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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

A DISCRETE THEORY OF SEARCH I 1) 

IGOR VAJDA 

(Received September 8, 1967) 

1. INTRODUCTION 

In the present paper we shall study a statistical problem which in a somewhat 
simplified version can be described in the following way. Let 0 be a non-empty set 
(for example a subset of the n-dimensional Euclidean space or a finite set with 
a large number of elements) and suppose that an object is located at a point 3 e 0. 
Suppose that an experimenter cannot observe S directly but only the set 0 is known 
to him. Suppose moreover that he may choose arbitrary sets Edl, Ed2, ..., ESN from 
a given one-parametric class of subsets of 0 and verify whether # belongs to Ed] 

or not. In other words, he observes the values ^ = fb .(#), where f5. is the characte­
ristic function of Edj. The location is identified after N steps iff the intersection 

(i.i) rWfe)- 0 

1=1 

contains exactly one element. However, this result can be reasonably expected only 
if 0 is a discrete set and, in general, it is sufficient to identify 9- within certain tolerance 
limits, for example, within the limits of the form 

(1.2) diameter [Cif-1^)] = £ . 
1=i 

In the situation described here each observation £j (together with the parameter Sj 
of the experiment used) provides the experimenter with a partial information on #, 
but after making a fairly large number N of such observations, the total information 
enables him to meet the identification criteria. The optimum rule of experimentation 
(strategy of search) S = (<51? O"2, ...) is usually defined by the condition that it mini­
mizes an average (over all Qe 0) value EdN of the necessary number of observations N. 

In fact, at the first sight this problem does not seem to be of a statistical nature. 

*) Part II of this paper will appear in the following issue of this journal. 
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But a statistical problem will arise as soon as we suppose that the average number 
Ea/V is evaluated with respect to an a priori probability distribution of 5 or that £j 
is a noisy observation offa.(#), for example £_,. = fs.(#) + C/niod 2), where £1? £2> ... 
is a binary random sequence (a noise). However, it is to be noted that in the second 
case usually EaN = + oo so that optimality criteria other than EaN must be used. 

It is obvious that the problems of the described form frequently occur in almost 
every field of human activity. In connection with them we use the word "search" 
despite of the obvious fact that the activity of the experimenter in the situations 
where these problems occur need not necessarily be the search for the location in the 
standard geometric sense (for example, medical diagnosis, classification by means 
of a questionnaire in sociology etc.). Another terminology could also be used (for 
example, in [ I ] the same problems have been interpreted as a "design of experiments"). 

In the case when 0 is infinite and an identification criterion of the form (1.2) 
is used, we shall suppose that there exists a finite quantization Q = [6i, 92, ..., 0n} 
of 0 , where 9t n 9j = 0 for i #- j and 

[)et = 0. 
i = l 

We suppose that 8> is identified with a satisfactory accuracy when it is known that 
it belongs to a cell 9(. This is true, for example, if diameter [0f] = e, i = 1, 2, ..., n, 
and 0 is a compact set. In addition to what has been said here, we shall suppose 
that the one-parameter class of subsets of O at the disposal of the experimenter (i.e. 
the class of the sets E5l9 Ed2, ...) contains sets of the form 

U0, 
over some i 

only, but the converse need not be true, i.e. all subsets of this form need not necessarily 
belong to the class at the experimenter's disposal. Therefore, this class is equivalent 
to a class of subsets of Q, namely, F = F if 

E = (J 0t for E a 0 , F c Q . 
0,eF 

Since the class of all subsets of Q is finite, the class $ of all possible functions fb} 

at the experimenter's disposal can be enumerated, $ = {fuf2, . . . , f m } . Thus, in this 
case Sj assume values from M = {V 2, ..., m). Moreover, since we need not dis­
tinguish between the elements of the cells 9h we can consider Q and 9 e Q instead 
of 0 and 9. 

Hence, under our assumptions, the simplest model of search is described by a pair 
{Q, $), where Q is a finite set and $ a finite class of binary functions defined on Q. 

