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1. INTRODUCTION

In the present paper we shall study a statistical problem which in a somewhat
simplified version can be described in the following way. Let @ be a non-empty set
(for example a subset of the n-dimensional Euclidean space or a finite set with
a large number of elements) and suppose that an object is located at a point 9 € ©.
Suppose that an experimenter cannot observe $ directly but only the set @ is known
to him. Suppose moreover that he may choose arbitrary sets E; , E;,, ..., E;, from
a given one-parametric class of subsets of © and verify whether 3 belongs to E;,
or not. In other words, he observes the values {; = f,,j(S), where f;, is the characte-
ristic function of E;,. The location is identified after N steps iff the intersection

(1.1) | N3¢ = e

contains exactly one element. However, this result can be reasonably expected only
if O is a discrete set and, in general, it is sufficient to identify 3 within certain tolerance
limits, for example, within the limits of the form

(12) diameter [ N e se.

In the situation described here each observation &; (together with the parameter §;
of the experiment used) provides the experimenter with a partial information on 9,
but after making a fairly large number N of such observations, the total information
enables him to meet the identification criteria. The optimum rule of experimentation
(strategy of search) & = (J,, J,, ...) is usually defined by the condition that it mini-
mizes an average (over all 3 € @) value E;N of the necessary number of observations N.

In fact, at the first sight this problem does not seem to be of a statistical nature.

1y Part II of this paper will appear in the following issue of this journal.
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But a statistical problem will arise as soon as we suppose that the average number
E;N is evaluated with respect to an a priori probability distribution of § or that ¢&;
is a noisy observation of f; (9), for example &; = f; (9) + {;(mod 2), where {, {5, ...
is a binary random sequence (a noise). However, it is to be noted that in the second
case usually E;N = + oo so that optimality criteria other than E;N must be used.

It is obvious that the problems of the described form frequently occur in almost
every field of human activity. In connection with them we use the word ‘search”
despite of the obvious fact that the activity of the experimenter in the situations
where these problems occur need not necessarily be the search for the location in the
standard geometric sense (for example, medical diagnosis, classification by means
of a questionnaire in sociology etc.). Another terminology could also be used (for
example, in [ 1] the same problems have been interpreted as a “design of experiments™).

In the case when @ is infinite and an identification criterion of the form (1.2)
is used, we shall suppose that there exists a finite quantization @ = {0, 0,, ..., 0,}
of @, where 0; n 0; = 0 for i # j and

We suppose that 3 is identified with a satisfactory accuracy when it is known that
it belongs to a cell 0;. This is true, for example, if diameter [0,»] <ei=12,..,n,
and @ is a compact set. In addition to what has been said here, we shall suppose
that the one-parameter class of subsets of @ at the disposal of the experimenter (i.c.
the class of the sets E;,, E;,, ...) contains sets of the form

U o

over some i

only, but the converse need not be true, i.e. all subsets of this form need not necessarily
belong to the class at the experimenter’s disposal. Therefore, this class is equivalent
to a class of subsets of Q, namely, E = F if

E=U80, for EcO®, FcQ.
0icF

Since the class of all subsets of Q is finite, the class & of all possible functions f;,]
at the experimenter’s disposal can be enumerated, & = {f, f3, ..., f,,}. Thus, in this
case 6; assume values from M = {1, 2, ..., m}. Moreover, since we need not dis-
tinguish between the elements of the cells 0;, we can consider Q and 0 € Q instead
of @ and 3.

Hence, under our assumptions, the simplest model of search is described by a pair
(Q, é’), where Q is a finite set and & a finite class of binary functions defined on Q.

This model has been considered in [2]. In [1] a generalized version of this model
has been investigated, with f,(0) € & replaced by probability distributions P(. |0)
on a finite set A. The generalized approach presented in [1] is justified from both
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practical and theoretical points of view, because the noisy observations (for example
with the additive noise considered above), which are frequently met in the practice,
are well described by the model with & = {P,(. | 0), P,(. | 0), ..., P,(. | 0)}. On the
other hand, in the framework of this model one can very explicitly see a close
relation between the theory of search and the Shannon’s information theory (coding
and choosing 8,, d,, ..., dy are in a certain sense equivalent).

