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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

SOME CASES OF NUMERICAL SOLUTION OF DIFFERENTIAL 

EQUATIONS DESCRIBING THE VORTEX-FLOW THROUGH 

THREE-DIMENSIONAL AXIALLY SYMMETRIC CHANNELS 

MlLOSLAV FEISTAUER 

(Received October 1, 1970) 

Studying the interior aerodynamics of stream machines, we often meet with the 
problem of the determination of a stream field in various channels which are elements 
of the machines. 

With respect to the increasing demands for the efficiency of systems of power 
the results of one- and two-dimensional theories are not sufficient and it is necessary 
to investigate the three-dimensional flow through stream machines. 

In this article some cases of vortex-flows through axial, axially radial, radially 
axial and other three-dimensional axially symmetric channels are studied. 

1. GEOMETRIC DESCRIPTION OF THE CHANNEL AND SOME ASSUMPTIONS 

We shall use a cylindrical coordinate system z, r, cp for the geometric description 
of a channel and in the following parts of the article for the solution of the whole 
problem. Let z be the axis of symmetry of the channel defined as follows: 

In the closed plane (z, r) (i.e. in S = E2 u {oo}, see [3]) curves A1? A2 with the 
following properties are defined: 

a) Aj (j = 1,2) are smooth enough1) simple closed curves that do not intersect 
each other at finite points. Their initial and terminal points let be oo. Let Aj be the 
mapping of the interval <a, b> into S. We shall use the symbol <A> to denote the 
geometric image of the curve A. Let us put <Ay> = Lf. 

b) It holds r ^ 0 for all points (z, r) e L,. {z; (z, 0) e L,} has in Ex at most one 
component.2) (This means that both curves lie in the upper closed half-plane (z, r).) 

1 ) We do not give precision to the notion of smoothness as we need it if we study the existence 
and regularity of the solution of the respective differential equations; we shall not deal with this 
question. 

2 ) This second assumption in b) is mathematically not essential. Nevertheless a larger number 
of components is impossible from the technical point of view. 
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c) Aj = a) -f a2 -f a ] , where <a}>, i = 1, 3 are half-lines and <ai> is parallel 
to <#2> which is parallel either to the axis z or the axis r. aj are such that a) and b) 
are fulfilled and <aj> lie in the circle K with its centre at the origin of coordinates 
and with radius which is not too large. Let a\, al

2(i = 1, 3) have the same orientation 
(i.e., if t passes from a to b, then a\(t) and a2(r) change both in the positive or both 
in the negative direction of the axis parallel to <ai>. If <^}>|| axis z, let a} be oriented 
in the positive direction of the axis z. If <a}>|| axis r, then it follows from the foregoing 
argument that a} are oriented in the negative direction of the axis r. 

The complement of the set Lx u L2 with respect to F2 has three components. 
Exactly one of them satisfies the following condition: The distance of any point X 
of this component from Lj (let us denote it by XL;) satisfies the inequality XL,- < ku 

where kx is a positive constant which is the same for all X of this component. We shall 
denote it M. The boundary of M is Jf(M) = Lx u L2, the closure of M is M = 
= M u Lx u L2. 

Let G be a set in E3 in cylindrical coordinates defined by G = {(X, cp);X e M, 
cp e <0, 2K)}. We shall call G the interior of the channel, or briefly the channel. 
G is obtained by the rotation of M round the axis z. With respect to the axial sym­
metry it will be possible to solve the following problem in the region M. 

Let us denote by U the exterior of a circle with its centre at the origin in the (z, r) 
plane (U is a neighbourhood of the point oo). Let U n K = 0. It follows from 
a) to c) that U n M has in E2 exactly two components. We shall call that one con­
taining the points of <a}> (<#]>) the neighbourhood of the inlet (exit) of the channel. 
We shall say that X -> inlet (exit), if X passes through all neighbourhoods of the 
inlet (exit) sufficiently distant from the origin. 

We shall call the inlet (exit) axial or radial one, if <a}> (<#)>) || axis z or axis r 
respectively. 

If both the inlet and the exit are axial, we shall say that the channel is axial. Simil­
arly, the channel with the axial (radial) inlet and the radial (axial) exit will be called 
axially radial (radially axial). 

Let us further assume: If the inlet is axial (radial), then Lt lies under (to the left 
from) L2 in a neighbourhood of the inlet. 

R e m a r k 1. In numerical solution it will be necessary to consider the inlet and 
the exit in a finite distance from the origin. 

Finally let us assume that the fluid considered is incompressible and non-viscous 
and the flow is stationary. 

2. EQUATIONS OF VORTEX-FLOW 

A general vortex-flow of incompressible, non-viscous fluid is governed by ([1], [2]) 

1. equation of continuity 

(2.1) V . V = 0 , 
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2. Euler's equations of motion 

(2.2) £"'-a-
df Q 

where V = (vz, vr, v^) is the velocity of fluid, p — pressure, F = (Fz, Fr, F^) — vector 
of exterior volume force, O = constant — density. V is the operator "nabla", in 
Cartesian coordinates x, y, z, V = (d\dx, d\dy, djdz). Let us put V= |V|. 

To rewrite the equation (2.2), we use the formula 

( 2 J) ^ = ^ + (V-V)V = ^ + J v ( V 2 ) - V x ( V x V ) . 
dt ot at 2 

Let us consider F to be conservative. Hence the existence of the potential <1> follows, 
so that 

(2.4) F = -V<2>. 

Let us denote 

(2.5) H = -? + - V2 -f <2>. 
O 2 

(H is usually called total enthalpy.) By the use of (2.3) —(2.5) and the assumption 
of stationarity, we can write (2.2) in the form 

(2.6) V x (V x V) = VH . 

(2.1) and (2.6) form the system of four equations containing four unknowns vz, 

vr, V H. 

Boundary value conditions consist of the conditions at the inlet and the exit of the 
channel (see further) and the condition of the flow on the walls of the channel: 

(2.7) V . n = 0 , 

where n is the normal to the wall. In our axially symmetric case n = (nz, nr, 0) and 
the vector (nz, nr) is the normal to L7. 