This model has been considered in [2]. In [ l ] a generalized version of this model 
has been investigated, with ft(9)e$ replaced by probability distributions Pz(. | 9) 
on a finite set A. The generalized approach presented in [1] is justified from both 
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practical and theoretical points of view, because the noisy observations (for example 
with the additive noise considered above), which are frequently met in the practice, 
are well described by the model with S = ( P ^ . | 0), P2(. | 0), ..., Pm(. | 0)}. On the 
other hand, in the framework of this model one can very explicitly see a close 
relation between the theory of search and the Shannon's information theory (coding 
and choosing Sl9 <52, ..., SN are in a certain sense equivalent). 

In the present paper which is rather a review, an introduction to the problems 
investigated in [1, 2] is given, basic results of these papers are summarized from 
a unified Bayesian point of view, and some new results are established. By the Bayes-
ian point of view we mean that 

(i) an apriori probability distribution on Q is supposed; 

(ii) if the experimentation is carried out in N steps according to a strategy 5 = 
= (<5i, <52, . . . ) , then the terminal decision on 0 is adopted (on the basis of the 
''information" (8U ^ ) , (O*2, £2), ..., (<5N, {#)) in accordance with the maximum 
likelihood principle2); 

(iii) the optimality of S is numerically measured by the average probability of error 
e6N corresponding to the maximum likelihood estimator 0(O\, £-_, ..., SN, £N) 
of 0, or by the rate of convergence of edN -» 0 for N -» oo. 

Papers [1, 2] essentially differ from a large number of papers dealing with discrete 
models of search by measures of optimality of search strategies used there. The 
measure defined in (iii) and used also in [ l ] is very closely related to that used in [2] . 
It conditions to a great extent a relation between the information theory and the 
theory of search, in particular, effective applications of coding theory results in 
search problems. Moreover, it is acceptable from the practical point of view, because 
its interpretation is clear. On the other hand, it is not so easy to evaluate it, except 
for the so-called random strategies investigated in [1, 2]. 

Let us characterize more precisely individual sections of this paper. In the rest of this 
introductory section some conrete examples of (JQ, $) will be given, for illustration and 
for later references. A general model of search and such concepts as a strategy S and 
E5N, e3N will be stuudied with more precision in Sec. 2. In Sec. 2 — 4, properties of E^N 
e5N are studied for special classes of strategies, in Sec. 3 the relation between the 
information and the search theory is described in more detail. Main attention of the 
following sections will be paid to asymptotic properties of random strategies for 
which O\, <52, . . . are mutually independent and equally distributed random variables. 
It will be seen that for many (Q, S) the random strategies are (asymptotically) almost 
as good as the best systematic strategies, being at the same time much simpler (for 
example, from the point of view of its programming on a computer). 

2) By £j we denote a random variable conditionally distributed by Pj(. | 0,) provided Sj = /, 
0=0,. 
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E x a m p l e 1.1. Let Q be arbitrary and let $ — {fl9f2, ...,fm} be the class of all 

mappings Q -» (0, 1}, i.e. m = 2n. Let us consider, for example, that Q is a set 

of n bulbs, and suppose that one of them fails. Any subset of Q may be tested by 

circuiting all the corresponding bulbs in a series. The result of this experiment is 0 

(the bulbs are alight) or 1 in the opposite case (the failed bulb belongs to the subset). 

E x a m p l e 1.2 (due to J. Nedoma [3]). Let Q be the same as above and $ = 

= {fi5f2»...,f»~i}, where 

, 1 i f de{0l9029...90j}9 

^ = ( 
X 0 if 0 e { 0 y + 1 , 0 , . + 2 , . . . , 0 r t } . 

This corresponds to the case when all the bulbs from Q are already circuited in the 

series and only subsets Ej of the form {0l9 92, ..., 0j} can be tested (see Fig. 1). 

І j j+i 
n 

1 
+ Fig. 1. 

E x a m p l e 1.3. Let Q be the same as above and let $ = {fi,f2, ...,fn}, where 

1 if 0 = 0,-, 

fj( ) = 
0 if 0 Ф 

This corresponds to the case when only single bulbs can be tested. In this casej,(0) = 1 
iff g = 0. i.e. iff the 7-th bulb fails. 