In the present paper which is rather a review, an introduction to the problems
investigated in [1, 2] is given, basic results of these papers are summarized from
a unified Bayesian point of view, and some new results are established. By the Bayes-
ian point of view we mean that

() an apriori probability distribution on Q is supposed;

(if) if the experimentation is carried out in N steps according to a strategy & =
= (84, 6,, ...), then the terminal decision on 0 is adopted (on the basis of the
“information” (8, &,), (85, &,), .-, (O, €y)) in accordance with the maximum
likelihood principle?);

(iii) the optimality of & is numerically measured by the average probability of error
esN corresponding to the maximum likelihood estimator 0(3,, &, ..., Sy, &)
of 0, or by the rate of convergence of ¢;N — 0 for N - o0.

Papers [ 1, 2] essentially differ from a large number of papers dealing with discrete
models of search by measures of optimality of search strategies used there. The
measure defined in (iii) and used also in [1] is very closely related to that used in [2].
It conditions to a great extent a relation between the information theory and the
theory of search, in particular, effective applications of coding theory results in
search problems. Moreover, it is acceptable from the practical point of view, because
its interpretation is clear. On the other hand, it is not so easy to evaluate it, except
for the so-called random strategies investigated in [1, 2].

Let us characterize more precisely individual sections of this paper. In the rest of this
introductory section some conrete examples of (Q, c§) will be given, for illustration and
for later references. A general model of search and such concepts as a strategy é and
E;N, esN will be stuudied with more precision in Sec. 2. In Sec. 2—4, properties of E;N
e;N are studied for special classes of strategies, in Sec. 3 the relation between the
information and the search theory is described in more detail. Main attention of the
following sections will be paid to asymptotic properties of random strategies for
which d,, d,, ... are mutually independent and equally distributed random variables.
It will be seen that for many (Q, &) the random strategies are (asymptotically) almost
as good as the best systematic strategies, being at the same time much simpler (for
example, from the point of view of its programming on a computer).

2) By &; we denote a random variable conditionally distributed by P(. | 8;) provided J; = I,
6=0,

i
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Example 1.1. Let Q be arbitrary and let & = {fl,fz, ...,f,,,} be the class of all
mappings @ — {0, 1}, i.e. m = 2" Let us consider, for example, that Q is a set
of n bulbs, and suppose that one of them fails. Any subset of Q may be tested by
circuiting all the corresponding bulbs in a series. The result of this experiment is 0
(the bulbs are alight) or 1 in the opposite case (the failed bulb belongs to the subset).

Example 1.2 (due to J. Nedoma [3]). Let @ be the same as above and & =
= {f1.f2> .- Ja=1}, Where

S 1(0) =

S 0e {0,050},
NO i 0e(0,1,0p000-.n0,)

This corresponds to the case when all the bulbs from Q are already circuited in the
series and only subsets E; of the form {6,, 0,, ..., 6,} can be tested (see Fig. 1).

1 8J+1 6 n

[T

B

Fig. 1.

Example 1.3. Let 2 be the same as above and let § = {fl,fz, <ves fu}, Where
1 if 6=0;,

70 = {

0 if 6+0;.
This corresponds to the case when only single bulbs can be tested. In this casefj(()) =
iff @ = 6, i.e. iff the j-th bulb fails.
Example 1.4. Let Q= {0,,0,,05}, M= {1,2}, A={0,1}, ie. a,m=2,
n=3,8={Py(.|0),Py.|0)}, where
P,(0|0,)=1=1-P(]6,)
P(0]0;)=p=1—Py(1]0,)
Pi(0]6;) =p=1—Py(1]0,)

Py(0]6,)=1—p=1—Py1]0,)
Py(0]6,) =0 =1— P,(1]0,)
Py(0|05)=1—p=1—Py(1]0;).
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and 0 < p < 1. Clearly, on the basis of a subsequent independent observation of 6
throughout the channels P,(. | 0) or Py(. | 0) we are not able to distinguish 6,, 05
or 6,, 05 respectively, even if the sample size is arbitrarily large. But using an appro-
priate combination of both the channels, all three values 0, 0,, 05 are distinguishable.