Now, let us express the equations (2.1) and (2.6) in the cylindrical coordinates, 
taking into account the assumption of the axial symmetry, which implies that the 
quantities considered do not depend on the coordinate (p. Hence, all functions 
considered depend only on the variables z, r. 

Equation of continuity: 

(2.8) fe) + fe)=0, 
dz dr 
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Euler's equations: 

(2.9a) vr(—-^) + ^—— = ™. 
\dz dr J r dz dz 

v_ d(rvv) _ ^ (dvr _ dvz\ _ dH. 

dr 
(2.9b) ?*• d ^ - vz (-^ - Q \ = 

r dr z \dz dr J 

(2.9c) - ^ d( r ty) _ _ d(rv9) _ Q 

r dz r dr 

(if r + 0). 

In technics we meet also with such cases that points (z, r), with coordinate r = 0 
belong to the channel. According to our definition these points lie on the boundary 
of the channel. Let us show that this does not lead to contradiction. If the point 
(z, 0) lies inside the stream field and both the velocity and its first derivatives are 
continuous at this point, then putting r = 0 in (2.8) we obtain vr = 0. Since 
n\(r = 0) = (0, nr, 0), (2.7) is valid. 

We shall say that the curve S is a stream line, if <S> c G and the direction of S 
at its each point where V 4= 0 is the same as that of V (see [1], [2]). 

Let / be a function defined on G. Let d//ds mean the derivative of/ in the direction 
V(=j=0). We shall call it the derivative o f / along a stream line. I f / has continuous 
derivatives at the point X e G, then 

(2..0) £»-i^-«W-
Let us assume that V and H have continuous derivatives at least of the first order-

It is not difficult to find two first integrals of the system (2.8), (2.9). (2.9c) can be 
written in the form 

- y . vK ) = o, 

from which we have d(rv^)/dS = 0 and hence 

(2.U) rVy = const, along a stream line . 

Let us multiply (2.9a) by v2, (2.9b) by vr and add. We get the equation 

V.VH = 0 , 
so that 

(2.12) H — const, along a stream line . 

On the basis of (2.11) and (2.12), we shall transform our system to one differential 
equation of the second order. 
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The equation (2.8) implies the existence of a so called stream function \f/ with 

(2.13) — = rvz , — = — rv r . 
OV dz 

If V = (vz, vr) has continuous derivatives of the k-th order, then \jj has continuous 
derivatives of the (k + l)-st order. Let us put Q = dvrjdz — dvzldr. If we multiply 
(2.9a) by vr, (2.9b) by — vz and add, then we have 

/ 2 j _ 2\n_.v* (d(rv*) d(rv«) \ dH dH 

(vz + vr) Q + -* - ^ vr - -+-&. vz = —- vr - — vz . 
r \ dz or J dz or 

Let us denote V = (djdz, d\dr). If V + 0, then we can write the last equation 
in the form 

(2.14) Q = i-VH(~vr, vz) + ^ (V'K) • (-»„ vz))\l(vl + vf) . 

In view of (2A3), 

so that 

(2.15) 

VI/Í = (~rvr, rvz), 

V'H.(-pr,p,) _ V'// . Y± 

v2
z + v2

r ~r (vipy 

Let V + 0 at the point X0 = (z0, r0). Then V\I/(X0) 4= 0 and the system 

(2A6) dz/dt = z = # / 5 r , dr/dt = r = - # / d z 

has in a certain neighbourhood O(X0) of the point X0 exactly one solution passing 
through a given point X e 0(X0) (see [6]), \jj being constant along this solution: 

d^/dl = ^ z + ^ r = ^ - ^ = 0 . 
dz dr dz dr dr dz 

On the other hand, the equation \j/(z, r) = i/>0, where \j/0 is a suitable constant 
defines a curve determined by this solution. For various \j/0 we get curves that do not 
intersect each other in O(X0). By (2A3), the system (2A6) can be written in the form 

z = rvz , r = rvr, 

which is the system describing the projection of the stream lines into the (z, r) plane 
in the circumferential direction (p. It is evident that a function f(z, r) is constant along 
a stream line, iff it is constant along the projection of this stream line into the (z, r) 
plane. Therefore we shall call this projection a stream line, too. By the rotation 
of a stream line round the axis z we obtain a stream surface. Hence, \j/ is constant 
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along the stream lines and i/> = const, is the equation of a stream line (in O(X0)). 
It follows from (2A2) that H is a function of the variable rj/, i.e. H = H(\j/). 

To express dHJdi//, let us consider a curve <€ described by the equations 

z = dij/jdz , r = dij/jdr 

and passing through the point X0. Exactly one stream line passes through every 
point of <^> lying in O(X0). Hence, if <€ = %(t), then iA|<^> = \//(t), where \J/(t) 
is a one-to-one function. The finite derivative 

^ = (W) 2 *o . 
dt 

exists. Then H|<^> = H(il/(t)) = H(t) and 
d ^ d H d ^ d H / d A - ^ 

diA dt dil/ dt \dtj } 

This implies that the expression at the right hand side of (2.15) equals r dH/di/y. 
If we also apply this process to the next term in (2.14), we come to the following 
equation: 

(2.17) Q=-r — + v9A-Jd. 
dij/ dxjj 

Now, let us express Q by means of (2.13). After some simple operations we obtain 
the fundamental equation describing the stationary axially symmetric three-dimen­
sional vortex-flow of the non-viscous fluid: 

(2 18) *± + *± _ 1 dA = r2 (™ - -L -fa^ 
{ ' } dz2 dr2 r dr \diA 2r2 cty 

Functions H(\/J) and (rv^)2 (ij/) are determined by the relations in a neighbourhood 
of the inlet, where V and p and thus also \\i and H are supposed to be given. Other 
details follow. 