E x a m p l e 1.4. Let Q = {01; 02, 03}, M = ( l , 2], A = {0, 1}, i.e. a, m = 2, 

n = 3, <f = {Pv(. | 0), P 2 ( . | 0)}, where 

P,(0 | 0 1 ) = 1 = 1 - P 1 ( 1 | 0 t) 

P^O | 02) = p = 1 - P,(l | e2) 

Pi(o\e3) = P = \ - P,(\ 103) 

p2(o 100 = i - p = i - p 2 (i | e,) 

P2(0 j 02) = 0 = 1 - P2(l J 02) 

P2(0 j 03) = 1 - p = 1 - P2(l 103). 
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and 0 < p < 1. Clearly, on the basis of a subsequent independent observation of 0 
throughout the channels Pj(. | 0) or P2(. | 0) we are not able to distinguish 02, 03 

or 0l9 03 respectively, even if the sample size is arbitrarily large. But using an appro­
priate combination of both the channels, all three values 6l9 02, 03 are distinguishable. 

Remark . In the standard model of mathematical statistics, parameter 0 is observed 
through a unique channel P(. | 0) defined by a list of conditional probability distribu­
tions {P(. I 0)}, 0 e Q. However, it is supposed that the channel guarantees P(. | 0f) =# 
=j= P(. I 0k) for "almost all" 0£ =j= 0k. This separability condition makes it possible 
to find out satisfactory estimators of 0 based on a large number of independent 
observations. In the theory of search this is not the case. Here it is supposed that the 
separability condition is not satisfied by any of the channels Pf(. | 0) e $ itself. 
According to our opinion, this is a characteristic assumption of the theory of search. 
If this situation occurs, 0 must be observed through a fitting combination of chan­
nels from $. Within the extent of this paper, this process is considered as a search. 

2. GENERAL MODEL 

Let Q = (01? 02, ..., 0n} be a non-empty set and let 0 be a random variable uni­
formly distributed on Q, 

(2.1) p(,[0 = fl/] = i i=1,2,...,n. 
n 

The uniformity assumption frequently occurs in practice and we accept it for the 
sake of simplicity, but the theory developed below could be extended to an arbitrary 
p.-

The basic concept of our model of search is a class $ = {Pi(. I 0), P2(. I 0), . . . 
...,Pm(. | 0)}, where Pf(. | 0) is a probability distribution on a set A = {0, 1, . . . 
..., a - 1} for any pair (/, 0) e M ® Q9 M = {1, 2, ..., m}. The pair (O, <f) defines 
the model. 

In the framework of this model we shall consider abstract random variables 
0, 7r, rj9 d9 £. 0 has been defined above, n = (nl9 nl9...) is a sequence of mutually 
(and on 0) independent random variables, Uj e M, S = (<5l9 329...), £ = (£ l5 £2 , . . . ) 
are random sequences (in general depending on 0, n)9 <5y e M, £j-eA2 and rj = 
~ ('/I^ 7̂2- - • •) is defined by rjj = (Sj9 £j)e M ® A = Y. Now our aim is to define 
the joint distribution Pnn0 = P^dnd (on the standard c/-algebra of subsets of the sample 
space Y00 ® M00 ® Q of the random vector (r/, n, 0)). 

Let us consider a probability distribution \x = (fil9 \i2,..., /zm) on M and let 
d = (dl9 dl9 ...) be a sequence of mappings, dx: M -• M, df. YJ_1 ® M -^ M9 

where dx(t) = / and dj(yl9 y2, ..., yj-u I) e M is arbitrary, j = 2, 3, ... The pair 
(/i, d) will be called a strategy. Next we shall show in which manner the strategy 
uniquely defines Pnn9. 
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Let /,-, I'j e M, kj e A, y} = (lj9 kj) e Y9 and define 

(2.2) p^yi,y2, ••-,yN, i[, v2,..., i'N\e) = ( N 

depending on whether the condition 

(2.3) *i = / ; , h = dj(yl9y2,...,yj„l9VJ) j = 2 , 3 , . . . , N 

is satisfied or not. Clearly 

Z P/v(yi>y2, ..., y ^ 'i> *2> ..., /v | ^) = 1 for every 6 e Q, N = 1,2, ... 
yi...yN 

It'...IN' 

If we put 

(2-4) P,,...---....-,,!. = P«0 | *) lV=l,2,... 

then, using the standard extension argument, we obtain P^n|a. Therefore (cf. (2.1)) 

(2-5) ?nne = - ?nn\e. 
n 

Notice that this definition of ?tjnd implies that nx, nl9... are identically distributed, 

VLl=?n\nj = - ] , j = 1,2,. . . 