Remark. In the standard model of mathematical statistics, parameter 0 is observed
through a unique channel P(. | 0) defined by a list of conditional probability distribu-
tions {P(. | 0)}, 6 € Q. However, it is supposed that the channel guarantees P(. | 0;) +
+ P(. |0k) for “almost all” 0; & 0,. This separability condition makes it possible
to find out satisfactory estimators of 6 based on a large number of independent
observations. In the theory of search this is not the case. Here it is supposed that the
separability condition is not satisfied by any of the channels Py. |6)e£ itself.
According to our opinion, this is a characteristic assumption of the theory of search.
If this situation occurs, 6 must be observed through a fitting combination of chan-
nels from &. Within the extent of this paper, this process is considered as a search.

2. GENERAL MODEL

Let @ = {60,,0,,...,0,} be a non-empty set and let 6 be a random variable uni-
formly distributed on Q,
1
@.1) P[0=0]=— i=1,2,...n.
n

The uniformity assumption frequently occurs in practice and we accept it for the
sake of simplicity, but the theory developed below could be extended to an arbitrary
P,.

The basic concept of our model of search is a class & = {Py(. | 6), P,(. | 0), ...
o P | 0)}, where P(. |0) is a probability distribution on a set 4 = {0, 1, ...
..., @ — 1} for any pair (I,0)e M ® Q, M = {1, 2, ..., m}. The pair (@, &) defines
the model.

In the framework of this model we shall consider abstract random variables
0, m, n, 6, & 6 has been defined above, n = (m,, 7, ...) is a sequence of mutually
(and on 0) independent random variables, n; € M, & = (8y, 85, ...), & = (&, &, -..)
are random sequences (in general depending on 0, n), 6;eM, {;eA, and 5 =
= (1, M2, ...) is defined by n; = (6;,(;)e M @ A = Y. Now our aim is to define
the joint distribution P, ;o = P50 (on the standard o-algebra of subsets of the sample
space Y® ® M® ® Q of the random vector (7, m, 0)).

Let us consider a probability distribution p = (u, p, ..., #t,,) on M and let
d =(d,,d,,...) be a sequence of mappings, di: M > M, d;: YY" ' @M - M,
where d,(I) = I and d{(yy, 5, .... yj-1, I)€ M is arbitrary, j = 2,3,... The pair
(1, d) will be called a strategy. Next we shall show in which manner the strategy
uniquely defines P, .
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Let I, 'e M, k;e A, y; = (l;, k;)e Y, and define

0

(2.2) pN(ylﬂ Yas e YNs l;a 1/2’ L] IIIV I 0) = N
_l—Il/“‘li' P’j(ki | 0)
j=

depending on whether the condition
(2'3) llzllls ljzdj(yhyZa""yj—b l_’y) j=2a3’--'aN
is satisfied or not. Clearly

> v va oy e Iy 0) =1 forevery 6eQ N=1,2,...

Y1...YN
L. N
If we put
(2’4) Pm...mwtl...anB = pN( lo) N = ls 27

then, using the standard extension argument, we obtain P,,,. Therefore (cf. (2.1))

1
~P

nulo -

(2.5) P

nné =

Notice that this definition of P, , implies that n,, m,,... are identically distributed,
u =P, [nj = l],j =1,2,...

An important role in our considerations will be played by the distribution P,
on Y® @ Q. We shall not distinguish between two strategies (u, d), (i, d’) unless
the corresponding distributions P4, P, are different. If P4, P,, are identical, we shall
say that the strategies are equivalent (in symbols, (p, d) = (¢, d’)). Using this
together with the following Lemma (which follows from (2.2), i.e. from the definition
of P,.5), we shall be able to identify the concept of § = (3, 8,, ...) with the concept
of the strategy (in symbols, § = (y, d)).

Lemma 2.1. If 6,, 9, ... is a realization®) of the random sequence 3, then
l 0
(2.6) Pops=— @ P;(.]0).
nj=1

The equivalence & = (y, d) discussed above is justified by the fact that the distribu-
tion P; of o together with P, (which is known if & is known) determines uniquely
P,o = Psg. In other words, to know P, it is not necessary to know (@, ¢, u, d).
It is sufficient to know the triple (@, &, 6) = (@, &, P,) only.

