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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSL01 

ELECTRIC NETWORK ANALYSIS BY THE GENERALIZED 
CUT-SET MATRIX METHOD 

DANIEL MAYER 

(Received April 28, 1970) 

1. INTRODUCTION 

The nodal analysis method makes certain difficulties when applied to networks 
with mutual inductance branches. Further complications arise when the given network 
contains branches with ideal voltage sources whose both nodes are independent 
nodes of the network k generalization of the nodal analysis being applicable to net­

works with magnetic couplings was des­
cribed in [1]; a further generalization for 

a)" \f y/ networks containing ideal voltage sources 
in addition to ideal current sources was 

Iv 
I 

passive 
branch 

Fig. 1. Three kinds of branches which may Fig. 2. Example: voltage source with internal 
occur in the network being analysed. impedance as a series connection of voltage and 

passive branch. 

described in [2]. Another very effective method for the analysis of networks containing 
both kinds of sources is a modified nodal analysis called the cut-set m e t h o d . In 
comparison with the nodal analysis this method has the advantage of greater simplici­
ty and clearness and especially the necessary numerical calculations are much simple 
for certain networks. However, just as the nodal method, the basic version of the 
cut-set method too, fails to work in case of networks including the magnetic coupling. 
In this work we shall develop the articles [1] and [2] and generalize the cut-set 
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method so as to make it applicable to linear networks which contain ideal voltage 
sources together with ideal current sources and whose branches may be mutually 
magnetically coupled in any manner. 

In the following treatment we shall divide the branches of the given network in such 
a way that each of them may be classified as one of the three kinds of branches, name­
ly, the branches containing only ideal voltage sources (Fig. la) — they will be called 
"voltage branches", further those containing only ideal current sources (Fig. 1b) — 
we shall call them "current branches" and finally those containing only passive 
elements (Fig. lc) which will be called "passive branches". For example, if a net­
work contains a voltage source which is not ideal (i.e. which has a non-zero internal 
impedance), it must be considered as a voltage branch and a passive branch con­
nected in series (Fig. 2). 

The cut-set method was introduced into the theory of electric network by Guille-
min [3] who followed the results from topology published by Whitney [4]. The 
possibilities of a matrix formulation of the cut-set method were disclosed by Seshu 
and Reed [5]. 

2. THE CUT-SET MATRIX ANALYSIS OF NETWORKS CONTAINING 
VOLTAGE SOURCES AND CURRENT SOURCES 

Let us first formulate the cut-set matrix method for the case when the network 
includes ideal voltage and current sources but has no magnetic couplings between its 
branches. 

Let the network considered have k nodes, 5 separate parts and / branches, con­
sisting of voltage branches, q current branches and r passive branches (/ = p + 
+ q + r). The number of tree branches will be denoted by m ( = k — s) and the 
number of link branches by n ( = / — m). 

First we shall characterize the t o p o l o g i c a l s t r u c t u r e of the network. The graph 
of the network considered is oriented as follows: the voltage and current branches 
are oriented in agreement with the polarity of the voltage and current sources, 
respectively (according to Fig. la, b) and the passive branches are oriented arbitrarily. 
In the graph of the network we choose a tree containing all the voltage branches, no 
current branches and an arbitrary number of passive branches1). If we assign to every 
branch of this tree one "cut-set"2) incident to the respective tree branch, not 

1) As we know (see e.g. [3]) there exists at least one such tree for any network having a physical 
sense. 

2) Let us explain the term "cut-set". Into a connected network we introduce an arbitrary 
continuous simply closed surface (in the case of planar networks it will be sufficient to introduce 
any simply closed curve), incident at only one of its points to the network branches but to none of 
the network nodes. From the geometric viewpoint this surface is a topological sphere (or, for 
planar networks, a topological circle called the Jordan curve). Thus the introduction of a topo-
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incident to the respective tree branch, not incident to another branch of the tree but 

possibly incident to any link branch3), we obtain a set of m linearly independent 

cut-sets which we shall call the "basic set of cut-sets". If all the tree branches are 

oriented in such a sense that they are directed to the outside of the spatial area closed 

by its corresponding cut-set, we obtain a cut-set called the "well oriented set of 

basic cut-sets" (see [7]). 

When numbering the network branches we shall proceed in the following order: 

— voltage tree branches 

— passive tree branches 

— passive link branches and 

— current link branches. 

When numbering the cut-sets we number first the cut-sets belonging to the voltage 

tree branches and then those belonging to the passive tree branches. 

The oriented network graph numbered in this manner is algebraically represented 

by the third incidence matrix (or cut-set matrix) H. This matrix, which describes the 

topological structure of the network, is of the type (l; m) and expresses the incidence 

of the branches and the cut-sets of the oriented graph of the network considered. The 

rows of matrix H correspond to the graph branches and its columns to the cut-sets. 