Physical interpretation of the stream function t/>: 
Let a be an axially symmetric surface in G, obtained by the rotation (round the axis z) 

of a finite arc F lying in the plane (z, r) with the initial point from L(1 and the terminal 
point from L2. Let all other points of F belong to M. Let Sl9 S2 be two stream lines 
(in (z, r) plane) determined by the equations i//(z, r) = \//j (j = 1, 2) and S?j the 
surfaces obtained by the rotation of Sj round the axis z. £Pj are stream surfaces. 
The flow 0> through the surface, which is the part of o lying between Sft and Sf2 

(let us denote it by 0>l5,2), is given by the surface integral 

V . n d d , 
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where n is the normal to the surface o>,~ • The axial symmetry, if we denote ESlS2 

the part of r between 5, and 5 2 (- ,y2 can be obtained by the rotation of TSlS2), 

implies that 

0> = 2я f r(vz, vr) . (n2, nr) àГ = 2я f f~ «z - ^ и r ) dГ = 
J r S l S 2 J r s , s ł \ ðr ðz ) 

2n 
rSls2 d r 

d 'A-dr = 27r(lA2-(A1 

It means that the difference between two values of the stream function is equal 
to the whole flow between the stream surfaces, defined by these values of the stream 
function, divided by 27i. Let 2KGX be the minimal flow through the channel, 27rG2 

the maximal flow. Then we can assume that i//e <Gl5 G2>. In many "reasonable" 
cases Gt = 0, G2 = Q = the whole flow through the channel divided by 2K. 

We shall further mention the boundary value conditions for i//. \jj | Lj is given 
in virtue of the above result, by the whole flow between Lj and Ll. Hence, we have 

(2.19) ^ 1 ^ = 0 , 4*\L2 = Q. 

If \j/ has continuous derivatives of the first order in M, then (2A9) is equivalent to the 
condition (2.7), which, in virtue of (2A3) and the existence of continuous derivatives 
of i/s is equivalent to di/^/ds = 0 along Lj. This condition with respect to the former 
paragraph is equivalent to (2A9). 

To determine the inlet and exit conditions, i.e. the behaviour of \j/ in a neigh­
bourhood of the inlet or the exit, we shall use an experimentally proved fact that 
the ripples, caused by the irregularity of the part of the channel determined by a2, 
vanish quickly with the increasing distance from this part. Therefore we shall assume 
that in a sufficient distance in the direction to the inlet or to the exit (this distance 
in view of c) from Chapter 1 is not "too large") the flow is nearly parallel to the 
boundary walls of the channel, i.e., in our case, parallel to <a)> or <a?>. It means 
that in case of the axial inlet (exit) 

(2.20) -__!__)_> o as X -> inlet (exit), 
dz 

and in case of the radial inlet (exit) 

(2.21) M _ 0 _ > o as X - inlet (exit) . 
dr 

In view of (2.20), in a sufficient distance from the circle K (see c), Chapter 1.) 
equation (2.18) becomes a simplified form of the ordinary equation: 

(2 22) ! - - - I -M = r 2 ^ - - L d K ) ^ 
dr2 r dr Vdi/y 2r2 dip J ' 
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If the channel is formed in the mentioned part by two coaxial cylinders with radii 
r, < r2, then we solve this equation under the boundary value conditions i/>(rj) = 0, 
*Hr)2 ~ Q- Similar equation is obtained as a consequence of (2.21). 

However, (2.21) yields some restraints on the function H. If dHJdij/ =f= 0, then 
the right hand side of the equation (2.18) tends to oo as r -» +oo, whereas the left 
hand side is bounded. Therefore, in case of the radial inlet or exit, we shall suppose 

(2.23) dH/diA s 0 . 

Instead of (2.20) or (2.21) at the inlet, it is possible to give directly the function \j/9 

which in view of (2.20) or (2.21) depends only on the variable r or z respectively. 
Then we put 

(2.24) i/J | inlet = $ = given function . 

R e m a r k 2. The right hand side of the equation (2A8) determines the vorticity 
of the field. If the flow is not vortical, i.e. if 

V x V = 0 , 

then equation (2.6) implies VH = 0 in G, so that H = const, in G. From (2.9a) 
and (2.9b) it follows that V(rv^) = 0 in G and thus rv^ = const. Hence the right 
hand side of the equation (2A8) is equal to zero (see [1]). 

3. NUMERICAL SOLUTION OF THE PROBLEM 

Many concrete computations have proved that it is convenient to solve the equation 
(2.18) with conditions (2.20), (2.21) or, if need be, with (2.24) approximately by the 
finite-difference method. We shall not deal with the existence of the exact solution 
and its properties (some results applicable to our case are e.g. in [16]), but we shall 
study the system of finite-difference equations, prove the existence and uniqueness 
of the solution for the case of non-linear vorticity and show that it is possible to find 
this solution by a "simple iterative method". 

Let us write the equation (2.18) in the form 

(3.1) J S ^ = / ( r , tfO-

where S£ is the differential operator 

/ . ^ d d 1 d 
(3.2) <£ = — + — 

dz dr r dr 
and / is the function 

« • ^---(-2---^-). 
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R e m a r k 3. If the function f is determined by its values at the inlet, then it 
is defined for \jj e <Gl5 G2>. With respect to our further considerations it will be 
necessary to define f for all \j/ e Ex in order that the extension off may have pro­
perties which will be required in the following. If we prove the uniqueness of the 
solution of our problem and if the corresponding solution \\J is such that i//(z, r) e 
e <GU G2> for all (z, r) e M, then it is evident that \jj(z, r) does not depend on the 
extension off with respect to \jj. In the following let f already denote the considered 
extension. 

