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THE FORM OF DISCRETE SPECTRUM IN THE CASE 

OF HIGH SINGULAR POTENTIAL 

VLADIMIR LELEK and J A N WIESNER 

(Received April 24, 1970) 

The solution of the inverse problem of scattering and the investigation of the set of 
physically interpretabie parameters determining the potential is one of the basic 
physical problems. Further we shall deal with the form of discrete spectrum in the 
case of high singular potentials. 

Let be given the Schrodinger equation 

(1) -y" + V(x)y = l2y. 

Let us study the problem of eigenfunctions y(x) of this equation in the space L2(0, oo) 
with the boundary value condition y(Q) = 0. If for the function V(x) the condition 

/*00 

(2) x|V(x)| dx < oo 
(*oo 

x\V(x) 
J 0 

is fulfilled then there exists a finite number of eigen-values X all having the form Ay- = 
= —ifij, fij > 0 as it is demonstrated e.g. in [1]. We shall be interested in the case 
that the function in the neighbourhood of zero has a singularity of higher order and 
we shall find under which conditions, even in this case, there exists only a finite 
number of eigen-values. 

Let us suppose that the function V(x) -> oo for x -> 0 and that for every a > 0 it 
holds 

(3) c|V(x)| dx < oo 

The equation (1) is investigated under these assumptions in [2], [3], where even the 
fundamental system of solutions is shown. We shall prove that the following theorem 
holds: 

Theorem. If V(x) is positive in the neighbourhood of the origin and (3) is valid, 
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then the equation (1) has a finite number of eigenvalues all of them having the 
form X = — i\x, JI > 0. 

Proof . Since the operator defined by the equation (1) is self-adjoint all eigenvalues 
are real, i.e. X2 is real For X 4= 0 (imX ^ 0) there exists a fundamental system of 
solutions 

yl(x,X) = e^[l+o(x^)]\x 

y2(x9X) = eikx\t + o(x~1)] 

Hence, the general form of the solution is 

y(x, X) = C1 yt(x, X) + C2 y2(x, X) 

where Cl5 C2 are constants. For the real X the solution of y(x, X) does not fulfil the ho­
mogeneous boundary value condition at the infinity, i.e. such a X is not an eigen-value. 
Thus all eigen-values have the form 

X = —ifi, fi > 0 , 

To prove that their number is finite we use the method of operator splitting [4]. 
If V(x) is positive everywhere then proof of theorem is evident. In other case let us 
denote by a the first zero of the function V(x) and let us put 

' ! > ] = ~y" + V(x)y 

and investigate the self-adjoint operator L defined by the operation /[y] and by the 
boundary value condition y(0) = 0. The domain DL of the operator Liet be the set 
of functions y(x) e L2(0, oo) fulfilling the conditions: 

a) y'(x) exists and is absolutely continuous in each finite interval (0, k); 
b) l[y] e L2(0, oo); 
c) y(0) = 0. 

For y e DL we put Ly = /[y] . 

The equation (1) is equivalent with the operator equation Ly = X2y. 
We further introduce two self-adjoint operators: 

L! — operator defined in the space L2(0, a) by the operation /[y] and by the boundary 
value conditions y(0) = y(oc) = 0. 

L2 — operator defined in the space L2(a, +oo) by the operation /[y] and by the 
boundary value condition y(a) = 0. 

Domains of these operators DLi and DLl are analogous to DL. We put L,y = /[y] 
for all y G DL. (i = 1, 2). Let us demonstrate that the operator Ll is positive definite. 
Namely, for y 4= 0 it is 

*a fx 

(Liy, y) = (l[y], y)<0,a> = ( - / + V(x) y) y dx = (y'2 + V(x) y2) dx > 0 . 
Jo Jo 
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The operator L2 has a finite number of negative eigen-values m. This follows from 
the condition (3). Let us denote by p the number of eigen-values of the operator L. 
We demonstrate that p < m + 2. Let us assume that p ^ m + 2; therefore it exists 
at least m + 2 linear independent eigenfunctions of the operator L, yl9 y2, ..., ym + 2; 
from them we take m + 1 linearly independent linear combinations z l5 z2, ..., z m + 1 

fulfilling the conditions z,(0) = z,(a) = 0 (/ = 1, 2, ..., m + 1). Let us now construct 
m+ 1 

the non-zero function u(x) = £ pt zt(x) orthogonal to all eigen-subspaces of the 
i = 1 

operator L2 corresponding to its negative eigenvalues. It holds (Ltu, u) > 0 since Lt 

is positive definite. 

According to the condition (3), the continuous spectrum of operator L2 is on the 
positive semiaxis. From that fact and from the way in which the function u was 
constructed it follows (L2u, u) ^ 0, thus (Lu, u) = (Lxu, u) + (L2u, u) > 0. Function 
u(x) is a linear combination of eigenfunctions of the operator L; all eigenvalues of L 
are negative, hence (Lw, u) ^ 0; that is not possible which completes the proof. 

Remark . The theorem need not be valid for V(x) negative in the neighbourhood 
of the origin; it can be shown as follows: 

a(a — 1] 

v{x) = ( *2 
0 < x < \ 

0 1 ^ x < + oo. 

The equation (l) assumes the form 

(4) x2y" - [-X2x2 + a(a - 1)] y = 0 for 0 ^ x < 1 

y" + X2y = 0 for 1 ^ x < + oo . 

Since only the negative values of X2 can be eigen-values, let us put X2 = — \i2. Then 
the equation (4) is 

(5) x2y" - [p2x2 + a(a - 1)] y = 0 for 0 ^ x < 1 

y" - \i2y = 0 for 1 <; x < + oo . 

According to [5] in the interval 0 :g x < 1 the solution has the form 

y(x) = j(x)(C1Ja„1/2(i/ix) + C2Ya_1/2(;/Lx)) • 

From the form of the solution at infinity and from the continuity conditions for the 
function y(x) and the first derivative y'(x) for x = 1 it follows 

J«-I/2(W) + CY;_1/2(Í/I) = C2 

^a-l/2(i>) + C> ra-l /2(^) Q 
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In the case of a(a — 1) ^ 0 it holds C = 0 (this follows from the relation y(0) = 0 

which must hold for the eigen function), in the opposite case it is possibly C =# 0 

(since the both solutions fulfil the homogeneous boundary value condition at zero). 

For a = \ it holds 

JJ{^±SYM 

J0(//i) + CY0(iv) 

Thus there exists an infinite number of /i which are eigen-values of the given dif­

ferential equation. 
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S o u h r n 

TVAR DISKRÉTNÍHO SPEKTRA PRO VYSOKOSINGULÁRNÍ 

POTENCIÁLY 

VLADIMÍR LELEK, JAN WlESNER 

V článku je rozebrán tvar diskrétního spektra pro vysokosingulární potenciály při 
řešení obrácené úlohy teorie rozptylu. Je dokázána jeho konečnost pro potenciály, 
které jsou kladné v okolí počátku. 
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