Its elements are: htj = + 1 if the oriented i-th branch is directed to the outside of 

the j-th cut-set, or htj = — 1 if the orientation of the i-th branch is opposite, or htj — 0 

if the i-th branch is not incident to thej-th cut-set. In the book [7] it was shown that 

for a well oriented basic set of cut-sets the third incidence matrix H may be expressed 

as a partitioned matrix consisting of a square submatrix H7(m) and a rectangular 

submatrix H 7 / (n; m), the matrix H 7 being a unit matrix: 

(0 
н. L J 

H = J H = J 
» I I 1" н„ 

The p h y s i c a l s t r u c t u r e of the network analysed is characterized as in the 

logical sphere into an electric network is uniquely determined by the branches to which this 
sphere is incident. A set of these branches is called the "cut-set". 

From the above definition of the cut-set it follows that if in a given connected network we 
interrupt the branches of its cut-set the network will split into two separate parts. If any one of 
these branches is connected again the network will be restored to a connected one. 

( It is useful (but not necessary) to introduce the cut-sets in such a way that they be incident 
to the relevant branches just once. The reason is that the equations of the network will thus be 
formally simplified. If we assign to each tree branch just one cut-set, we can say that this cut-set 
represents a set of a minimum number of branches whose interruption causes the network to split 
into two separate parts. 
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method of node voltages (see [1], [7]), i.e. by the diagonal matrix of branch admit­

tances 

(2) Y(/) = diag [y.„...,y„] 

and by the column matrix of branch current sources !„(/; 1), by the column matrix of 

branch voltages U(/; 1), by the column matrix of branch currents l(/; 1) and further­

more by the column matrix of branch voltage sources E(/; 1). 

For the elements of the matrix of branch admittances, corresponding to the voltage 

branches, there evidently holds 

limYa = +oo for i, . . . , p 

and for its elements corresponding to the current branches we have 

limYH = 0 for i = / - q + 1,... , / 

The elements of matrices U and I corresponding to voltage and current branches, 

are given by the known values of the sources 

(38) 

and 

(Зb) 

Ut = -EІ for i = 1 , . . . , jp 

ІІ = Ivi for i = / — q + 1, . . . , / 

In further applications it will be advantageous if we express the matrices !„(/; 1), 

U(Z; 1), !(/; 1) and E(/; l) as partitioned matrices: 

(4) 

'vШ 

U 

u. 

'•I 

U, 

•P, 1 = 

1/ 

'// , E = 0 

0 

According to Eqs. (3) it is evident that 

(5) U 7 = - E j and \UI = \vIU 

When a n a l y s i n g the n e t w o r k we know the matrices H, Y and the submatrices 

lyjjj and Ej and search for matrices U and I, more exactly, with regard to Eq. (5), only 

for their submatrices U / / 5 UJJJ, l f and IJJ. It will apparently suffice if we find the sub-

matrix UJJ (whose elements are the voltages across the passive tree branches) or the sub-

matrix IJJ (whose elements are the currents in the passive link branches). From these 

submatrices it is then easy to find the remaining submatrices UJJJ and l7 (see e.g. 

[6], [7], [8]). 
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We start from the equation 

(6) I = YU + !„ 

which follows from Ohm's law and Kirchhoff's current law. Now we use the general­
ized Kirchhoff's current law according to which the sum of all the currents incident 
to any cut-set of the network is identically equal to zero [7]. In the matrix form it 
may be expressed by the equation 

(7) 'HI = 0 

Multiplying Eq. (6) by the matrix r H and using Eq. (7) we obtain the equation 

(8) ~ l , = -~Y~U 

This so-called "cut-set matrix equation" expresses the application of the generalized 
Kirchhoff's current law to the set of m cut-sets in the network considered. Matrices 
~\v(m; 1) and ~Y(m) are determined by the relations 

(9) 

and 

(Ю) 

\ ( m ; 1) = Hìv 

"Y(m) = 'HYH 

(the matrix Y is apparently a symmetric one) and the so-called "matrix of cut-set 
voltages" ~U(m; 1) is related to matrix U by a simple relation 

( Ц ) U = н~u 

Since we have chosen a well oriented basic set of cut-sets, for which the third 
incidence matrix H assumes the form given by Eq. (l), we have, according to Eqs. (4) 
and (5): 

(12) U = 
E/ 

U // 
Km — p 

i.e. the cut-set voltages are the voltages across the corresponding tree branches. 