We shall assume that f is continuous on the set M x Ei (Cartesian product of M 
and Fx), the derivative dfjdijj exists on M x El and 

(3.4) m^jn ^ 0 f o r a | 1 ( z ? r ) e M a n d a l j xjjeEl. 
dxjj 

It is impossible to solve the problem by the finite-difference method in the un­
bounded region M. We shall consider a finite subset M 0 cz M defined as follows: 
Let Uj and U3 be the neighbourhoods of the inlet and the exit respectively, "suf­
ficiently" distant from the origin of coordinates, so that we can suppose that the 
influence of the curved parts of the channel will be small there. Let Kl be a neigh­
bourhood of the origin such that Ui n Kx (i = 1, 3) contains a finite arc Fl with 
the following properties: The initial point of Fl lies on <«i>, the terminal point lies 
on <a2>

 a n ^ F!(F3) I axis r or axis-z, if the inlet (exit) is axial or radial respectively. 
Let us denote Lj the part of Lj lying between the points of intersection of F1 with 
Aj and F3 with Aj. If L, is the geometric image of the curve Aj and Aj has the same 
orientation as Aj, then A = A t 4- F3 ~ A2 — F1 is Jordan's curve. We shall denote 
its interior by M0 . Denoting <A> = L, we have J^(M0) = L. In the finite-difference 
conception we shall consider M0 the projection of the channel in the circumferential 
direction into the plane (z, r), F1 the inlet and F3 the exit. This definition is con­
venient from the technical point of view, because the parts of stream machines are, 
of course, finite; nevertheless, we started from the ideal model, which is more 
common. 

From the inlet and exist conditions (2.20) and (2.21) we obtain the equations 

r = 0 (3.5) õф 
Ôz 

(axial inlet or exit) and 

(з.б) 
дф 

дr r = o 

(radial inlet or exit — under the assumption (2.23)). 

(2.24) has the form 

(3.7) xjj | F1 = 0 
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and (2.19) 

(3.8) i/> | L, = 0 , xj; | L2 = Q . 

^ | LA u F1 u L2 is a continuous function. (^ is continuous in M0.) 

3.1. Finite-Difference Model 

Let us introduce some notions and assumptions (usual in numerical methods, see 

[7]-[H]). 
Let (z, f) eE2,h> 0. Qh = {Xtj = (z + ih, r + jh), ij, =0 , ± 1 , ±2 , . . . } . 

If P0 = (x0, y0) e Qh, then we shall call the points P0, Pt = (x0 + /z, y0), P2 = 
= (x0, yo + h), P3 = (x0 - h, y0), P4 = (x0, y0 - h) a neighbourhood of P0 

and denote it by Oh(P0). P0 and P, (j = 1, ..., 4) are called the neighbour points 
(in the following let Pu ..., P4 always denote the neighbour points of P0). 

Let Mh = {P G &,.; P e M 0 }, M^ = {P = (z0, r0) e Qh; segments z0 — h ^ z ^ 
^ z0 + h, r = r0 and r0 — h ^ r g r0 + /z, z = z0 lie in M 0 }, Jfft = Mh — Mh. 

Evidently Mft c Mft and if P e Mfc, then O/,(P) c Mj,, J f fc consists exactly of all 
points from Qh n M 0 whose distance from Jf (M0) in the direction of the axis z 
or the axis r is less than h. 

Mh and Mft have a finite number of elements. Let Mh = {Ql5 ..., Qn,}, Mh = 

= {f i i , . . . . Qm}. Then m < n' and ^ = {Qm + 1, ..., Qn}. 

Let us further assume that h is so small that it holds: 

(3.9) P0eM^, PjeOh(P0), Pj$ Mh=> if Pte Oh(P0) lies on the opposite side 
of P0 than Pj9 then Pt e Mh. 

(3.10) Let r* be chosen so that F* n ^ + 0 (it is possible to choose such F1). 
Then, if P e Jfh and PF1 < h, it follows that P e F1. 

(3.11) Let to two arbitrary points P, P' e Mh such a (finite) sequence of points 
Ru ..., RkeMh exist that its two arbitrary successive points are neighbour 
points, P = Ri9 Pf = Rk and R2, ..., Rk-X e Mh. 

The definition of Mh and b) from Chapter 1 imply the inequality 

(3.12) h = min r . 
(z,r)eMh 

If F is a function defined on Mh, Qj = (zj9 r,) e Mh, then we shall denote F(2y) = 
= Fj. If a function F is defined on M0 , we shall also use the symbol F to denote 
F | Mh. Then we shall write F = (F1? ..., Fn) and consider F a vector (or point) 
from En.. This notation will not lead to any misunderstanding. 
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Let us express the derivatives of the function \j/ in (3.1) by finite differences. If 
P0 e Mh, then we write 

(3.13) ^ - (P0) * (*(Pi) - ^(P3))/2h = ( D » (P0), 
dz 

^- (Po) * Wi) - tfC*))/-* = (D» (Po) , 
Or 

^ (Po) * W P i ) - 2^(P0) + ^(P3))// '2 = ( D z » (Po), 
Õ Z 

Lt (P0) * (^(P2) - 2^(P0) + HPJW = (->-» (P0) . eV 

If i/f has continuous derivatives of the fourth order in M0, then the order of the 
approximation is 0(h2). We shall use the notation (Dz\p) (Q3) = (Dz\j/)j e.Lc. 

The transcription of the boundary value conditions will be made after Collatz ([9]) 
because of sufficient exactness and preservation of stream line character of Lj. 

a) If P0 e Jfh n Lj9 then we use the boundary value condition (3.8) unchanged. 
With respect to (3.10), the condition (3.7) is also preserved. 

b) If P0 e 2f£h n M0 , then there exists P; e Oh(P0) — Mh and the segment P0Pj 
intersects (in virtue of (3.10)) Lx or L2. Let Aj be the intersection. 

If PQ)AJ = S h(d G (0, 1)), then taking into account (3.9), we get by the linear 
interpolation of the function \jj on the segment A^P; the equation 

(3.14) *(P0) = - A - : j,(P,) + -L- +(Aj) . 
1 + O I + O 

If there exist two points P,, Pj e Oh(P0) — Mh, then it is possible to find Pt, P[, Aj 
Aj, S, d' with the above properties and instead of (3.14) we can put 

(3.i5) HP0) = i (-L. m + -J- HAJ) + - £ - m + T 4 ^ <K4>) • 
2 \ 1 + O 1 + O 1 + O 1 + O J 

c) Let P0 e 3tfh n F\ Then we rewrite the conditions (3.5) and (3.6) in the form 

(3.16) Hpo) = *(Pj) > PjeOh(P0)nMh 

and 

(3.17) iA(P0) = il*(Pk), Pk e Oh(P0) n Mh 

respectively. (Oh(P0) n Mh contains exactly one point in both cases.) 
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Now, if we replace the derivatives in (3.1) by the expressions from (3.13) for ail 
Qj e Mh and rewrite the boundary value conditions for all Qj e tfh according to the 
formulae (3.7), (3.8), (3.14)-(3.17), and if we put (3.7) and (3.8) into other equati­
ons, we obtain exactly n equations for n unknowns (in general non-linear), n < n . 

