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EXTRAPOLATION METHOD FOR NUMERICAL CALCULATION
OF THE DERIVATIVE OF THE ANALYTICAL FUNCTION
AND ITS ERROR ESTIMATE

GoGovA DAGMAR

(Received May 15, 1970)

1. INTRODUCTION

Let T(h) be the numerical approximation of an exact problem T, defined by
lim T(h) = T and obtained for some discrete parameter h. The following idea of

n-0

improving T(h) originates from Richardson: For various h; i =0,1,2,...,m,
calculate T(h;) and construct the interpolation polynomial T,,(h) through points
(h;, T(h))), the value T,,(0) being taken as an approximate value for T.

The assumption for the numerical application of this extrapolation method is the
existence of an asymptotic expansion

1) T(h) ~ 1o + t,h" + ... + T h™ + Rey (h) B!

where |Ryy(h)] £ Myy, for all h >0, 0 <y, <...<7%u, and T, ..., 7, do not
depend on h. STETTER [4] proved the existence of such expansions for a very general
class of discretization algorithms for non-linear functional equations (e.g. initial and

~ boundary value problems for both ordinary and partial differential equations, integral
equations and integro-differential equations).

2. DESCRIPTION OF THE METHOD

The difference quotient

_f(x+h)—f(x —h)
o iy 0=
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of an analytical function f(x) is of the form [1]
(3) (h)— (x)+12flll()+l4f )+16fyj—;§)i)+’

whereby
lim T(h) = f'(x).
h-0

T(h) in (3) has the form (1) and thus we can use Richardson’s idea outlined in the
introduction. The choice of the interpolation polynomial of n-th degree is closely
connected with the properties of the remainder f'(x) — T(h). It is seen from relation
(3) that this remainder is an even function of h and therefore we take for P,(h) the
polynomial in h®. This polynomial has to assume the same values as function T(h)
at the points of the zero sequence {h,}y,. If we denote

TO(") = T(hk), k=0,1,...,m,

then from the Lagrange interpolation formula we get for this polynomial for h = 0
the expression

m

(@ T % Pof0) = Y WL hz o

The extrapolation for the argument h = 0 may be performed by the advantageous
Neville-Aitken algorithm from which, by simple recurrent relations, we obtain without
knowing the coefficients of the Lagrange polynomial its value at an arbitrary point.
Relation (4) is recurrently calculated by means of the so called T-scheme

T
T](O)
T(;l) TZ(O) .
Tl(l} . .
2) 0
(5) T . : T
o\ *
. Tz(m-l)
. Tl(m—l)
™

in which T, ~ T(0) and the s-th column (s = 2, 3, ..., m) is calculated from (s — I)
by
RETED — R2, T®,  k=0,1,...,m,

>

h? — hZ,, s=0,1,...m— k.

(6) T =
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Further we will use the sequence of steps [2]

(7) {hk};cnzo = {(p/‘I)k h}l'::o s

where h is any initial step and p < g are natural numbers. The relation (6) will now
have the form

2sr(k+1) 25 (k)
q°T2y ) — pTo
2s 2s :

a —rp

(3) T =

Remark. If p = 1, ¢ = 2, we get the classical Romberg extrapolation algorithm.
In this way we obtain T.?, i.e. the approximate value of the derivative in the form
of a linear combination of several values of the differentiated function. Thus

2Zm+1

) f'(x) = i; A f(x:) + E(f) .

where x; € [x — hg, x + hy], A; are coefficients which depend on the choice of
points x; and E(f) is the corresponding remainder. Coefficients A, in the relation (9)
are unknown, they are recurrently obtained by the calculation.

As to the convergence of the T-scheme, we are curious to know whether lim h,, = 0,
m-— 0
i.e. lim T{™ = T(0), implies also lim T,”) = T(0). The answer is given by

m-— oo m- oo

Theorem. For an arbitrary sequence of steps (7) it holds that

lim T = lim T§™ = T(0).

The proof follows from Theorem 1 in [3].