If the network considered contains only current sources (q + 0) and no voltage 
sources (p = 0) its analysis is comparatively easy: by solving the cut-set equation (8) 
we determine the voltages across all the tree branches: 

(13) I., 

Let us now investigate a more general case when the network contains voltage 
sources in addition to current sources (p + 0, q + 0). Again, we are interested in 
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voltages across all the tree branches; it will apparently suffice to calculate the sub-
matrix U / 7 from the cut-set equation (8). We divide the matrices ~\v and Y into the 
corresponding submatrices 

(14) 

and 

(15) 

"I. = 'H„ 
n — ą X, 

У(m) = 
~Y,, 

... 
~ү1 2 

~ү 2 I ~ү2 2 

m — p 

m — p 

After a simple rearrangement we obtain 

(iб) "l — ~Y E 
lvII — " 2 1 C 7 

which is a matrix representation of the generalized Kirchhoff's current law applied 
to m — p linearly independent cut-sets. From this equation we obtain 

(17) "Y~H~\ 
1 22 V 'vil 

JY21E/) 

The element in the i-th row of the matrix \vji(m — p; 1) = f" \vH[\ is the sum of 
currents on the current branches, incident to the i-th linearly independent cut-set 
(/ = p 4- 1, . . . , m), the element in the i-th row of matrix U / 7(m — p; 1) = \Un^\ is 
represented by the voltage along the /-th passive branch (/ = p 4- 1, . . . , m) and 
finally the element in the i-th row of matrix E7(p; 1) = ["£,."] is the value of the source 
voltage of the /-th voltage branch (/ = 1, . . . , p). 

Let us note that the elements Yu (/ = 1, . . . , p) given by Eqs. (2) cannot appear in 
the submatrices ~Y2 2 and ~Y1 2 (this follows from the knowledge concerning the 
values of elements of matrix ~Y described in [7]), so that the fact that the voltage 
sources considered are ideal (i.e. that lim Yn = + oo) makes no difficulties in the 
solution. 

If we know the matrix ~U, then using Eq. (11) we can easily determine the matrix U 
whose elements are the voltages across all the remaining branches of the network 
considered. 

The currents in the link branches are given by the submatrices \H and \fII. With 
;gard to Eq 

the relation 
regard to Eq. (5) the submatrix \III is known and the submatrix \ n is calculated from 

(18) '// = d iag[y m + l m + , , . . . , y,_, t l_j 
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If we know the currents in the link branches (they represent the elements of the 
submatrices \TI and \JfI) we can easily determine (see e.g. [6], [7], [8]) the currents 
in the tree branches (i.e. the submatrix l7). 

No te . At the beginning of this chapter we have expressed the assumption that the 
network considered may contain both current sources and voltage sources, but later 
we used Eq. (6) which holds if the network includes current sources only. Now we 
shall show that this procedure does not lead to wrong results. 

Let us admit that the network voltage sources are not ideal but have internal 
impedances Zu (i = 1, . . . , p). Then they can be replaced by equivalent current sources 
and Eq. (6) is justified. Instead of Eq. (3a) it holds 

If we put lim Zu = 0, then Eq. (3a) holds as well as Eqs. (5) and (12) and the fact 
that this limit implies the validity of lim Yu = + oo doesn't matter, as already stated. 

Summarizing the results attained, the practical procedure in the cut-set network 
analysis may be formulated in the following six steps: 

1. We orientate the network in the described manner, choose one of its trees 
containing all the voltage sources, number the network branches in a prescribed order 
and introduce a well oriented set of basic cut-sets.Then we form the matrix H. 

2. We construct the submatrices EJ? \vIJI and Y. Using Eq. (14) we calculate the 
submatrix ~\vII and by aid of Eq. (10) we obtain the matrix ~Y which we divide into 
submatrices ~Y0- (ij = 1, 2). 

3. We calculate the inverse ^ Y ^ 1 of the submatrix ~Y2 2 . 

4. From Eq. (17) we calculate the matrix U7/; then we form the matrix ~U 
according to Eq. (12). 

5. From Eq. (11) we calculate the matrix U. 

6. Matrix \ is determined as follows: 

(a) From Eq. (18) we calculate the submatrix of currents in the passive link 
branches I7/. 

(b) We introduce a well oriented completeN basic set of loops of the network [7]. 
We number the loops in the same order as the corresponding link branches. We set 
up the incidence matrix C'(m; n) whose rows and columns correspond to tree branches 
and independent loops, respectively. 

(c) The submatrix of tree-branch currents \j(m; 1) is then determined according to 
the relation 

\,{m; 1) 

hu 
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3. EXAMPLES OF USING THE CUT-SET MATRIX METHOD 

To illustrate the method just described we trace the execution of the analysis of two 
networks. 

I. Let us solve the network of Fig. 3. It was already oriented, a tree containing 
a voltage branch was chosen (in Fig. 3 this tree is indicated by heavy lines) and a set 

Fig. 3. Electric network without magnetic coup­
lings, analysed by the cut-set method (l = 8, 

m — 3, n = 5, p = 1, a = 2, r = 5). V _ ^ 7 

of well oriented basic cut-sets was introduced. The topological structure of the net­
work is characterized by the third incidence matrix 

H = 

1 

1 

1 

- 1 1 

1 - 1 

- 1 1 

1 - 1 

1 - 1 

Its physical structure is characterized by the matrices: 

(20) Y = diag[Y1 „ . . . , Y66,0] 
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where 

(21) 

and 

(22) 

We perform a transformation according to Eqs. (9) and (10) and divide the calculated 
matrices into submatrices according to Eqs. (14) and (15) and obtain 

/ JJJ -

hi 

'vIII 

I„8 

E/ = E i 

(23) 
-hi 

-I.,я 

(24) 
*2 2 + M 4 + *5 5 - ^ 5 5 

- ^ 5 5 У33 + ^5 5 + Уbв 

Y21 = 

-Y , 

-ғ«. 