In particular, for a point Qj = P0e Mh we have 

•KRO + HP3) + *(P2) (i -~) + *(->*) (i + ~)) -

_ ( , / , . + ^ / ( r ; , ^ , ) ) = 0 , 

which can be written as 

n 

I'Ajttt ~ (AJJ^J + Ajtyj)) = gj, 
fc=l 

n n 

where AJk, Aj, Qj have an evident meaning. £ ' Ajk\j/k denotes £ Ajk\j/k. (3.12) yields 
fc=i fc=i 

fc*j 

1 - hjlrj :> 0 for all Qj e Mh and thus Ajk ^ 0, ASj > 0. In view of (3.4), dAjjdu ^ 0 
n 

on Eu Furthermore, we have £ ' Apt rg Ayy. Similarly we can also write the equations 
fc=i 

(3.14)-(3.17). For (3.7), (3.8), (3.14), (3.15) we get in the last inequality the sign < ; 
e.g. (5/(1 + S) < 1 in case of (3.14). 

Hence the system of the finite-difference equations can be written in the following 
way: 

(3.19) (Jiii)j = £ ' AJk+k - (AJJ^J + Ajtyj)) = gj9 j = 1, ..., n , 
fc=i 

or in a short form 

(3.19') Jiif = g , 

where 

(3.20) Aj7 > 0, Ajk g 0, Ay is continuous in E l 9 

-Hif § 0 in Ei for all j , fe = 1, ..., n; 
du 

i'AjkSAjj,j= l , . . . , n , 
fc=i 

there exists an index j0 (1 ^ j 0 ^ n) such that £ ' A7-ofc < A.yoJo (we shall say 
/ c = i 

that the point Qjo is of the first order; 
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the matrix 

is irreducible. 

The irreducibility (see [8]) follows from (3.11). Ji is a continuous operator trans­
forming En into En. 

3.2. Uniqueness and Existence of Solution of Equation (3.19) 

The results of this and the following sections are valid for all systems (3.19) satisfying 
(3.20). It means that it is possible to apply methods mentioned below to all differential 
equations which can be approximated by finite-difference equations with non-
negative coefficients satisfying (3.20). See [15]. 

Definition. We shall say that d = (dx, ..., dn) — d' = (d[, ..., d'n) (d, d' e En)r 

if dj ^ dj for all j = 1, ..., n. Let us define the norm on En by the equality \\d\\ = 
= max |dy|. For \j/, d e En we put 

j=l,...,n 

(3.21) # = (d.xjj,,..., d„i/v), 

(Mdy\f)j = (Ji\jj)j - djijfj, j = 1, . . . , n . 

If d ^ 0, then Jt' d can be written in an analogous form as Ji and the statement 
similar to (3.20) is valid. Ji0 = Ji. 

a) Letf be linear with respect to \j/. Then A} are also linear functions and (3.19) 
can be written as follows: 

n 

(3.22) (Ji\l/)j = Y! Aj^k - Ajjxj/j = gj, j = 1 , . . . , n . 
k=i 

If Aj(u) = AjU + bj, then AJJ in (3.22) was obtained by addition of AJJ from (3.19) 
and A j , gj by addition of Qj from (3A9) and b}. It is evident that (3.20) is valid. 

Lemma. If i// e En and Ji^f ^ 0 (^0) , then \p ^ 0 (^0) . The same statement holds 
for Jidif d = 0. 
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Proof . Let Jt\j/ = 0 and let there exist such j that ij/j > 0. If ^z = max i/>, then 
*/>, > 0 and ij/j = \j/t for all j = 1, . . . , n. It follows from (3.20) that 

(3.23) £ ' A/fciAfc ^ ^, I ' -4lk ^ M n 
i t = i fc=i 

and consequently (Jtit)v = 0. If the point Qt is of the first order, then even (Jt\\i)i < 0 
which contradicts the assumption. 

If Ql is not of the first order, then (3.23) holds, iff ij/(Qk) = *A* for all neighbour 
points Qk of Qt for which Alk =j= 0. The former consideration can be carried out 
for the point Qk e.t.c. and after a finite number of steps, in virtue of (3.11), we come 
to a point of the first order and get again a contradiction. If Jt\\f = 0, then it will 
do to consider — \j/ instead of \j/. 

Theorem 1. Equation Jtd\j/ = g where d = 0 (in particular the equation (3.19)) 
has a unique solution. 

Proof. Jtjty = g is a system of linear equations, so that it is sufficient to prove 
that the system Jid^/ = 0 has only a trivial solution. If Jt'd\\i = 0, then, by our 
Lemma, if/ = 0 and \j/ = 0 at the same time and consequently \\i = 0. 

Theorem 2. There exists a constant C > 0 such that for an arbitrary \j/, de En, 
d = 0 the following inequality is valid: 

(3.24) \\xl/\\= C\Md^\ . 

Proof. The matrix of the system Jt'd\j/ = g is regular (as follows from Theorem 1). 
Gd = (Gdj)ij = l> n let be its inverse matrix. Then 

(3.25) ^ = £ Gf,a,, / = 1 , . , « , 
1=i 

so that 

(3.26) IÎ H ^ Cd||g|| , Cd = max f |Gf,| . 
r = l , . . . , n j=l 

Let us choose an arbitrary fixed j and put gj = 1, gt = 0 if / = 1, ..., n, / =j= j . 