3) The random variables ¢, &j» j, mj, 0 as well as their realizations are denoted in this paper
by the same symbols.
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According to (2.3) it holds
27 o =dy(m), & =dninn o) J=23

for any strategy 8. If dy, d,, ... are such that &; does not depend on ; (i.e. if (1.8)
holds), § will be called a pure strategy; in the opposite case & will be called a mixed
strategy. A strategy o will be called sequential or non-sequential depending on whether
¢ depends on 7y, 15, ...,n;-; for some j > 1 or not. If 6 is non-sequential, é; are
mutually (and on 0) independent random variables. If, moreover, 0; are equally
distributed for j = 1, 2, ..., then 6 will be called a random strategy. If J is a random
strategy, then we can put

(2.8) b;j=m;, j=1,2,.... ie. d=pu.

Lemma 2.2. If § is a pure strategy, then
(2.9) Pno=Ppo®P, where P,=p@p®...

If 0 is a random strategy, then

(2.10) Po=®P,, where P o=P o=..
j=1

Proof. Cf. (2.2), (2.3).

Notice that this Lemma illustrates the fact that 6 uniquely determines P,, (provided
d is a pure or random strategy, which are the most interesting cases from both theoret-
ical and practical points of view).

The interpretation of what we have introduced above was already outlined in Sec. 1.
Briefly speaking, the experimenter’s aim is to establish the value of 8 which is not
directly observable by him. He has at his disposal only indirect observations through
the channels P/(. [ 0) € &. We suppose that at the moments j = 1, 2, ... he decides
for a channel P,;J,(. ] 6) and that he observes the value ¢;. The unknown parameter
does not depend on j, and the information contained in &, &,, ... concerning 6
depends on the channels P, (. | 0), Ps(. | 0), ... (i.e. on &y, 85, ...). At the moment N
experimentation is stopped and on the basis of the information represented by
N1, M2, .., Ny the terminal decision concerning 6 is adopted. We suppose that the
distribution P, ., is completely known to the experimenter. Notice that P, ;.
is defined by the experimenter himself (it is, in fact, the strategy of search) and
P, .. en01s,...on 1S known if & is known (see (2.6)). Thus, in other words, we suppose
that & is completely known to the experimenter.

Example 2.1. Let (2, &) be as in Example 1.4 and let us consider the following
sequential pure strategy ¢': -1
L if Y¢&=0
op=1, 9¢;= ;ii
2 0f Y& +0 j=23, ...

=1

r
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Example 2.2. Let (Q, &) be the same as in Example 2.1, p = (p;, 1 — py), py €
€ [0, 1/2] and define a strategy 6 by (2.7). Clearly, 6 is a random strategy.

Suppose now that there exist atoms f,(0) € A of the distributions from &. More
precisely let P,(f,(6) I 0) = 1 for all Ie M, 0 Q. Then & can be defined as a set
{f1s 2, ..., [} of functions of the form @ — A4 (cf. Sec. 1).

Example 2.3. Let the situation be the same as in Example 1.2, i.e. let Q be arbitrary
and & = {fy.f2, ..., fu—q}. M 8T =j for j=1,2,..,n—1 and 6] =n — 1 for
j = n, then 6* = (67, 63, ...) is a pure non-sequential strategy.

Example 2.4. Let the situation be the same as in Example 2.3 and suppose that
n = 2* for some integer k. Put £, = 0 and

j=1
8= ;)(_1)9.2"—'—1 , j=1,2,.., k.

Then &' = (8}, 3, ...) is a sequential pure strategy.

Example 2.5. Q and & are the same as in Example 2.3 again, and define p =
=(n-1)""(n—-1)""..,(n—1)""). Then & defined by (2.7) is a random
strategy.

Let us now consider the general model (Q, &) again. Except for trivial cases, any
such model admits an infinite number of strategies. To be able to appreciate the
quality of various strategies we shall try to find a numerical expression of the optima-
lity. Let P,, correspond to (@, &, 6), and define a random variable N = N(n) as the
minimum N for which

(2.11) max Pﬂlql...ﬂn[g = 0!] =1.
0.eQ

In other words, N is the minimum number of observations admitting an errorless
decision concerning 6. The expectation

. 1
(2.12) EN=-Y | NdP,,
ni=1 Jyw

is undoubtedly one of possible numerical measures of optimality of . The optimum
strategy &' (if it exists) could be then defined by

(2.13) EyN = inf E;N,

L]

where 4 denotes the class of all strategies (i.e. the class of all distributions P; on M*).