Substituting into Eq. (17) we find 

(25) U r 

U, 

t/, 

The matrix 

u / = E; - £ , 

is known. Using Eqs. (4), (11) and (12) we find the voltages across the remaining 
branches of the network: 

(26) 
•-/ 

U/// — H7/ 

U, 
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The given network is very simple, so that each of the three cut-sets introduced 
separates from it the part containing only one node. Thus the cut-set method actually 
turns into the node voltage method. The solution of a more complex network will 
be shown in the following example. 

Fig. 4. Electric network without magnetic Fig. 5. Oriented graph of the network shown 
couplings, analysed by the cut-set method in Fig. 4 into which a well oriented set of 
(l = 9, m = 4, n = 5, p = 2, a = 1, r = 6). basic cut-sets has been introduced. 

II. Let us consider the network of Fig. 4. Fig. 5 shows its oriented graph with the 
indicated tree (by heavy lines) and with the introduced set of well oriented basic 
cut-sets. The third incidence matrix is 

(27) H 

1 

1 

1 

1 

1 - 1 

- 1 1 - 1 

- 1 1 - 1 

- 1 

1 - 1 1 

J(m) 

HrI(n; m) 
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Now we write the matrices 

(28) Y(9) = d i a g [ y n , y 2 2 , . . . , y 8 8 , 0 ] 

where Y{, = Y22 -» + oo 

(29) hm(ч\ 0 = /„ шd E y (p; l ) = 
Ei 

E, 

perform their transformation and divide them into submatrices. We obtain 

(30) \J(P;0 = 'Kn(m - p; 1) = 
-L 

'Y 2 2 (m - p) = 

^ЗЗ + ^55 + 

+ ^66 + ľ 7 7 

- Y S 6 - Y 66 J 7 7 

— y66 — -*77 

^44 + Пб + 

+ ł - 7 7 

* 5 5 ^ 6 6 - ľ 7 7 

У66 r77 

"Y2 1(m - p; p) = 

By substituting these matrices into Eq. (17) we calculate U / 7 . The matrix of the cut­

set voltages (i.e. the matrix of the voltages across the tree branches) is then 

(31) JU(m; 1) = 

- £ , 

- E , 
= 

~E2 

u„ 
= 

u3 

U4 
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From the equation ^U//7(?7; 1) = H 7 / ^U we then determine the voltages of the 
link branches. 

The branch voltage matrix of the given network is 

(32) U(/; I) = 
U 

u,„ 

4. GENERALIZATION OF THE CUT-SET MATRIX METHOD TO THE 
ANALYSIS OF NETWORKS WITH MAGNETIC COUPLINGS 

If the network to be analysed contains magnetic couplings the method described 
above cannot be applied directly. The reasons are the same as those concerning the 
nodal method [1]. We shall show how the cut-set matrix method may be generalized 
to be applicable to networks with mutual inductances. Thus we arrive at a method 
having an entirely general validity in the field of linear networks. 

The method is based on the validity of the superposition theorem. According to 
this theorem we can split the network solved into two partial networks, formulate 
for each of them the basic equations and then pass from these equations to the equa­
tion of the given network. By finding the solution of this equation we have substantial­
ly brought the analysis to its end. 

First we shall describe in detail how to establish the two partial networks. 

The first partial network is obtained by omitting all the branches containing in­
ductances with magnetic couplings. However, formally we shall continue to take 
account of these omitted branches, their admittances and magnetic couplings being, 
of course, equal to zero. The second partial network is constituted by the removed 
branches of the network (i.e. those containing magnetically coupled inductances); the 
remaining branches of the network (i.e. those without magnetically coupled induc­
tances) will be formally considered, their impedances will, of course, be infinitely 
large. 

Now we shall proceed to the mathematical application of the suggested ideas. Let 
the network contain several groups of magnetically coupled branches. We select 
a tree in such a way that all the voltage branches be in the tree branches and all the 
current branches in the link branches. Then we number the branches of the network. 
The numbering may be arbitrary but in order to maintain reference to the third 
chapter of this article and to facilitate numerical calculations we shall accept the 
convention adopted in the third chapter completing it by the order of numbering the 
branches with mutual inductances. The branches are numbered in the following 
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sequence: 

— voltage tree branches (their number is p) 
— passive tree branches without magnetic couplings (their number is rx) 
— passive tree branches with magnetic couplings (their number is r2) 
— passive link branches with magnetic couplings (their number is r3) 
— passive link branches without magnetic couplings (their number is r4) and 
— current link branches (their number is q). 

Now we split the network into the first and second partial networks. The quantities 
belonging to the first partial network are denoted by the index (1) and those of the 
second partial network by the index (2). 