An important role in our considerations will be played by the distribution ?tjd 

on Y°° (x) Q. We shall not distinguish between two strategies (ji, d), (//, d') unless 
the corresponding distributions P^, ?'rlQ are different. If P^, P^ are identical, we shall 
say that the strategies are equivalent (in symbols, (n, d) = (//, d')). Using this 
together with the following Lemma (which follows from (2.2), i.e. from the definition 
of ?nn9)9 we shall be able to identify the concept of 6 = (Sl9 829...) with the concept 
of the strategy (in symbols, 3 = (/i, d)). 

Lemma 2.1. If Sl9 b2, . . . is a realization3) of the random sequence S, then 

(2.6) P w - i ® P , X . | f l ) . 
n j = i 

The equivalence d = (/i, <i) discussed above is justified by the fact that the distribu­
tion ?s of S together with ?^d (which is known if $ is known) determines uniquely 
?n9 = P ^ . In other words, to know P^ it is not necessary to know (Q9 S, pi, d). 
It is sufficient to know the triple (Q, S, S) = (Q, S, ?d) only. 

) The random variables Sj, (jt rjjy %j, 0 as well as their realizations are denoted in this paper 
by the same symbols. 
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According to (2.3) it holds 

(2.7) S1 = d1(nl), Sj = dj(rjl9rj2,...,rjj.i97ij) j = 2, 3, ... 

for any strategy S. If dl9 d2,... are such that Sj does not depend on iij (i.e. if (1.8) 
holds), S will be called a pure strategy; in the opposite case O" will be called a mixed 
strategy. A strategy S will be called sequential or non-sequential depending on whether 
S depends on rjl9 rj2, ..., rjj_A for some j > 1 or not. If S is non-sequential, Sj are 
mutually (and on 9) independent random variables. If, moreover, Sj are equally 
distributed forj = 1, 2, ..., then S will be called a random strategy. If S is a random 
strategy, then we can put 

(2.8) Sj = nJ$ j = 1 ,2 , . . . . i.e. S = n. 

Lemma 2.2. If S is a pure strategy, then 

(2.9) P ^ = PnQ ® P„ where PK = \i ® ji ® ... 

If <5 is a random strategy, then 

00 

(2.10) P„e = ® P ^ where ?ni9 = P„20 = . . . 
/ = i 

Proof. Cf. (2.2), (2.3). 
Notice that this Lemma illustrates the fact that S uniquely determines P^ (provided 

S is a pure or random strategy, which are the most interesting cases from both theoret­
ical and practical points of view). 

The interpretation of what we have introduced above was already outlined in Sec. 1. 
Briefly speaking, the experimenter's aim is to establish the value of 0 which is not 
directly observable by him. He has at his disposal only indirect observations through 
the channels Pt(. | 6) e S'. We suppose that at the moments j = 1, 2, . . . he decides 
for a channel Ps(. | 0) and that he observes the value £j. The unknown parameter 0 
does not depend on j, and the information contained in £i- £2> ••• concerning 6 
depends on the channels P3l(. | 6), Pd2(. | 6), . . . (i.e. on <5l9 <52,...). At the moment N 
experimentation is stopped and on the basis of the information represented by 
flu >72> •••? */N the terminal decision concerning 0 is adopted. We suppose that the 
distribution P,.....-,^ is completely known to the experimenter. Notice that P3I,,,5N 

is defined by the experimenter himself (it is, in fact, the strategy of search) and 
P^i,,,^Ne\di...dN is known if $ is known (see (2.6)). Thus, in other words, we suppose 
that $ is completely known to the experimenter. 