However, it is to be noted in advance that, unfortunately, except for the special
cases where & = {f,, f2, ..., [}, it holds

(2.14) inf E;N = 400

oed
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In fact, if & is not of the special form given above, it holds

(2.15) lim infy P

N...

'IN[max P9|ﬂ|-~-'IN[0 = 0'] < l] >0
0ieQ

for arbitrarily large N.

Suppose now that & is of the special form, where f;: Q — A are arbitrary. We shall
say that & is separating the elements of Q (for the sake of brevity: & is separating
Q or & is separating) if for any pair 0; =+ 0, there exists f, € & such that f,(0;,) # f,(6,).

Lemma 2.3. If & = {f\, f5, ..., [}, then it holds
(2.16) E;N = log, n
for any strategy 6. The inequality

(2.17) inf ;N < + 00

deA

holds iff & is separating Q. If this is satisfied, then there exists a pure non-sequential
0 such that

(2.18) Po[N(n) <n]=1.

Proof. Let §,, J,, ... be an arbitrary realization of a strategy é and denote by N;
the least N for which (2.11) holds with #; = (0;, &;5,), where &, = f,(6;). It is clear
that the vectors

& = (311, €125 05 51N.)

& = (321, €225 +v0y EZNZ)

8—n = (8n1’ €n2s v ann)

can be interpreted as a variable-length code. The code is defined in such manner
that if N; £ N, < + o0, then (g;1, €12, -+ €iv,) F (81> Ek2s -+ -» &kn,)- It is well known
(see § 2.3 in [4]) that if a code possesses this property, it holds

Z piN; 2 Z pilog, p;
i=1 i=1

for any probability scheme p = (p,, P2, -+ P,) and, consequently,

M:

(2.19) 1SN, 2 tog,n.
ni=1

By (2.12) and Fubini’s theorem

E,N =J. [1 y -[ NdP,,[a,,,] dp, .
Mo LB i=1 Jywo
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Since Py [neF]=1, i=1,2,..,n for the cylinder F; = Y with the base
[(31, &), (32, €i2)s - (Ow,» 8iv,)] in the first N; coordinates, we can write

YN, .

E,N = J N(6) dP; where N(9) 1
Moo ni=1
This together with (2.19) yields (2.16).
Let us now prove the necessary and sufficient condition for (2.17). If this condition
is not satisfied, there exists 0; # 6, for which f;(0,) # f;(6,), j = 1,2, ... for any
8y, 8,, ... This implies Py, , [0 = 0] = Py, [0 = 0] < 4 forany N, 4. Since

>

.. 1
lim infy P'n-~-rnv{max P"!m--‘rm[e = Gj] = P”Im.--rm[{) = ek]} = ;
9 ;e

(2.15) holds as well as (2.14). If, conversely, & is separating © and the pairs 0; + 6,
(of the total number n(n — 1)) are arbitrarily ordered, there exist &, &,, ..., Spn—1)
such that f; is separating the j-th pair. However, this implies that

(220) Po[N(r) < nln — 1)] = 1
for example for 6 = (8, 85, ..., Oyu=1), -..) and consequently

infEsN < n(n — 1).

ded

The stronger inequality (2.18) following from Lemma on p. 811 in [2] enables us to
establish the following property of the optimum strategies:
Theorem 2.1. If € = {f,, f5, ..., f} separates Q, then
(2.:21) log,n < infEsN < n
holds. N
Suppose now that (Q, &) are the same as in Example 1.2.

Theorem 2.2. If 6* ¢, 5 are defined in the same way as in Examples 2.3., 2.4.,
2.5., then

11
(2.22) EN =142 -2,
’ 2 2 n
(2.23) E;N =log, n,
(2.24) EN = -3, L
2 2 n
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Proof. First we shall prove (2.23). In the definition of &' it was supposed n = 2%
This definition also implies that the class of all 6 € Q for which the maximum in (2.11)
is attained after N steps contains exactly 2~V elements. Hence the maximum is
equal to 2¥7% The equality in (2.11) holds for N = k = log, n independently of
N1s M2y - Ny Thus (2.23) holds.