In view of (3.25), ^ = G?, and (Jtd\\i)x = 1 for / = j, ( ^ » , =' 0 for / 4= j , so that 
Jtd\lf = 0 and, in virtue fo Lemma, \\f = 0. Hence Gf, g 0 (for all ij = 1, ..., n, 
since j was an arbitrary number from 1, ..., n)-

Let 0 = d' = d. It is evident that 

G?: = 0 , i,j^V...,n. 
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Let us again put gj = 1, gt = 0 if / =t= j for fixed j . If 

Jtd4
f = g , 

then 

(3.27) <A; = Gd

u SO, i = 1,..., n. 

Jid = ^ d , + (d' - d) and thus Jtd(\j/ - i//') = Jtd\\i - ^ d ^ ' - (J' - d) if' = 

= (d — J') </>'. With respect to (3.27) and the inequality d' g a7, it holds 

Jtd(\l> -ifr') SO 

and then Lemma implies 

\\f - \j/' ^ 0 

which means 

Gfi^ct- (<;o), 
so that 

! G ul = \GU 
and finally, by (3.26), 

cd ^ cd.. 

If we put C = Co the theorem is proved, since C0 ^ Cd for all d ^ 0. 

b) Now, let us consider the general case when / is not linear with respect to ifr. 

Theorem 3. If \j/9 i/>', d e En, d ^ 0, then 

(3.28) \\\l/ - lA'H ^ C\Jtd\jj - Jt$'\ , 

where C is the constant from Theorem 2. 

Proof. By (3.21), 

( ^ ) j - {*&), = r ^ * - ^o - ( ^ + dy) (+j - n -
fc=i 

- (ZMJ) - *m) • 

From the theorem of the mean value ([4]) it follows that there exists y\f" e En with 

(/>"• lying between ij/j, xj/'j and 

Let us put 

ш - *m = dJ^ (ь - n 
áu 

>j = I' ^-K - f^y + d; + -^--'-) h. i = 1, - . « 
fc=i \ au J 
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M is a linear operator satisfying (3.20) (in a new suitable notation). (3.29) can be 
written in the form 

ì.e. 

(Лàф)j - (Jѓdф')j = (Jí(ф - ф%, 

Jtáф - Лdф' = Җф - ф'). 

If we put \jj — \jj' instead of \j/ and Ji instead of Md in Theorem 2 and use the last 
equality, we get 

\\f - i/>'j| ^ c\Ji(ii - iA')|| = C\M$ - Mdii'\, 

q.e.d. 

Theorem 4. Equation Jidij/ = g where d e Em d g: 0, has at most one solution. 

Proof. Let \jj, \j/' e En satisfy the mentioned equation. Then, in view of (3.28), 
I ^ — xj/'W = 0 and thus \j/ = if/'. If we put d = 0, then the uniqueness of the solution 
of the equation (3A9) is proved. 

Let us prove the existence of the solution of the non-linear problem now. 

Theorem 5. System (3.19) has exactly one solution. 

Proof. It is sufficient to prove the existence. 

a) Let us consider Ji'd instead of Ji9 where d e En, 

(3.30) min dj = n > 0 , 
j=l,...,n 

and prove the existence of the solution of the equation 

(3.31) Jtrf = g . 

In view of (3.20) and (3.30), the function (A j 7 + dj) u -h Aj(u) is continuous and 
increasing on El9 it transforms Et onto Ex and has on E1 the first derivative + 0 . 
This implies the existence of its inverse function, let us denote it fj9 defined and 
increasing on El9 having there a finite derivative. Let us further denote 

n 

G j # ) = T Ajk^k ~ 9j • 
k=l 

Then it is possible to write (3.31) in an equivalent form: 

(3.32) i,j =fj(Qjtyj), j = \,...,n. 

If we denote 

(FA)j = fj(Qj(<l>)) . Frf = ((FA)u • •., (FAX), 
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we can write (3.22) simply as 

(3.33) ф = Fdф 

With respect to the properties of f- and Qj, the functions (Fd\j/)j have the total dif­

ferential at every point \\J e En. Fd is a continuous operator transforming En into En. 

Let us prove that the operator Fd is contractive (see [14]). Let i/J, i/>' e En. From 

the definition of the norm and from the theorem of the mean value ([5]) applied 

to (Fd\j/)j, it follows 

\Fdý - Fd\j/'\\ = max 
j=l,...,n 

î(*,-«Щ» 
дфk 

where jij/" e En and jijj'k is lying between j\jjk and j\jj'k. Hence we have 

It holds: 

(3.34) 

\Fdip - Fd\l/'\\ = ||ý - \l/'\\ max £ 
j=l,...,n fc= 1 

дJЫh = àfjЩф)) ÕQj(ф) 

# * 

Є(HФ")j 

ôфk 

d ß дфk 

= \AJJ + dj + ~^(fj(Qj(^)))\ XA*(=°)> if J -*- fc ; = o , if 7 = fe 

(We put l/oo = 0 in case of an infinite derivative dAjjdu.) Let us denote 

n n 

q = max ( £ ' Ajk) ( £ ' -4;fc + rj)~l ; 
j = 1 , . . . ,n k = 1 fc = 1 

evidently 0 < g < 1. Further, from (3.20), (3.30) and (3.34) it follows that 

max ^] S(FҖ)j 
õфk 

Ajj + dj + -^(fj(Qj('V)))\ TAjkú 
au fc=i 

and thus 

^ max ( £ ' AJk + ц) l £ ' AJk = ą 
j = 1 , . . . ,n k = 1 fc = 1 

F> - E>' ^ qu - r 
Hence Fd is a contractive operator and from the fixed point theorem it follows that 
equation (3.33) a thus also the equation (3.31) have exactly one solution. 

Let us prove the existence of the solution of the equation (3A9). Let {dq} be a 
sequence of vectors from En such that 

(3.35) 0 as q - > + o o , (dq)j ^ r\q > 0 , 7 = 1,..., n . 
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To an arbitrary natural number q there exists the unique solution \j/q e En of the 
equation 

(3.36) Md$q = g . 