Example 2.1. Let (Q, S) be as in Example 1.4 and let us consider the following 
sequential pure strategy S'\ j _ t 

, 1 if l £ r = 0 

* ; - i . *;«( T-\ 
2 if £ £ - * 0 j = 2,3,... 

r = l 
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Example 2.2. Let (Q, S) be the same as in Example 2A , \x = {jiu 1 — w^), fil e 

e [0, 1/2] and define a strategy S by (2.7). Clearly, <5 is a random strategy. 

Suppose now that there exist atoms f(fl) e A of the distributions from $. More 

precisely let P,(f/(fl) J fl) = .1 for all I e M, fl e Q. Then $ can be defined as a set 

{/i>/2> •••>/».} of functions of the form Q -> A (cf. Sec. l). 

Example 2.3. Let the situation be the same as in Example 1.2, i.e. let Q be arbitrary 
and £ = {/i,/2, . . . , / „ - J . If 8* =j for jf = 1,2,..., n - 1 and <5* = n - 1 for 
j ^ n, then <5* = (<$*, <$*, ...) is a pure non-sequential strategy. 

Example 2.4. Let the situation be the same as in Example 2.3 and suppose that 
n = 2k for some integer k. Put £0 = 0 and 

s'j-zi-iy-.*-'-1, j = i,2,...,k. 
r = 0 

Then 3' = (<5i, 82, ...) is a sequential pure strategy. 

Example 2.5. £2 and $ are the same as in Example 2.3 again, and define \i = 
= ((n - l ) - \ ( n - l ) _ 1 , . . . , ( n - l ) " 1 ) . Then S defined by (2.7) is a random 
strategy. 

Let us now consider the general model (.Q, S) again. Except for trivial cases, any 
such model admits an infinite number of strategies. To be able to appreciate the 
quality of various strategies we shall try to find a numerical expression of the optima­
l ly. Let P..0 correspond to (Q, S, <S), and define a random variable N = N(^) as the 
minimum N for which 

(2.H) max ?eUl...n10 = fl,] = 1 • 
0.6.Q 

In other words, N is the minimum number of observations admitting an errorless 
decision concerning fl. The expectation 

(2.12) EгІV = - І f 
n i = l J y 

JVdP, | 9 | 

is undoubtedly one of possible numerical measures of optimality of 3. The optimum 
strategy S' (if it exists) could be then defined by 

(2.13) E,,JV = inf EdN , 
deA 

where A denotes the class of all strategies (i.e. the class of all distributions Pd on M 0 0). 

However, it is to be noted in advance that, unfortunately, except for the special 

cases where $ = {/i,/2, ...,/m}, it holds 

(2.14) inf E,N = + o o . 
deA 
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In fact, if S is not of the special form given above, it holds 

(2.15) lim inf., P„,...„N[max P,|„....,w[0 = 0J < 1] > 0 

for arbitrarily large N. 

Suppose now that <f is of the special form, where f: Q -> A are arbitrary. We shall 
say that <f is separating the elements of Q (for the sake of brevity: $ is separating 
Q ov $ is separating) if for any pair 9t =J= #k there exists f e <f such that/^fy) =j= ft(0k). 

Lemma 2.3. If $ = {j\,f2, • •• 5 . /m} 5 then it holds 

(2.16) E , N ^ l o g f l n 

for any strategy S. The inequality 

(2.17) inf E^N < +oo 
SeA 

holds iff 6° is separating Q. If this is satisfied, then there exists a pure non-sequential 
S such that 

(2.18) P«[N(r,) < n] = 1 . 

Proof. Let Sl9 S2, . . . be an arbitrary realization of a strategy <5 and denote by Nt 

the least N for which (2.H) holds with rjj = (Sj, sidj), where sn = fi(Ot). It is clear 
that the vectors 

ei = ( e l l 5 £ 1 2 ? • • •> 8INJ 

^2 = ( £ 21> £ 22> • • "> £2/V2) 