Remarks. 1. By the described method higher derivatives can also be calculated
since for the n-th derivative it holds [2]

(10) T — 621: ; i\:_;o <’i’)(-1)i Flx + nhy — 2ih) = FOx) + O(h?) .

2. Derivatives can be calculated also from higher order difference formulae than
O(h?). In that case the relation (6) or (8) will change.

3. ESTIMATE OF ERROR OF AN »-TH ORDER DERIVATIVE FORMULA
FOR L%(&,)
The error E(f) committed by the use of formulas of numerical approximation

applied to an analytical function f may be estimated [5] in the form |E(f)| <o f].
The quantity oy, is the norm of the error functional; it depends solely on the approxi-
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mation rule employed and is independent of the particular function considered. The
quantity || f] is the norm of f in the Hilbert space of analytic functions and may be
estimated from a knowledge of the values of the function in the complex plane.

Let &, be an ellipse in the complex plane z = x + iy having foci at the points
(—1,0)and (1, 0). Let a and b denote its semimajor and semiminor axes, respectively,
and let the quantity o = o(a) be defined by

(11) e=(a+b), a=13("7+'?), b=13e'"7~-"?).

By I*(&,) we mean the class of functions f(z) which are analytic inside and on &,,
and for which

1712, = j j )P dx dy

is finite.
Consider next the Chebyshev polynomials of the first kind defined by

(12) Ti(z) = cos (karccos z), k=0,1,....

It can be shown that the polynomials

(13) plz) =2 \/(%:—‘) (0* - 0¥ 12 T(2), k=0,1,...,

form a complete orthonormal system for I*(&,) with regard to the scalar product

f f Ty = (7).

If a function f(z) is of class L*(&,), then it can be expanded in a series of Chebyshev
polynomials [5]

(14) f(2) =k§0"k pl2)
where
(19) Sla = 1, < o

The series (14) converges uniformly and absolutely in the interior of &,.
An arbitrary derivative formula of the n-th order is given by the relation

(16) ' (X)s=0 = R, + E(f)

N
where R, = Y A f(x{”) and, without any loss of generality, it is supposed that the
i=1

derivative is taken at the point x = 0 (the case of an arbitrary point may be handled
by means of an appropriate linear transformation). The error E,(f) involved in the
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rule R, is
N
(17) Ef) = FO(0)emo — X AL )

and it can be estimated for f(z) € I*(¢,) by using (13), (14). Applying the operator E,
to (14), we obtain

EAf) = L ax En).
from where by means of the Schwarz inequality we get the estimate
BN = ¥ lad® X |EpO]* -
k=0 k=0
Let us now denote
(19 0t = 3R

then with respect to (15) we obtain

(19) [EN)] = ||f]ls. -
Table 1
7§ k () k
0 0,2, 4, 0 1,3, 5,
k 1,5, 9, K2 2,6, 10, .
—k 3,7, 11, — K2 4,8, 12, .
15 k o k
0 2,4, 6 0 3, 5 17,.
K-k 3,7, 11, k* — aKk? 4, 8,12,
— (k> — k) 5,9,13, —(k* — 4k?) 6, 10, 14,
(%) k (8 k
0 4, 6, 8, ... 0 5,7, 9, ...
k> — 10k - 9k 5, 9,13, ... k® — 20k* + 64k 6,10, 14, . ..
— (k% — 10k> + 9k) 7,11,15, ... — (kS — 20k* + 64k?) 8,12, 16, ...
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The quantity o,, which is the norm over I*(&,) of the bounded linear functional E,,
depends only on the ellipse and the derivative rule R,; but is independent of f, and
may therefore be computed once for all. Using (18) and (13) we have for o2 the

expression

o, = i,;o k(o™ — 072 M E(T2))|? .

Applying the operator E, to (12), we have

8 © N
(20) G.LZ) - Z k(QZk _ Q~2k)—-l [‘C,(\.") _ Z A(‘-") 'I;((xgn))]Z ,
MTk=0 i=1
where quantities 1y (n = 1,2, ..., 6) are given in Table 1| and besides it holds for
them
" =2nt" D - ™, n=1,2,....

