € E,, (3.47) converges to zero as | - + oo.
There exists 7y’ € E, such that %y lies between y(” and y5 (k = 1, ..., n), and
" OF'(Yy’
P) - Fi) = 3, T i -y
= k

or

Fi'@) = Fi(*) = (DY) (W@ = y*);, j=1...n.
Y@ — y* is a fixed vector from E, and therefore, in virtue of (3.46), the last expres-
sion and thus also (3.47) converge to zero as [ — + 0, q.e.d.

Consequently, we can draw this conclusion:

Theorem 6. Let us consider the system of equations (3.19), which satisfies condi-
tions (3.20). This system is equivalent to the equation (3.33) where d = 0, and thus
to (3.39). Let {y/'"} be the sequence defined by the iterations (3.44). Then ¥ —
—> Yy*eE, as | > + 00 and Y* is the unique solution of the mentioned equations.
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4. COMPUTATION OF VELOCITIES AND DYNAMICAL CHARACTERISTICS

The velocity components v,, v, at points of M, can be computed on the basis
of (2.13) and (3.13). We get the formulae

__ll//(Pz)—ll’(PAt) __l&)—w(ll)
(4~1) (v); = T an (v); = - o >

J J

where Py, ..., P, are the neighbour points of Q; € M, (see 3.1).

For Q; € #), n M, we must modify (4.1) a little. If P, = Q;, let P;, A;, P;, J have
the same meaning as in (3.9) and (3.14). If we realize that we obtained the formula
(3.14) by a linear interpolation of ¥ on the segment A4;P;, then, denoting by x the
axis (z or r) parallel to 4;P;, we obtain

(4.2) W(Po) , ¥(4;) = ¥(P)
' ox (L +o)h

We write + or — in the denominator in case that the coordinate x of the point P;
is smaller or larger respectively than the same coordinate of the point 4;. From
this and (2.13) we get formulae for the components v, and v,.

In case of the component v, we shall use the fact that rv, = (rv,) (/) is a known
function and therefore we can write

(+3) (o0 = 2oL

Pressure will be computed from the relation (2.5):
(4.4 p=coH -1V - ).

Volume force is usually neglected and then ¢ = const., or it represents the influence
of gravitation. We suppose that the direction of this force is parallel to the axis z
so that

(4.5) ¢ = +gz + C,

where C is a constant, g — gravitation constant and the sign + or — is written
if the axis z is oriented respectively in the direction up or down with respect to the
Earth surface.

Function H = H(¥) is known and thus the formula for pressure at the point Q;
has the following form:

(4.6) p; = o(H(¥;) - %ij - ).

If we denote by the index 0 quantities at the point to which quantities at the other

285



points refer, then we obtain from (4.6) the relation for the pressure coefficient p
at the point Q;:

(4.7) 5, = i~ po _ Hy) = H(o) = &; + & = 4V}

+1.
1oV 1y

S ~=
™2 40 e 8 1o L,\ ________

Fig. 1. Flow in axial channel

———— without vorticity, - vortex-flow

/-'3

Fig. 2. Flow in axially radial channel

——— without vorticity, ————- vortex-flow
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5. EXAMPLES

On the basis of the theory built in the preceding, a series of examples was computed.
We introduce two of them to illustrate the difference between the flow without
vorticity and a certain type of the vortex-flow in an axial curved channel and in an
axially radial channel. In Figs. 1 and 2 graphs of the fundamental parameters v,, v,,
rv, and p at the inlet of the channel in dependence on r and the stream lines are
drawn. In case of the flow without vorticity, v,, v,, rv,, p at the inlet are not in Figs. 1
and 2, since it holds in this case:

v, = const.

rv, = const.
p = const.
v, =0

at the inlet for both axial and axially radial channels. Stream lines were determined
from the values of the stream function y by linear interpolation. Parameters at the
exit computed for the flow without vorticity agree with the known results. In case
of the vortex-flow the computed results were not verified for lack of necessary data.
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Souhrn

NEKTERE PRIPADY NUMERICKEHO RESENI DIFERENCIALNICH
ROVNIC POPISUJICICH VIRIVE PROUDENI TRIROZMERNYMI
OSOVE SYMETRICKYMI KANALY

MiLosLAV FEISTAUER

Z rovnice kontinuity a Eulerovych pohybovych rovnic, které popisuji obecné
proudéni nevazké nestlaCitelné tekutiny, byla za ptfedpokladu osové soumérnosti
odvozena zakladni rovnice pro proudovou funkci ¥ tvaru

N _ 1w, (dH _ d_(rvﬁ>

0z2 or? ror

dy 212 dy
kde z, r, ¢ jsou valcové soutadnice, osa z je osou soumérnosti,

_ta v

- _ Ll
ror’ r

o5

v, v,

5}

l
7

v, slozky rychlosti, H entalpie.

Uvedena rovnice s pfisluSnymi okrajovymi podminkami byla feSena metodou siti,
¢imZ byl problém pfeveden na feSeni soustavy nelinearnich rovnic tvaru

"
k;Afk‘l’k = (A + A)) = g5, j=1..n,
k=)
kde A;, a A; splituji ur&ité podminky (v naSem piipadé (3.20)). V dalsim byla do-
kazana existence a jednoznaénost feSeni této soustavy a konvergence jisté iteradni
metody, kterou lze feSeni najit. Uvedenym zpiisobem je mozné fesit i jiné okrajové
ulohy pro elipticky operator, podstatné je, aby bylo mozno pfislusny problém
aproximovat uvedenou soustavou algebraickych rovnic.
Na konci élanku jsou uvedeny dva ptiklady ilustrujici rozdil mezi nevifivym
a vifivym proudénim v axialnim zakfiveném kandalu a v axi-radialnim kanalu.

Author’s address: RNDr. Miloslav Feistauer, Matematicko-fysikalni fakulta KU, Malostranské
nam. 25, Praha 1.
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