Є п — ( Є лl> Єи2? • • •? Є л / v J 

can be interpreted as a variable-length code. The code is defined in such manner 
that if Nf = Nk < -foo, then (stl, si2, ..., siNi) + (skl, sk2, ..., skNi). It is well known 
(see § 2.3 in [4]) that if a code possesses this property, it holds 

n n 

I Pi^t ^ X Pi lQg« Pi 
i = 1 i = 1 

for any probability scheme p = (pu p2, ..., pn) and, consequently, 

(2-19) - Z - V i ^ l o & n . 
n i = i 

By (2A2) and Fubini's theorem 

E,N = f \- i f JV d P , | M | ] d P , . 
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Since P ^ J n e F(] = 1, i = V 2, ..., n for the cylinder Ff c Y00 with the base 

[(^i» £ii)» (^2- z-a), •••» (̂ N.» eiN,-)] m the first Nt- coordinates, we can write 

EÄІV = N(S) dP^ where N(S) = - £ Nt. 
n i = i 

This together with (2.19) yields (2.16). 

Let us now prove the necessary and sufficient condition for (2.17). If this condition 

is not satisfied, there exists 0t 4= 6k for which fdj(Q^) 4= fsj(Ok), j = 1,2, . . . for any 

O\, <52,... This implies P ^ . . . , ^ = 0fc] = P ^ , . . . ^ = fy] ^ i for any N, O*. Since 

l iming P ^ . ^ l m a x P , , , , . . . , ^ = 0,] = P . , , , . . . , ^ = 0,]} = - , 
0ye.Q n 

(2A5) holds as well as (2.14). If, conversely, $ is separating Q and the pairs 0; =j= 6k 

(of the total number n(n — 1)) are arbitrarily ordered, there exist <51? 32, ..., O^n(n_i) 
such that fdj is separating the j - th pair. However, this implies that 

(2.20) P„[N(-,) ^ „(„ - 1)] = 1 

for example for 3 = (5l9 <52, . . . , O^,,..!), ...) and consequently 

inf E^N = n(n - 1) . 
Sed 

The stronger inequality (2A8) following from Lemma on p. 811 in [2] enables us to 
establish the following property of the optimum strategies: 

Theorem 2.1. If £ = {fx,f2, ...,fm} separates Q, then 

(2.21) logfln = inf E^N < n 
beA 

holds. 

Suppose now that (Q, g) are the same as in Example 1.2. 

Theorem 2.2. If <5*, 3', 3 are defined in the same way as in Examples 2.3., 2.4., 
2.5., then 

(2.22) Ed.N = " + - - - , 
2 2 n 

(2.23) E,,N = log2 n , 

(2.24) E ,N = 3 r t - 5 + i . 
2 2 n 
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Proof . First we shall prove (2.23). In the definition of S' it was supposed n = 2k. 
This definition also implies that the class of all 0 e Q for which the maximum in (2.11) 
is attained after N steps contains exactly 2k~N elements. Hence the maximum is 
equal to 2A_fe. The equality in (2.11) holds for N = k = log2 n independently of 
*h> *h> ••••> nN- Thus (2.23) holds. 

Define a decomposition [Yl9 Y2, ...} of y°° by Yt = N_1(0- According to (2.12), 

| n oo 

(2.25) ESN = - ~ £N p(N I i ) , where p(N \ i) = P,„,[i, e Y„] 
n i = i N = i 

holds for any S. 

If 6 = 0i or 8n, then N(") = N iff SN = 1 or dN = n - 1 and Sj + 1 or <3y #= 
4= n — 1, j = 1, 2, ..., N — 1 respectively. The probability of every realization 
Sl9 S2, ..., SN is equal to (n — l ) _ N and the number of the realizations for which 
N(t]) = N is equal to (n - 2)N~l so that 

p(N\i) = (n-2)N'i 9 i=\9n, K U (n - If 

Analogously 

p(N | i) = 2(n - 1)-^ [(/i - 2 f - 1 - (n - 3 f - 1 ] , 1 < / < n . 

Now (2.24) holds by (2.25). 

If we consider <$*, then it is easy to see that 

.0 for N * i 
p(jV| i) = / i = 1,2, ..., n - 1 , 

X 1 for N = i 

and 
0 for N 4= n - 1 , 

p(N\n)=-( 
x 1 for N = n - 1 . 

This together with (2.25) implies (2.22) Q.E.D. 