If we apply the cut-set method to the first partial network then, with regard to 
Eq. (16), the cut-set matrix equation holds in the form 

(33) ~l<*> - ~Y<VE<1> + ~Y«>U<A> = ~ l<" 

This equation is a matrix representation of the generalized Kirchhoff's current law 
for m — p independent cut-sets belonging to the passive tree branches. On the left 
hand side of Eq. (33) we obtain (after multiplication) column matrices whose elements 
in the f-th rows are the sums of the currents in the current branches, the currents in 
the voltage branches and the currents in the passive branches, incident to the f-th 
cut-set (i = p+ 1, . . . , m). The submatrices ~Y!>1

1
) and ~Y^y are determined from 

matrix ~Y ( 1 ) obtained by transforming the matrix of branch admittances 

(34) Y(1)(l) = diag [Y l l 9 . . . , Yp+ri,p+ri, 0 - ^ 0 , 

r2+r3 

Yl-q-rA,l-q~r4' ' ' ' > Yl-q,l-q> 0, . . . , OJ 

where Yn -> +00 (i = 1, . . . , p). With regard to Eq. (10) the matrix ~Y ( 1 ) is deter­
mined from the transformation relation 

(35) ~Y (1) = <HY(1)H 

For the matrix of branch voltages of the second partial network U(2)(l), the 
equation 

(36) U ( 2 ) = Z ( 2 ) I ( 2 ) 

holds where Z(2)(l) denotes the symmetric matrix of branch impedances and l(2)(/; 1) 
the matrix of branch currents. With regard to the adopted method of numbering 
branches, matrix Z ( 2 ) may be expressed as a quasidiagonal one in the form 

(37) Z<2>(/) = diag [ Z n ( p + r,), Z2 2(r2 + r , ) , Z33(r4 + q)] 
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where Z n and Z 3 3 are diagonal submatrices and their elements are the values of 
branch impedances of the first partial network; these impedances assume infinitely 
large values. The submatrix Z 2 2 is symmetrical and its elements Ztj are the impedance 
values of the self-inductances (for i = j) and the mutual inductances (for i 4= j) of the 
second partial network. 

From Eq. (36) we express 

(38) I (2) = Y ( 2 )U ( 2 ) 

where Y(2) = Z ( 2 ) _ 1 is the matrix of branch admittances. With regard to Eq. (37) 
matrix Y(2) must be quasidiagonal too: 

(39) Y<2>(/) = diag [ Y u ( p + r . ) , Y22(r2 + r3), Y33(r4 + «)] 

The submatrices Y n = Z ^ / and Y3 3 == Z ^ 1 are both equal to zero — this can be 
proved as in the paper [1] — and the matrix Y22 = Z j / is symmetrical. Therefore 

(40) Y<2> = diag [0(p + r.) , Z 2 / ( r 2 + r3), 0(r4 + q)] 

For easier numerical inversion of the symmetric submatrix Z 2 2 (i.e. the calculation 
of Y22 = Z^ 1 ) , that is to say, for an easier calculation of the matrix Y(2), it is of 
advantage if the non-zero elements of matrix Z 2 2 are as close to the principal diagonal 
as possible. (Matrix Z 2 2 can then be expressed, by dividing it into further submatrices, 
as a quasidiagonal matrix; the inversion of this matrix is relatively easy.) This form 
of the matrix Z 2 2 can be attained if, when numbering the branches, we indicate the 
branches of each magnetically coupled branch group by successive numbers. By this 
we achieve that the order of the diagonal submatrices of the quasidiagonal matrix Z 2 2 

will be minimum; it is equal to the number of branches of the releveant group. If the 
network considered includes only groups of magnetically coupled branch pairs, then 
this technique enables us to achieve that all the diagonal submatrices of the matrix Z 2 2 

are only of the second order and thus their inversion is very easy. 
By using Eqs. (9), (38) and (11) we obtain the cut-set matrix equation expressing 

the application of Kirchhoff's current law to m independent cut-sets of the second 
partial network: 

(41) ~ I ( 2 ) = <HI(2) = rHY ( 2 )U ( 2 ) = 'HY ( 2 )H ~ U ( 2 ) 

Denoting 

(42) ~Y (2 ) = <HY(2)H 

we obtain the cut-set matrix equation for the second partial network: 

(43) ~ l ( 2 ) = ~Y (2) ~ U ( 2 ) 

The matrix ~ l ( 2 ) is a column matrix and the value of the element located in its i-th 
row is given by the currents in the branches with magnetic couplings, incident to the 
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i-th cut-set (i = 1, . . . , m). We are, however, not interested in all of the m independent 
cut-sets, but only in m — p of them belonging to the passive tree branches. Therefore, 
we express Eq. (43) in terms of partitioned matrices: 

(44) " | (2 ) 

-1(2) 
• I 

1(2) 

} ' 
m — p 

~ ү ( 2 ) 
1 11 

~ ү ( 2 ) 
1 12 

~ ү ( 2 ) 
1 21 

~ ү ( 2 ) 
1 22 m — p 

c(2) c í 

"l j (2) 
^ II 

l m — /; 