In Table 2 there are values of g, corresponding to a few derivative rules and for the
range of values of the parameter ¢. These values were computed from (20), the

N
algorithm used at the calculation ) A{™ T,(x{") being the same as that applied to the
=1

calculation of the respective derivative. It must be noted that the basic relation (10)
does not change but the choice of the initial step h and the way of its further division
affects the knots x; and coefficients A4;, thus changing the whole derivative rule R,.
In Table 2, therefore, the individual rules are denoted by the initial step h and by
values p, q.

In order to use the estimate (19), we have to determine | f| 5, which is different for
each function. If it cannot be evaluated directly, it can be estimated [5] either from

(21) 171, = (rab) max | (z)]

where f(z) is continuous in the closed ellipse &, or from
@) 11, = 1les = 0 ) ma 1)

where C, is the circle containing &, and f(z) is regular in C,.

Remark. Quantities o, and | f| s, depend on &,. Now ||f|s, = 0 when ¢ = I and
increases as ¢ increases. On the other hand, o, decreases as ¢ decreases. Hence, the
best estimate occurs for some intermediate ¢ [5].

The quantities of Table 2 refer to the point x = 0. The case of an arbitrary point x,
is obtained by means of the linear transformation

1

1t = X — Xp)»
nh( 0)
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which maps the interval x, — nh < x < x, + nh onto —1 <t < 1, i.e. the point
X = Xg into t = 0. Let the error E} be given for the point x = x, as follows

(23) EX) = Sy = L A0 S(x).
The analogous error for the point t = 0 is given by

N
(4) BAT) = 0 = 38 (16— x0).

If function f(x) is analytic on [x, — nh, x, + nh], then

g(1) = f(nht + x,)

is analytic on [ —1, 1] and setting ¢, = (1/nh) (x; — x,), we have

EX(f) = 9g"(1).=0 _éoA"g(t")'
We have thus obtained
. E;(f) = Ef9).
(3) IEX()] = |E0)] < oulol,.

The o, are tabulated values in the z = x + iy plane, and |g||s, also refers to this
plane.

4. NUMERICAL EXAMPLES

Example 1. The calculation of the 1st— 5th derivatives of the function exp (e*) at
points x = 0 and 1 with various initial steps. The results obtained are in Table 3.
From this Table it is seen that these values depend on the choice of the initial step
(in particular for higher derivatives). The question of the most suitable initial step has
not yet been solved.

Example 2. Estimate the error E occuring in evaluating (d/dx) exp (¢%),=o (h = 1,
plg = %) and (d?/dx?) exp (¢*),=o (h = 05, p/q = }).exp (%) is an entire function
of z and its therefore of class I*(&,) for all ¢ > 1. Now

lexp (%)| = exp {Re (e7)} = exp (e* cos y). .
Thus on &, we have
lexp (¢%)] < exp (¢%),
and by (19) and (21) we get

(26) |E,| < /(mab)exp () o,(1, 1) .
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0-02
0-05
0-06
0-12
0-20