If we put d = dq, \\f = \ffv \\if = 0 in Theorem 3, then by (3.21) we obtain 

1^1 = C\\g - J/d0\ = C\\g - J(0\ = C(\g\ + | | .#0 | | ) = Ct < +oo . 

It means that the sequence {i//q} is bounded with respect to the norm II... | and thus 
we can choose a convergent subsequence from it. Nevertheless, we prove that even 
{\j/q} converges: 

Jt$q = Jid^q + dqi//q = g + dq4fq 

and in view of Theorem 3, putting there d = 0, we obtain the following relation 

| | ^ - ^ J = C\j(ifq - Jt^\ = C||d^ - drif\ = 

= CCi(||dJ + ||^r||) -» 0 as a, r -> +oo , 

which means that the sequence {\j/q} converges. Let \j/q -> \j/* as q -> +oo. Jl is 
a continuous operator on F„ and therefore 

= lim Jí^q = lim {Jčdýq + dqil/q) = o + lim d tfr * 
i ./*"/, i// _ II i i i i rУi/i, i чi i— // i// i — 11 —Ì 

qYq 
q-* + oo q-+ + oo ^_> + 0 0 

It follows from the boundedness of {\J/q} and from (3.35), that the last limit is equal 
to zsro, so that J(\\i* = g, q.e.d. 

3.3. Solution of Equation (3.19) by Simple Iterations 

From the last paragraph we know that the equation (3A9) has a unique solution. 
Some equations of a similar form are studied in [10], but neither [10] nor the above 
paragraphs of our article give any effective method of finding the solution. The 
simplest method of finding the solution is the so called simple iterations method, 
usual for systems of linear equations (see e.g. [12]). 

(3A9) is equivalent to the system of equations 

n 

(3.37) \\f j + aj{\j/j) = -bj + X ajiSl'k - J = U ••*> « 
fc = i 

where a} = AJ/AJJ, bj = gy/A/y, aJk = Ajk\Ajj = 0 and a}j = 0, j = 1, .. . , n. 
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It holds: 

(3.38) —=- = 0 on Ei9 a} is continuous on Eu 
du 

n 

YJ ajk = 1; f ° r l n e points Qj of the first order even 
k= I 

Hajk < -• 
A : = l 

The matrix A — E where A = (ajk)jtksl „ and E is a matrix unit is ir­
reducible. 

(3.38) is equivalent to (3.20). 

From 3.2. we know that (3.19) is equivalent to the equation (3.33) where d = 0, 
i.e. 

(3.39) 4> = F0* = Fty), F(<P) = (F ,(*),...,Fn(iP)). 

By (3.34) the following estimation is obtained: 

(3.40) 0 =
 d-^Ml = a.k for all xj/e En . 

d\j/k 

a) Let dajjdu = 0 on Ex. Then a} is a constant and (3.37) is a system of linear 
equations, which can be written in the form 

(3.41) i/r = - ( b + a) + Atfr, 

b = (&!,..., b„), a = (a l 5 ..., an). 

The absolute values of all eigenvalues of the matrix A are ^ 1 ([12]). In view of 
(3.38), all eigenvalues of A are in the absolute value even smaller than 1 (see [8], 
[11], [13]). Hence 

(3.42) A1 -> 0 as / -> + oo 

and the sequence of iterations 

(3.43) i/>(0) e En (arbitrary), ^ ( / + 1 ) = - ( b + a) + Ai/y(/) 

converges to the exact solution of the equation (3.41). 

b) Let us prove now that the solution of (3.39) can be also found by the method 
of simple iterations 

(3.44) f ( 0 ) G £ „ , ^l + l) = F(iA(0). 
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Let us denote Fl = F* F* .. . * F, i.e. Fl(\jj) = F(F... (F((/y))...), 

ÕFЏ) ) ,m, mm _D#). 
/j,k=l,...,n \ 0\\ík /j,k=l,...,n 

It holds 

# f c fc=i d\jji # f c 

and thus 

D 2 ( » = D(E(<A)) . D(^) . 

By repeated induction we get 

(3.45) D,(iA) = D ( F < - ^ ) ) . B(Fl~2(^)) Dty) . 

From the inequality (3.40), (3.42) and (3.45) it follows: 

(3.46) Dj(i/>) -> 0 uniformly (with respect to xj/) on En as / -> +co. 

If \jj* is the solution of (3A9), then it also solves (3.39). We want to prove that 
the sequence {ip{l)} defined by (3.44) converges to xp* as / -> + oo. From the equality 
\//* = F(\p*) it follows that xp* = Fl(\j/*) for arbitrary natural / and, in virtue of (3.44), 
we obtain the relation 

(3.47) xjj{l) -xl/* = F(^(i_1)) - F(iP*) = Fl(il/{0)) - Fl(ijj*) . 

It is sufficient to prove that for arbitrary \J/{0) e F„, (3.47) converges to zero as / —• + oo. 

There exists J\jj' e En such that J\\i'k lies between \jj{0) and xj/* (k = 1, ..., n), and 

ғ](ф^)-ғ'(ф*) = Іõ^p(ф (0) 
fc Фî) 

fc=i d\jjk 

or 

E<0A(O))-F)(r) = (HJr)(>A(0)-r))j, j = \,...,n. 
\jj{0) — \js* is a fixed vector from F,. and therefore, in virtue of (3.46), the last expres­
sion and thus also (3.47) converge to zero as / -> +oo, q.e.d. 

Consequently, we can draw this conclusion: 

Theorem 6. Let us consider the system of equations (3.19), which satisfies condi­
tions (3.20). This system is equivalent to the equation (3.33) where d = 0, and thus 
to (3.39). Let {^(0} be the sequence defined by the iterations (3.44). Then ij/{l) -> 
-> 1̂ * 6 £„ as / -> +oo and \j/* is the unique solution of the mentioned equations. 
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4. COMPUTATION OF VELOCITIES AND DYNAMICAL CHARACTERISTICS 

The velocity components vz, vr at points of Mh can be computed on the basis 
of (2.13) and (3.13). We get the formulae 

(4,) w . i tfa___v>, w . _ i m^m, 
r} 2h rj 2h 

where Pu ..., P4 are the neighbour points of Qj e Mh (see 3.1). 