The voltage branches of the second partial network belong to the removed branches 
and we consider them only formally. Nevertheless we must take into account the 
voltages of these branches (the nodes of these branches may in fact be identical with 
those of the actual branches of the second partial network — and then we have to 
deal with the voltages between these nodes); let these voltages be the elements of 
a matrix denoted by — E/

2). Thus, for m — p independent cut-sets of the second partial 
network the cut-set equation 

(45) 
" ү ( 2 ) p ( 2 ) , ~ ү ( 2 ) ~ i j ( 2 ) _ ~ i (2) 

T 2 1 C I "+" T 2 2 U Л ~ lII 

holds. Now we pass from the two partial networks to the given network. Let the 
voltages of the voltage and passive tree branches be equal in both partial networks. 
Then it holds: 

(46) E ( 1 ) - E ( 2 ) - Er and U ( 1 ) 

u( 2 ) - u 

Therefore, we can interconnect the nodes of all mutually corresponding tree branches 

of both partial networks. Mathematically, this interconnection corresponds to 

summing the cut-set equations (33) and (45): 

Using Eq. (46) we obtain 

~|(D + ~|<2) = 0 

(47) "li-) _ ~ Y ( 1 ) E 4- ~ Y ( 1 ) U - ~ Y ( 2 ) 4- E 4- ~ Y ( 2 ) U 
lvII T 2 1 C J T- Í 2 2 , J I / T 2 1 "I" c / + T 2 2 W Í 

Thus we have arrived at the cut-set equation of the given network. On its left hand 
side there are (after multiplication) column matrices whose elements located in the 
i-th row are the currents in the current branches, the currents in the voltage branches, 
the currents in the passive branches without magnetic couplings and finally the 
currents in the passive branches with magnetic couplings incident to the i-th cut-set 
(i = p + 1 m). Rearranging and solving this cut-set equation we obtain the 
passive-branch voltage matrix of the given network: 

(48) u „ = (~ү<y + ~Y<V)- . [-~lй> + (~ү<v + ~Y2V) E/j 
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Now it will be easy to determine the voltages across the remaining branches of the 
network: since we know the voltages of the voltage branches, which are elements of 
the matrix — E7, we also know, by Eq. (12), the matrix ~U and so we determine from 
Eq. (11) the branch voltage matrix U of the given network. 

The currents in the link branches and then also the currents in the tree branches are 
determined in the same manner as for a network without magnetic couplings as 
described in the conclusion of Chapter 2. 

The procedure for the analysis of a network with magnetic couplings by the 
generalized cut-set method may again be divided into six steps. In comparison with 
the procedure shown at the end of the preceding chapter for networks without mag­
netic couplings the individual steps will be changed or supplemented as follows: 

1. In numbering the branches we obey a somewhat modified rule supplemented by 
an instruction for numbering branches with magnetic couplings. We see to it that 
successive numbers be assigned to every magnetically coupled branch group. (Thus 
we guarantee that the non-zero elements of matrix Z ( 2 ) will be as close to the principal 
diagonal as possible.) 

2. (a) We split the given network into two partial networks. We set up a diagonal 
matrix Y(1) for the first partial network and a quasidiagonal matrix Z ( 2 ) for the second 
partial network and perform the inversion Z ( 2 ) ~ l = Y(2). 

(b) Using Eqs. (35) and (42) we calculate the matrices ~Y ( 1 ) and ~Y ( 2 ) and divide 
them into the submatrices ~Y(

2V, ~Y2V, ~Y2
2), Y2

2
2\ 

3. We perform the inversion ( Y2V + Y ^ ) - 1 . 

4 . - 6 . These three steps are the same as those for the networks without magnetic 
couplings except that the submatrix is calculated according to Eq. (48). 

5. EXAMPLES OF AN APPLICATION OF THE GENERALIZED 
CUT-SET MATRIX METHOD 

To illustrate the generalized cut-set matrix method we shall describe the procedure 
to be followed in the analysis of two networks differing from those solved in Chap. 3 
in that there are inductive couplings between paris of some of their branches. 

I. Let us consider the network of Fig. 6. The orientation of the network, the choice 
of the tree and the introduction of a well oriented basic set of cut-sets is the same as 
in the preceding example so that the third incidence matrix H too, is expressed by 
Eq. (19). 

The network considered splits into two partial networks shown in Figs. 7 and 8. 

For the first partial network (Fig. 7) we find the branch admittance matrices by 
using Eq. (34): 

(49) Y"> = diag [Y ., Y12, 0, 0, Y55, Y66, 0, 0] 
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where Yn -> +co. The matrix \vni and the transformed matrix ~\VII are the same 
as in the preceding example — s£e Eqs. (21) and (23) and the matrix -=/ ) is analogous 
to Eq. (22): 

(50) E(1> - F 

Дvв Uv 

Fig. 6. Electric network with magnetic couplings Fig. 7. First partial network of the network 
analysed by the cut-set method (I = 8, m = 3, shown in Fig. 6. 
n= 5 , p = 1, r! = 1, r2 = 1, r3= 1, r4= 2). 