Define a decomposition {Y;, Y,,...} of Y* by Y; = N~'(i). According to (2.12),

(2.25) E;N = Z ZIN p(N|i), where p(N|i)="P,s[neYy]

1
Y
holds for any 4.

If 0 =0, or 0, then N(n) = N iff 6y =1 or 6y =n — 1 and &; 1 or §; +
+n-1, j=1,2,...,N — 1 respectively. The probability of every realization
84,0, ..., 8y is equal to (n — 1)™" and the number of the realizations for which
N(n) = N is equal to (n — 2)"~! so that

Analogously
pN|)) =200 — 1) " [(n=2" ' =(n=3)""'], I <i<n.

Now (2.24) holds by (2.25).
If we consider 0%, then it is easy to see that

0 for N +i

p(N|i)=< i=12..n-1,
1 for N=i

and
0 for N#+n-1,
p(N]n):
M for N=n—1.

This together with (2.25) implies (2.22) Q.E.D.

Remark. If n is not of the form 2% a slightly modified construction described
in Example 2.4 yields a strategy 6’ which is again optimal in the sense of (2.13).
It satisfies the inequality

log, n £ E;xN < log, n + 1

(cf. (2.23)).

As we said above, if P,(. |0)e & are not monoatomic distributions, E;N must
be replaced by another measure of optimality and for this purpose we adopt the
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average probability of error corresponding to a Bayesian estimator 0y = 9N('11, N2y .-
...,ny) of 0. The Bayesian estimator is defined as an arbitrary mapping YN Q
such that

(226) P9|'11--»VIN[9 = GN] = I‘;na!;( PG]mmﬂN[O = 01] .

It can be defined by (2.26) except for 1y, #,, ..., 1, such that the maximum is attained
for more than one 0. For these 7, 1, ..., #ly, Oy can be defined as a random variable
with a uniform distribution on the set of the maximizing 0s.

Since the average probability of error corresponding to any estimator 8y : YV — Q
can be written in the form

f (l - P9['I1--~'IN[0 = (A}N])dpm-uﬂn >
YN

the Bayesian estimator minimizes the average probability of error for any given
(2, &, 6, N). The minimum average probability of error can be written in the form

1 ,
(2.27) eoN = — 3 P wio[ O + 0] -

i

Unless the contrary is explicitely stated, 0y shall denote the Bayesian estimator.

The separability condition introduced in Lemma 2.3 for the class & of monoatomic
distributions can be extended to any & in the following way. We shall say that & =
= {P,(. | 0), P5(. | 0), ..., P,(. | )} is separating the elements of Q (separating Q)
if for any pair 0; # 0y there exists P/(. | 0) € & such that P(. | 0,) + P(. | 6,).

Theorem 2.3. For any strategy 6

(2.28) eNZe(N+1) N=1,2,...
holds, i.e.
(2.29) e;(00) = limy ;N

exists. A strategy 8 € A for which
(2.30) es(0) =0

exists iff & separates Q. If this condition is satisfied, then there exists a strategy &
and 2 €[0,1) such that

(2.31) esN < AV

for all sufficiently large N.

252



. YN+1

Proof. Let us define an estimator Gy, , -> Q in the following way:

9N+ 1(’11, /P IREEN 77N+1) = GN(nls /PR ’7N) .

Inequality (2.28) is a consequence of the following one:
N+ )5 [ (1 P 0= ) 0Py
YN

Let now & be not separating Q. This implies (sec (2.6)) Py cvis. sv0, =
= Py, .. tnls1...6n0, fOr some 0; + 0, and all realizations J,, 0, ..., dy of every strategy

. Hence also P, =P so that

..nn|0i Ni...N|0x

P'IanlNlGi[ON * 01] + P’nn-'lNIl’k[gN +* Ok] z 1.

This and (2.27) imply limy e;N = 1/n. The converse follows from Th. 3.2. proved
below, but it can also be deduced by the following argument: If we define a pure
non-sequential strategy Sy,4; =Jj, j=1,2,...,m, k=1,2,... and & separates Q
then clearly Py s, and P4, are singular for every 0; + 0, (see (2.6) and Lemma 1
in [5] or (3.1) in [6]). More precisely, the definition of & and the assumption of
separability imply