Remark . If n is not of the form 2k, a slightly modified construction described 
in Example 2.4 yields a strategy 3' which is again optimal in the sense of (2.13). 
It satisfies the inequality 

log2 n = E^N < log2 n + 1 

(cf. (2.23)). 

As we said above, if Pt(. | 0) e & are not monoatomic distributions, Ê iV must 
be replaced by another measure of optimality and for this purpose we adopt the 
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average probability of error corresponding to a Bayesian estimator 6N = SjvOh, rj2, . . . 
...,rjN) of 0. The Bayesian estimator is defined as an arbitrary mapping YN -+ Q 
such that 

(2-26) P.|,,...-w[0 = 8*] = max P9|„...,w[0 = flj . 
fl,-e:Q 

It can be defined by (2.26) except for ^ l s ?/2̂  •••>*/* s u c n t n a t t n e maximum is attained 
for more than one 0. For these rji,rf2,-..9tlN,dN can be defined as a random variable 
with a uniform distribution on the set of the maximizing 0Js. 

Since the average probability of error corresponding to any estimator 6N : YN -> Q 
can be written in the form 

1 (í-p.i,....-w[ö = ðN])dP,1. 
yJV 

the Bayesian estimator minimizes the average probability of error for any given 
(Q, $, S, N). The minimum average probability of error can be written in the form 

(2-27) --W =- - t p-....-w| A + «J • 
n i = i 

Unless the contrary is explicitely stated, 9N shall denote the Bayesian estimator. 

The separability condition introduced in Lemma 2.3 for the class $ of monoatomic 
distributions can be extended to any $ in the following way. We shall say that $ = 
= {Pi(. | 0), P2(. | 0), ..., Pm(. | 0)} is separating the elements of Q (separating Q) 
if for any pair 9t 4= 6k there exists Pt(. \0)eS> such that P,(. | 0t) 4= P/(. | 0k). 

Theorem 2.3. For any strategy S 

(2.28) e,N ^ e,(N + 1 ) N = 1, 2, . . . 

holds, i.e. 

(2.29) e,(co) = Mm* e3N 

exists. A strategy S e A for which 

(2.30) e,(oo) = 0 

exists iff $ separates Q. If this condition is satisfied, then there exists a strategy d 
and X e [0, 1) such that 

(2.31) edN = kN 

for all sufficiently large N. 
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Proof . Let us define an estimator SN+l : YN+l -* Q in the following way: 

#N+iOh>>h> .. . ,*/JV+I) = ^(luli* •••>>/*)• 

Inequality (2.28) is a consequence of the following one: 

^ i V + l ) ^ f ( l - P . „ 1 . . . w [ 0 = ^ ] ) d P „ . . . w . 
Jy^ 

Let now ^ be not separating .Q. This implies (see (2.6)) P ^ . . . ^ ^ . . . ^ , = 
~~ P«*I...5JV1«I...*JV0IC f ° r some 9t #= #fc and all realizations dl, 52, ..., SN of every strategy 
S. Hence also Pni...tjN\di = P^. . .^!^ so that 

This and (2.27) imply lim^ edN = ljn. The converse follows from Th. 3.2. proved 
below, but it can also be deduced by the following argument: If we define a pure 
non-sequential strategy Skm+j = j , j = 1, 2, ..., m, k = 1, 2, ... and $ separates Q 
then clearly P ^ . and P§j^k

 a r e singular for every 9t =t= 6k (see (2.6) and Lemma 1 
in [5] or (3.1) in [6]). More precisely, the definition of 3 and the assumption of 
separability imply 

1 N 

lim inftf ~ X Var (Pc |W| , P€ , „ J > 0 , 
TV ; = i 

Tab. 1. 