We transform the matrix Y ( 1 ) of Eq. (49) using the relation (10), and after dividing it 
into submatrices we find 

(51) ~ ү ( П _ 
1 22 — 

^22 + ^55 ~У 5 5 

- ^ 5 5 *5 5 + -456 

"ү(D _ 
1 22 — 

For the second partial network (Fig. 8) we find the branch admittance matrix by 
using Eq. (40): K 

(52) 

where 

ү(2) _ 1 22 

ү(2) = diag [0(2), Ү2 2(2), 0(4)] 

-T(2)-Í _ 
(53) ү(2) _ 1 22 

ïзэ Уъ. 

= diag [0(2), Ү2 2(2), 0(4)] 

-T(2)-Í _ 
z 
Z44 

z 
— Z 3 4 

(53) ү(2) _ 1 22 

^ 4 3 Y44 
7 7 — 72 

-^33^44 ^ 3 4 — Z43 Zзз 
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We transform the matrix Y ( 2 ) of Eq. (52) using the relation (10) and after dividing it 
into submatrices we find 

(54) "ү(2) 
1 22 

^ 4 4 Пз 

^ 3 4 ^зз 

"ү(2) _ 
f 21 — 

-Y, 44 

We substitute the matrices expressed by Eqs. (23), (50) (where we put E j n = E7), 
(51) and (54) into Eq. (48) and thus calculate the matrix of voltages across the passive 
branches UTI of the network considered. 

Fig. 8. Second partial network of the network Fig. 9. Electric network with magnetic coup-

shown in Fig. 6. lings analysed by the cut-set method (l = 9, 
m = 4, n = 5, p = 2, rl = 1, r2 = 1, r3 = 3, 

r4= l , a = 1). 

(D 

Fig. 10. Oriented graphs of both partial networks belonging to the network of Fig. 9; into each 
graph a well oriented set of basic cut-sets has been introduced. 
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II. Let us consider the network of Fig. 9. Its third incidence matrix H is given by 
the equation (27). We divide the network into two partial networks whose oriented 
graphs with indicated tree and with introduced complete set of well oriented basic 
cut-sets are shown in Fig. 10. 

For the first partial network we have 

(55) Y ( 1 ) = diag [Y n , Y22, Y33, 0, 0, 0, 0, Y88, 0] 

where Yn -> 4-co, Y22 -> + oo. In this case the submatrices l ()) 7, E ^ , ~l ( 1 ) , ^l ( /j . 
U/V, ~ U ( 1 ) , U ( 1 ) , ~Y2y and ~Y^\) are the same as those found in example II of Chap, 
3 if we substitute into them Y44 = Y55 = Y66 = Y77 = 0. 

For the second partial network we have 

(56) 

where 

and 

Z / - i 
— Ц 

Y<2> = diag [0, 0, 0, Y2

2\ 0, 0] 

V(2) _ -7(2)- l 
T 2 2 — *"22 

~zA 

-гг1 0 

0 ^•22 

Z " - 1 _ 
^ - 2 2 ~ 

1 

^ 6 6 ^ 7 7 - ^ 6 7 

z77 
~ Z 6 7 

- z 6 7 
Z 6 6 

Using Eq. (42) we calculate the matrix ~Y ( 2 ) and by its division into submatrices 
we find ~Y (y and ~Y(

2

2). It holds further: 

(57) CÍ2) _ C d ) _ C C I — C I — C I 

We substitute these values into Eq. (48) and calculate from it the matrix Uir. 
With regard to Eq. (12) we therefore know the matrix ~U: 

U 
E/ 

U f 

From Eq. (11) we then calculate the matrix U. 
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6. CONCLUSION 

The submitted article formulates a generalized cut-set method. The technique 
described is applicable to the analysis of linear networks which may contain ideal 
current sources together with ideal voltage sources and may also include magnetic 
couplings between their branches. In comparison with other methods of network 
analysis the generalized cut-set method is very advantageous. In numerical calculations 
connected with the analysis of a network in steady state we always meet the require­
ment to perform a matrix inversion; this is the most difficult computing operation 
whose complexity grows rapidly with the order of the matrix being inverted. Therefore 
the order of the matrix to be inverted may be considered as a rough criterion of the 
usefulness of the whole method. From this viewpoint it is therefore an important 
indication that this method requires to invert a matrix of the (m — p)-th order and if 
the given network includes magnetic couplings one must invert a further matrix of the 
(r 2 + 7*3)-th order; for a simpler arrangement of the magnetic couplings this matrix 
may be quasidiagonal which greatly facilitates its inversion. 

The formulation of the generalized cut-set method has been worked out in such 
a manner that it may be directly used as a basis of an algorithm suitable for writing 
a program for analysing the network on a digital computer. 

