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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

REMARKS ON ANDEL'S PAPER " O N MULTIPLE NORMAL 

PROBABILITIES OF RECTANGLES" 

ZBYNEK SIDAK 

(Received June 10, 1970) 

This paper contains some brief remarks on the preceding AndeTs paper [ I ] . First, 
we present here some simplifications in the bound Zt for the remainder of the series 
suggested in [1]. Second, we show here an interesting special case, in which the 
series in question has only non-negative terms. 

The contents of the present paper is very simple; however, for better orientation, 
its main points are arranged into separate Assertions. 

This paper is an appendix to [ l ] , so that we shall use its system of notation, only 
with some complements. Unexplained symbols, as well as the motivation and the 
basic results, may be found in [1]. 

Thus we deal with a regular covariance matrix G = jjg -̂jj" ; = 1 ; in addition to [1], 
denote its characteristic roots, arranged in an increasing order, by yx = y2 ^ . . . 
... :g yn. Further, the inverse of G is G~l = Q = | |^. y | |" 7 = 1 , and the characteristic 
roots of G are /L1? X2, ..., A„; for the sake of simplicity, and in addition to [1], sup­
pose also X1 :g X2 g . . . _ ln. 

1. SIMPLIFICATIONS IN THE BOUND Z, FOR THE REMAINDER 

OO 

The bound Z f, given by formula (7) in [1], for the remainder of the series ]T ck 
fc = 0 

contains a quantity m defined by 

m = m i n ^ i , A2, ..., Xn9 qil9q22, ..., qnn). 

However, there is a simpler expression for m. 

Assertion 1. m = min (Xl9 A2, ..., Xn) = Xx (in the present notation). 

Proof. By a well known theorem on the roots of a quadratic form (see e.g. [6], 
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Chapter X, § 7) we have 

, x'Qx x Qx 
min < 

f Ф 0 X X 

for each vector x 4= 0. Choosing now the vector x whose i-th coordinate is 1, the 

remaining coordinates being 0, we get Xx ^ qit for each / = 1, ..., rc, which proves 

the assertion. 
However, the computation of characteristic roots of a matrix uses to be rather 

tedious. Therefore, we may use a simplification given by the following 

Assertion 2* If we are willing to accept a larger bound for the remainder in place 
of Z„ we may replace m in the formula for Zt by any number X for which X ^ Xx. 
Or, we may put X = \\y where y is any number for which y g: yn. 

Proof. The first part is obvious, the second part follows simply by noting that 

y ^ yn implies 1/y g \\yn = Xx. 

The advantage of the modification in Assertion 2 lies in that it is much easier to 
find some bounds X or y for characteristic roots than to find the roots themselves, and 
there is a number of very simple methods for doing it (see e.g. Parodi's book [8]). 
The simplest instance is expressed in the following 

n 

Assertion 3. We may put y = max T IgJ . 
1 £ i S n j = 1 

Proof. Follows immediately from a well known theorem on the location of charac­
teristic roots in the so called Gersgorin circles (see e.g. [8], Chapter III, § 1, Corol­
lary 2). 

2. A SPECIAL CASE WITH A NON-DECREASING SERIES 

Throughout this section we shall suppose that the matrix G = j | ^ f j . | | " j = 1 has the 
following special form: glx = g22 = . . . = gnn = 1; gu = gigi for / 4= j ; ij = 
= 1, .. . , n, where the numbers g{ satisfy 0 rg gx < 1 for i = 1, ..., n. 

Covariance matrices of this type occur frequently in statistical publications, see 
e.g. [2], [3], [4], [7], [9], and others. In particular, note that covariance matrices of 
positively equicorrelated random variables belong to this type. 

The inverse of a matrix of this type may be found quite easily. 

Assertion 4. if G has the above mentioned form, then 

-1 

(1) Q ^ G - ^ D - i - 0 ^ ^ 
1 + g ' D Ч g 
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where D is the diagonal matrix with the numbers 1 — g2, \ ~ g2
? t,.J — g2 in 

its diagonal, and g is the column vector with coordinates g,,..., gn. Explicitly: 

1 2 

(2) qu = 2 i for i = 1, . . . , n , 

fc=l 

(3) qu= **L- for i+j; 

(l-g))(l-g))[l + l(i-glrl9n 
k= 1 

ij = 1 , . . . , n. 

Proof. It suffices to note that G — D + gg', and to check directiy that the matrix 
given by (l) multipiied by G = D + gg' gives / (the unit matrix). 

Assertion 5. If G has the above mentioned form, then in the series P(A) = ]T ck 
fc = 0 

(given by (4), (5) in Andel [ l ]) all terms ck are non-negative. Hence, for each t = 

= 0,1,2,...,tck^P(A). 
fc = 0 

Proof. By formula (5) in [1], ck is equal to a positive constant | Q | l / 2 (fc!)~l (2n)^n/2 

times the integral 
/*ai /*an / n n \k r n "\ 

(4) . . . ( " * . £ J / ^ o j e x P J - i Z ^ g a | d x 1 . . . d x ; i . 

The evaluation of this integral (4) is described on p. 175 in [1], and it turns out that 
it equals a sum of certain products of the type 

(5) 
П ňüi 

?(«i «.) = C П xï'exp{-ţx)qu} dxi, 

where C is a constant, and a l 9 a2, ..., an are even numbers. Therefore, obviously, all 
integrals in (5) are positive. As for the constant C, it is easily seen to be equal to the 
product of a certain polynomial coefficient and of some numbers — \qtj (with i 4= j); 
since qu ^ 0 for / 4= j by formula (3), we have — \gi} ^ 0, and the proof is finished. 