For Qj ejehnM0 we must modify (4.1) a little. If P0 = Qy let Pp Aj9 Pi9 3 have 
the same meaning as in (3.9) and (3.14). If we realize that we obtained the formula 
(3.14) by a linear interpolation of \j/ on the segment AjPi9 then, denoting by x the 
axis (z or r) parallel to AjPi9 we obtain 

(4 2) # ( P 0 ) ^ iP(Aj) - ^(Pt-) 
v ' dx ~ ±(i + s)h ' 

We write + or — in the denominator in case that the coordinate x of the point Pt 

is smaller or larger respectively than the same coordinate of the point Ay From 
this and (2.13) we get formulae for the components v_ and vr. 

In case of the component v^, we shall use the fact that rv^ = (rv^) (<//) is a known 
function and therefore we can write 

(4.3) M j = (^m. 
rJ 

Pressure will be computed from the relation (2.5): 

(4.4) P = Q(H - \V2 - 0). 

Volume force is usually neglected and then 0 = const., or it represents the influence 
of gravitation. We suppose that the direction of this force is parallel to the axis z 
so that 

(4.5) _P = ±gz + C, 

where C is a constant, g — gravitation constant and the sign + or — is written 
if the axis z is oriented respectively in the direction up or down with respect to the 
Earth surface. 

Function H = H(ij/) is known and thus the formula for pressure at the point Qj 
has the following form: 

(4.6) Pj = g(H(^j) - iVf - *j). 

If we denote by the index 0 quantities at the point to which quantities at the other 
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points refer, then we obtain from (4.6) the relation for the pressure coefficient p 
at the point Qy. 

(4.7) = PJ ~ Po - gfc) ~ gjjM ~ *1 + <Po- J1"? a. , 

ievo ł ^ 

í,5 

0,5 

INLET: 
\ sõjľj ~7 

- \ / Ґ 

/ І vr = 0 ^ S : \ ' 

г 

-* INLET: 

\ sõjľj ~7 

- \ / Ґ 

/ І vr = 0 ^ S : \ ' 

" * \ ^ _ 
INLET: 

\ sõjľj ~7 

- \ / Ґ 

/ І vr = 0 ^ S : \ ' 

—.— ^ N 

INLET: 

\ sõjľj ~7 

- \ / Ґ 

/ І vr = 0 ^ S : \ ' 

— 
г-* 

INLET: 

\ sõjľj ~7 

- \ / Ґ 

/ І vr = 0 ^ S : \ ' 1 
"—'f I T I T I I l l | 

аЗ 40 60 80 700 l-1"" 
"—'f I T I T I I l l | 

аЗ 40 60 80 700 l-1"" 
"—'f I T I T I I l l | 

аЗ 40 60 80 700 

1 1 1 1 , 1 1 тнr, 

Fig. 1. Flow in axial channel 

without vorticity, vortex-flow 

Fig. 2. Flow in axially radial channel 

— without vorticity, vortex-flow 
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5. EXAMPLES 

On the basis of the theory built in the preceding, a series of examples was computed. 
We introduce two of them to illustrate the difference between the flow without 
vorticity and a certain type of the vortex-flow in an axial curved channel and in an 
axially radial channel. In Figs. 1 and 2 graphs of the fundamental parameters vz, vr, 

rVy and p at the inlet of the channel in dependence on r and the stream lines are 
drawn. In case of the flow without vorticity, vz, vr, rv^, p at the inlet are not in Figs. 1 
and 2, since it holds in this case: 

vz = const. 

rvę = const. 

Þ = const. 

Vr = 0 

at the inlet for both axial and axially radial channels. Stream lines were determined 

from the values of the stream function ij/ by linear interpolation. Parameters at the 

exit computed for the flow without vorticity agree with the known results. In case 

of the vortex-flow the computed results were not verified for lack of necessary data. 
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S o u h r n 

NĚKTERÉ PŘÍPADY NUMERICKÉHO ŘEŠENÍ DIFERENCIÁLNÍCH 

ROVNIC POPISUJÍCÍCH VÍŘIVÉ PROUDĚNÍ TŘÍROZMĚRNÝMI 

OSOVĚ SYMETRICKÝMI KANÁLY 

MILOSLAV FEISTAUER 

Z rovnice kontinuity a Eulerových pohybových rovnic, které popisují obecné 
proudění nevazké nestlačitelné tekutiny, byla za předpokladu osové souměrnosti 
odvozena základní rovnice pro proudovou funkci \\i tvaru 

gy _y __ 1 # _ 2 /dH _ J__ d(rv(p)
2 

dz2 dr2 r dr \d?A 2r 2 dý 

kde z, r, cp jsou válcové souřadnice, osa z je osou souměrnosti, 

1 # 1 # 
v2 = - — , vr = - - — , 

r dr r dz 

Vy složky rychlosti, H entalpie. 

Uvedená rovnice s příslušnými okrajovými podmínkami byla řešena metodou sítí, 
čímž byl problém převeden na řešení soustavy nelineárních rovnic tvaru 

n 

Z AJk\l/k - (Ajjil/j + Ajtyj)) = gj, j = 1, ..., n , 
fe=i 

kde Ayfc a Á7- splňují určité podmínky (v našem případě (3.20)). V dalším byla do­
kázána existence a jednoznačnost řešení této soustavy a konvergence jisté iterační 
metody, kterou lze řešení najít. Uvedeným způsobem je možné řešit i jiné okrajové 
úlohy pro eliptický operátor, podstatné je, aby bylo možno příslušný problém 
aproximovat uvedenou soustavou algebraických rovnic. 

Na konci článku jsou uvedeny dva příklady ilustrující rozdíl mezi nevířivým 
a vířivým prouděním v axiálním zakřiveném kanálu a v axi-radiálním kanálu. 

Autho/s address: RNDr. Miloslav Feistauer, Matematicko-fysikální fakulta KU, Malostranské 
nám. 25, Praha 1. 
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