In this article we have confined ourselves to the formulation of a generalized cut-set 
method for the analysis of networks in steady state. However, it is apparent that this 
method may be used as a basis for the formulation of equations describing transient 
responses of networks. 

Acknowledgment. I wish to express my sincere thanks to Mr. V Kotlan, Mr. J. Kus 
and Mr. S. Racek for a very careful reading of the manuscript of this article. 
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S o u h r n 

ANALÝZA ELEKTRICKÝCH OBVODŮ ZOBECNĚNOU 
MATICOVOU METODOU ŘEZŮ 

D A N I E L M A Y E R 

V práci je zobecněna metoda řezů1) tak, aby ji bylo možno aplikovat na analýzu 
lineárních obvodů, jež obsahují ideální zdroje napětí a současně ideální zdroje 
proudu, přičemž mezi větvemi analyzovaného obvodu mohou být induktivní vazby. 
Metoda řezů vychází ze zobecněného prvního Kirchhoífova zákona. Při její formulaci 
se v některých podrobnostech citují zejména výsledky prací [1] a [2], v nichž autor 
provedl obdobné zobecnění metody uzlových napětí. 

Nejprve je provedeno zobecnění metody řezů pro případ, že analyzovaný obvod 
obsahuje oba typy zdrojů, ale mezi jeho větvemi nejsou induktivní vazby. Postupuje 
se tak, že se zvolí takový úplný strom, který obsahuje všechny napěťové větve, libo­
volné pasivní větve a žádné proudové větve řešeného obvodu. Vhodnou orientací 
a očíslováním větví obvodu docílíme, aby třetí incidenční matice H, jež popisuje 
topologickou strukturu obvodu, měla tvar vyjádřený rovnicí (l). Matice, které vystu­
pují v základních rovnicích obvodu vyjádříme jako matice rozdělené. Matici větvo­
vých napětí U určíme takto: podle rov. (17) vypočítáme její submatici U 7 / , jejíž 
prvky jsou napětími na pasivních větvích stromu. Submatici U / ? jejíž prvky jsou napětí 
ideálních napěťových zdrojů, vzhledem k rov. (5) známe a submatici U / / / ? jejíž 
prvky jsou napětí na nezávislých větvích, pak již snadno určíme podle rovnic (11) 
a (12). 

Matici větvových proudů I určíme takto: Submatici l/ 7, jejíž prvky vyjadřují proudy 
v pasivních nezávislých větvích, vypočítáme z rov. (18). Prvky submatice \ n i jsou 
hodnoty ideálních proudových zdrojů, tedy tato submatice je dána. Ze submatic \ n 
a hn P a k již snadno nalezneme submatici l/ ? jejímiž prvky jsou proudy ve větvích 
stromu. 

Zobecnění popisované metody na obvody se vzájemnými indukčnostmi je založeno 
na principu superpozice. Analyzovaný obvod se rozloží na dva dílčí obvody. Prvý 
dílčí obvod získáme tak, že z řešeného obvodu vypustíme všechny větve, které obsa­
hují indukčnosti s induktivními vazbami. Druhý dílčí obvod sestává právě z těchto 
větví. Pro prvý dílčí obvod lze na základě výše popsané metody snadno formulovat 
základní rovnici — tzv. maticovou rovnici řezů, rov. (33). Pro druhý dílčí obvod se 
vychází z Ohmová zákona, rov. (36), a výpočtem Y ( 2 ) = Z ( 2 )~" 1 se přechází na rov. 
(38), jež je analogická k rov. (33). Vhodným očíslováním větví lze docílit, že mati­
ce Z ( 2 ) je kvazidiagonální a tedy její inverze je snadná. S užitím principu superpozice 
přecházíme z rovnic obou dílčích obvodů na rovnici analyzovaného obvodu — rov. 

1 ) Místo označení „metoda řezů" (angl. „Cut-Set Method") se v české literatuře (např. [7]) 
používá též termín „metoda J křivek". 
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(47). Řešením této rovnice dostáváme submatici napětí pasivních větví stromu U J 7 , 
rov. (48). Ostatní submatice větvových napětí a proudů určíme pak již snadno. 

Aplikace odvozené zobecněné metody řezů je ilustrována čtyřmi příklady. V prvých 
dvou příkladech je naznačeno provedení analýzy obvodu bez vzájemných indukčností 
a v dalších dvou příkladech je naznačeno řešení obvodu s induktivně vázanými 
dvojicemi větví. 

Ukazuje se, že v porovnání s jinými metodami analýzy obvodů je popisovaná 
zobecněná metoda řezů velmi výhodná. V přeložené práci je tato metoda formulována 
pro analýzu obvodů v ustáleném stavu, lze ji však též použít při formulaci rovnic po­
pisujících přechodné jevy v obvodech. 

Authoťs address: Prof. Ing. Daniel Mayer, CSc, Katedra teoretické elektrotechniky, elektro­
technická fakulta VŠSE, Nejedlého sady 14, Plzeň. 
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