It would be interesting to find a general class of covariance matrices G for which 
Qu ^ 0 (f #= j), giving thus ck ^ 0. In this connection it may be remarked that the 
matrix Q in our present case, being positive definite, belongs to the class K of matrices 
with non-positive off-diagonal elements and positive principal minors studied by 
Fiedler and Ptak [5]. However, it seems that among many results in [5] only one has 
a consequence related to our present problem: namely, by Theorem (4,3) 11° in [5] it 
follows that Q positive definite, gu ^ 0 for i 4= j , imply that G must have only non-
negative elements. 
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Next, let us find the smallest characteristic root lt of the matrix Q, which is needed 
in Assertion 1. If either all g/s, or all g '̂s but one, are equal to 0, then clearly G = / 
(the unit matrix), Q = /, Xl — 1. Therefore let us assume from now on that the 
number of positive g^s is at least 2. 

Assertion 6. If G satisfies the above assumptions, Xv = \\(z0 + 1) where z0 is the 
unique positive solution of the equation 

a2 

(6) 
i = i z + gj 

n 

Proof. First, the function ijj(z) = ~\ g2(z + g])~l is decreasing and continuous 
i= i 

for 0 < z < oo; morever, lim \j/(z) is equal to the number of positive #/s , i.e. at 
z^O + 

least 2, and lim ij/(z) = 0, so that there exists a unique positive solution z0 of \\/(z) = 1, 
r-*- oo 

i.e. of the equation (6). 
Second, (6) for z0 implies evidently 

n 2 

(7) (^o + g/Dl i—2-9l~zo for each fc=l, ..., w, 
i=i z 0 + #,. 

or equivalently, 

a2 

(8) (z0 + #fc
2) X — ^ — - = z0 for each fc = 1, ..., n . 

i=l z 0 + 0 f 
i-l-Jfc 

On the other hand, consider now the matrix H — G — I (i.e. the matrix with 
diagonal elements 0, off-diagonal elements g;g;), and let its roots be Xi ~ #2 = ••• 
. . . ^ Xn- Since H is non-negative, by a well known result (see e.g. [6], formula (41) 
at the end of Chapter XIII, § 2) we have for its maximal root xn the inequalities 

(9) min - M * SXnS max - ^ for each x ^ 0 , x + 0 . 
l^k^n Xk l^fe^n Xk 

Insert now into (9) the column vector x with coordinates 

*i = 9i(zo + 92i)~\ *i ~ 9i(zo + 9?i)~\ ..., *„ = gn(Zo + 0«)~ l • 

We get then 

(H}r\ lL9i9k-9i(zo + gi)"1 2/ _2N 
l ^ = i ± ^ _ £ *(*» + f)- , Zo for each fc=l,...,n, 

*fc 0*0-0 + gfc) «'** ^0 + g* 

where the last equality follows from (8). Hence (9) gives z0 ^ xn = zo> l-Q- Xn ~ zo-
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Further, Hu = #u implies Gu = (H + /) u = xu + u = (x + 0 wand conversely, 

so that yn = xn + -1 = ro + 1- Finally, we have clearly i 3 -= l/y„ -= lj(z0 + 1). 

Assertion 7. We have the following inequalities: 

n n 

(10) X 0? - m a x 9k ^ -o ^ Z g? ~ niin gfc
2 , 

i = l 1 £ ft <. n i = 1 1 i ft < n 

(11) niin gk £ af ^ z 0 ^ max #fc V ^ . . 
1 ^ ft < n i * ft 1 < ft < n i * ft 

Proof. If we put ^ ( z ) = £ $f(z + max $;<) *, we have obviously i/J^z) rg y/(z). 
i = I 1 < ft < n 

Hence the solution z} of ij/^z) = I must satisfy z, g z0? but Zj is the left hand side 

of (10). The right hand side of (10) is obtained similarly on using min g\ in place of 

max gl in the preceding argument. 

The inequalities ( l l ) are obtained immediately from (9) on inserting there the 

vector x with coordinates 1, 1, . . . , 1. The proof is finished. 

It may be observed that sometimes the inequalities (10), but sometimes the 

inequalities ( l l ) give closer results. 

The inequalities (10) and (11) may be used for two purposes: either, the bounds in 

them may serve as first approximations for z0 in a numerical solution of (6); or, 

since yn = z0 + 1, the upper bounds in (10) and ( l l ) plus one may serve as y in 

Assertion 2. 

Acknowledgement. The author wishes to express his sincere gratitude to M. Fiedler 

for some helpful advice. 
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S o u h r n 

POZNÁMKY K ANDĚLOVU ČLÁNKU 
k tON MULTIPLE NORMÁL PROBABILITÍES OF RECTANGLES" 

ZBYNĚK ŠIDÁK 

Předkládá se několik drobných poznámek k předcházejícímu článku J. Anděla [ l ] . 
V první části se uvádějí některá zjednodušení pro číslo m, které se vyskytuje v hra­
nici Z ť pro zbytek řady navržené v [ i ] . Druhá část je věnována speciálnímu případu 
matic G, pro něž gix = g22 = ... = gnn = 1; gu = g^j pro i =t= j ; i,j = 1, . ., n, 
kde 0 ^ g{ < 1 pro i = 1,..., n; zvláště je ukázáno, že řada navržená v [1] má pro 
případ takovýchto matic pouze nezáporné členy. 

Áuthofs address: Dr. Zbyněk Šidák, CSc, Matematický ústav ČSAV v Praze, Žitná 25, 
Praha 3, 
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