d (™)
— exp(e’),=
dx p x=0

p=1,49=2

Table 3

d X
(]x exp (e"),=

d (e”)
— €Xp e =
dx p x=0

2-71828221
2-71828222
2-71828172
2-71828151
2:71828197

2

a2 P @ )e=0

5-43648859
5-43654166
5-49138495
5-43656155
5-43656307

d3

4 e

d X
ax exp (e =y

41-19353950
41-19354510
41-19355488
41-19355226
41-19355357

2
42 €XP (G

153-1687293
153-1688619
153-1691699
153-1691604
153-1692419

3
a exp (e¥), =y

2-71828069 41-19353676
2-71828187 41-19354987
2-71828185 41-19354987
2-71028188 41-19356910
2-71828184 41-19355690
"Adz'“ 2
G2 P (@m0 Togexp (o,
_
5-43639913 153-1640430 '
5-43651001 153-1689301
5-43656208 153-1689930
5-43656212 153-1691240
5-43655573 153-1691084
— . 0 _
e exp (%) =0 e exp (%) -,
13-5862502 681-454630 13-4580781 675-3334065
13-5907953 681-509060 13-5907190 681-5012169
13-5916048 681-643183 13-5912432 681:4960136
13-5914114 698600353 13-5913858 681-4997482
13-5912477 681-497744 13-5913950 681-5008812
44 } 44 } 44 N 4 )
‘—1;74' exp (e%), =0 EF exp (e¥),. ¢ d}; exp (%), _o ;1;4 exp (e¥) -y
411169219 3478-22986 40-7399788 3478-261280
40-7636666 3481-56985 407667530 3484-064740
40-7670107 3481-61053 40-7760875 3481-825531
40-7666786 3481-62234 40-7741329 3479-529482
40-7747991 3478-77254 407742379 3478-807739
ds X ds X ds X V 5 ] X
s exp (€M), =o s exp (€M) = R exp (%) o 35 &P (€)=
140-134945 19551-1774 | 140-134945 19708-4760
140-683602 19822-5887 141-108862 19853-9014
141-167152 19874-2766 141-261202 19855~8304
141-228155 19874-3518 141-333875 19855-8922
141-553560 19842-4092 141-343023 19851-7753
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The right-hand side of (26) is minimized for a = 175 and yields

|E\| < (2-8099)(317-3) (1-3239 x 107*) = 0-1180 .

The real absolute error is 0-00000001.

For the error E, also holds

[Eal < (rab) exp (¢4 0,(0°5.3)

from where for a = 1-10 we get

|E,| < (1-2584) (20-09) (1:9419 x 107*) = 0-0049 .

In this case the real absolute error is 0-00000059.

Table 4
p=1,q9=2 p=3,q9=4
h r,(x)x=1 rl(x)xzz l"’(x)le F’(x)x=2
0-02 —0-577214861 0-422784155 -0-577215634 0-422784051
0-05 —0-577215040 0-422784929 —0-577215031 0-422784398
0-40 —0-577215342 0-422784266 —0-577215381 0-422784562
0-80 —0-577215605 0-422784247 —0-577215837 0-422784337
1-00 —0-577215517 0-422784313 —0-577215463 0-422784420
p=1qg=2 p=13,q=4
h
I, = I"(x), =
0-02 1-97814444 1-97785540
0-05 1-97813029 1-97814206
0-20 1-97810884 1-97812159
0-40 1-97811233 1-97812276
0-50 1-97811618 1-97809845

Example 3. Table 4 contains the calculated values of the Ist and 2nd derivatives

of the function I' (x) at the points x = 1, 2.

Example 4. Estimate the error E, which arises in evaluating I'(x)e=4(h = 08,
plq = }). Transferring to the point z = 0, we must consider the function

g(z) = I[0:8(z + 1-25)] .

This function is regular in |z| < 1-25; hence we may take a in the range 1 < a <
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< 1-25. Now
IF(x + iy)| £ I'(x) for x>0,
so that
l9(2)| = |T[0-8(x + 1-25) + 0-8iy]| < I'[0-8(x + 1-25)].
The concavity of the I" function implies
l9(z)| < max {I[0-8(a + 1-25)], I[08(—a + 1-25)]}, zeé&,.
Thus we have
|E,| < /(mab) max {I'[0-8(a + 1-25)], T[0-8(—a + 1-25)]} o,
from where for a = 1-03 we get
]Ell < (0-8936) (5-131) (17362 x 10~ %) = 0-0000000796 .

The real absolute error is 0-0000000604.
Estimations of the norms in examples 2 and 4 are from [5].
All calculations were carried out by the Danish computer GIER.
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Sthrn

. EXTRAPOLACNA METODA NUMERICKEHO VYPOCTU DERIVACIE
ANALYTICKEJ FUNKCIE A JEJ ODHAD CHYBY

DAGMAR GOGOVA

Clanok opisuje numerickt metédu vypoétu derivacie analytickej funkcie. St tabe-
lované tzv. chybové koeficienty pre odhad chyby a ich pouzitie je demonstrované na
niekolkych prikladoch.
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