N
lim infy I Y Var (Pé,-lw.-’ Pf;léﬂk) >0,
N j=1

Tab. 1.
Rea]iz;xtion Thefnum:er Bayesian
o of suc -
e ¢ deClSlOIl Pﬁn..-éngl P{x.uézvlaz Pél...énlos
&t ST Oy
o éN nién
0,0,...,0 1 0, 1 PN N
0,0,...,0,1 1 0, 0 PNl —p) PN —p)
0,..,0,1, 04 ‘ 0
e 2 if if
Ck+3r-- 8N m<N-—k-—1 m<N-—k—1
where
k< N—1 (N~k-1) 0, 0 P —p) | P pN TR
m if if
where m=N—k—1 m=N—k—1
N
m= 3% ¢
i=k+2
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where Var (P, P') denotes the total variation of P and P’. This together with results
of [5] (or with the facts presented on p. 459 of [6]) implies not only (2.30), but also
(2.31). The applicability of the results of [5, 6] is justified by the assumption that
the terms in the random sequence ¢ are mutually independent for any fixed realiza-
tion d,, d,, ...

In the rest of this paper the asymptotic behaviour of ¢;N for N — co will be
studied. The optimum strategy (if it exists) is defined by

(2.32) e N = infe;N for all N greater than some N, .

ded
This asymptotic approach to the optimality is justified by the fact that (2.32) holds
for some 6" and for all N = 1, 2, ... only in exceptional cases.

Example 2.6. Let (€, &, §') be the same as in Example 2.1. Obviously & is separating
Q so that e;fc0) = 0. We shall prove that in this case e, N = p"*°V_ It follows
from the table that P, 6. [0y # 0,1 =0, P, ,0.[0y * 0,] = p", P
[0y # 0,] = Np™(L — p), so that

es N = Piv [1 + ]!(L-_;B):I Q.E.D.
3 14

ni...nn|03 *

Intuitively it is clear that 6’ is the optimum in the sense of (2.32), but we shall not go
into proving this fact here.
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Souhrn
DISKRETNI TEORIE VYHLEDAVANI 1

IGOR VAIDA

Tato prace navazuje na diiv&si prace [1,2], vénované otazkam statistického
vyhledavani resp. planovani experimentl. SnaZzi se o Siroce pfistupny a konkrétnimi
priklady hojné ilustrovany tivod do problematiky obou téchto praci, shrnuje a pro-
hlubuje nékteré jejich vysledky.

Statisticky problém uvazovany v této praci se lisi od klasického v nasledujicim.
V klasickém statistickém modelu se pfedpoklada, ze neznamy parametr 0 pozorujeme
jedinym kanalem P(. ' 0), jen je definovan souborem pravdépodobnostnich rozloZeni
{P(.]0)}, 0€ Q. na vybérovém prostoru. Pfitom se pfedpoklada, ze P(. |60,) =+
% P(. | 0,) pro 0, % 0,. Toto dovoluje odhadnout 0 s libovoln& malou ,,chybou*,
pozorujeme-li ne jednou, ale N-krat, kde N je dostate¢né velké. Problém, ktery jsme
zde nazvali problémem vyhledavani, nastava tehdy, kdyz mizeme 0 pozorovat
ne jednim, ale mnoha kanély, z nichZ vSak Zadny sam o sobé& nezarucuje rozlisitelnost
dvou riznych hodnot 0. Abychom i zde dosahli rozliseni, resp. malé ,,chyby*,
musime parametr postupné pozorovat rznymi kanaly. Pravidlo pro postupny
vybér kanali zde nazyvame strategie vyhledavani. V celé praci uvazujeme pouze
model s diskrétnim parametrovym i vybérovym prostorem a s konefnou mnoZinou
kanala.

Kvalitu strategii posuzujeme jednak stfednim poctem pozorovani, ktery je nutny
k bezchybnému stanoveni 0, anebo tam, kde je tento pocet nekoneCny, stfedni
pravdépodobnosti chyby po N krocich. Nas pfistup k problému vyhledavani je tedy
bayesovsky.

V této prvni ¢asti prace jsou dokazany nékteré véty o obecnych a optimalnich
strategiich, v druhé ¢asti pfevazné véty o tzv. nahodnych strategiich, kde se kanal
vybird nahodné€ a nezavisle na dosavadnich vysledcich pozorovani. V druhé Casti
se rovnéZz poukazuje na hlubokou souvislost takto chapané teorie vyhledavani
a teorie informace.

Author’s address: Igor Vajda, CSc., Ustav teorie informace a automatisace CSAV, VySehrad-
ska 49, Praha 2.
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