Realization 
of 

Í1.C2--.-
...,íjy 

The number 
of such 

Č 1 . Č 2 . -

...лN 

Bayesian 
decision 

N 

/ > ^ i . . . ^ | в i ^Ь. . ÍNІ02 PÇІ...ÇN\ 3 

0,0, . . . ,0 1 h 1 PN PN 

0,0, . . . ,0,1 1 2 0 PN~\\~P) PN-\1-P) 

0 , . . . , 0 , 1 , 
<Wc + 2> 

Čfc + з* •••» £N 
where 

k< N- 1 ГГ') 
where 

/v 

* = • ~ il 
i = k+2 

ъ 
if 

m< N— k- ì 

2 

if 
m=N-k-1 

0 

0 
if 

m< IV- k - 1 

p\l ~ P) 
if 

m= IV- k - 1 

pk+m(\-p)N'k"m 
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where Var (P, P') denotes the total variation of P and P'. This together with results 
of [5] (or with the facts presented on p. 459 of [6]) implies not only (2.30), but also 
(2.31). The applicability of the results of [5, 6] is justified by the assumption that 
the terms in the random sequence { are mutually independent for any fixed realiza­
tion <5,, t>2, . . . 

In the rest of this paper the asymptotic behaviour of edN for N -> oo will be 
studied. The optimum strategy (if it exists) is defined by 

(2.32) e6,N = inf e3N for all N greater than some N0 . 
deA 

This asymptotic approach to the optimality is justified by the fact that (2.32) holds 
for some 6' and for all N = 1,2,. . . only in exceptional cases. 

Example 2.6. Let(.Q, S\ S') be the same as in Example2A. Obviously <f is separating 
Q so that ejco) = 0. We shall prove that in this case e8>N = pN+<T^\ It follows 
from the table that Pm^Nl9i[0N + 0,] = 0, Pni...nN{$2[8N * 6>2] = pN

9 P , . . . . ^ . 
. [QN 4= 03~] = Np"(1 - p), so that 

3 
1 + Q.E.D. 

Intuitively it is clear that S' is the optimum in the sense of (2.32), but we shall not go 
into proving this fact here. 
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S o u h r n 

DISKRÉTNÍ TEORIE VYHLEDÁVÁNÍ I 

IGOR VAJDA 

Tato práce navazuje na dřívější práce [1,2], věnované otázkám statistického 
vyhledávání resp. plánování experimentů. Snaží se o široce přístupný a konkrétními 
příklady hojně ilustrovaný úvod do problematiky obou těchto prací, shrnuje a pro­
hlubuje některé jejich výsledky. 

Statistický problém uvažovaný v této práci se liší od klasického v následujícím. 
V klasickém statistickém modelu se předpokládá, že neznámý parametr 0 pozorujeme 
jediným kanálem P(. | 0), jenž je definován souborem pravděpodobnostních rozložení 
{P(. \0)}, 6 e Q, na výběrovém prostoru. Přitom se předpokládá, že P(. \0Í) 4= 
4= P(. | 62) pro 0l 4= 92. Toto dovoluje odhadnout 6 s libovolně malou „chybou", 
pozorujeme-li ne jednou, ale N-krát, kde N je dostatečně velké. Problém, který jsme 
zde nazvali problémem vyhledávání, nastává tehdy, když můžeme 6 pozorovat 
ne jedním, ale mnoha kanály, z nichž však žádný sám o sobě nezaručuje rozlišitelnost 
dvou různých hodnot 6. Abychom i zde dosáhli rozlišení, resp. malé „chyby", 
musíme parametr postupně pozorovat různými kanály. Pravidlo pro postupný 
výběr kanálů zde nazýváme strategie vyhledávání. V celé práci uvažujeme pouze 
model s diskrétním parametrovým i výběrovým prostorem a s konečnou množinou 
kanálů. 

Kvalitu strategií posuzujeme jednak středním počtem pozorování, který je nutný 
k bezchybnému stanovení 6, anebo tam, kde je tento počet nekonečný, střední 
pravděpodobností chyby po N krocích. Náš přístup k problému vyhledávání je tedy 
bayesovský. 

V této první části práce jsou dokázány některé věty o obecných a optimálních 
strategiích, v druhé části převážně věty o tzv. náhodných strategiích, kde se kanál 
vybírá náhodně a nezávisle na dosavadních výsledcích pozorování. V druhé části 
se rovněž poukazuje na hlubokou souvislost takto chápané teorie vyhledávání 
a teorie informace. 

Authofs address: Igor Vajda, CSc, Ústav teorie informace a automatisace ČSAV, Vyšehrad­
ská 49, Praha 2. 
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