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ELECTRIC NETWORK ANALYSIS BY THE GENERALIZED
CUT-SET MATRIX METHOD

DANIEL MAYER

(Received April 28, 1970)

1. INTRODUCTION

The nodal analysis method makes certain difficulties when applied to networks
with mutual inductance branches. Further complications arise when the given network
contains branches with ideal voltage sources whose both nodes are independent
nodes of the network. A generalization of the nodal analysis being applicable to net-
works with magnetic couplings was des-
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Fig. 1. Three kinds of branches which may Fig. 2. Example: voltage source with internal
occur in the network being analysed. impedance as a series connection of voltage and
passive branch.

described in [2]. Another very effective method for the analysis of networks containing
both kinds of sources is a modified nodal analysis called the cut-set method. In
comparison with the nodal analysis this method has the advantage of greater simplici-
ty and clearness and especially the necessary numerical calculations are much simple
for certain networks. However, just as the nodal method, the basic version of the
cut-set method too, fails to work in case of networks including the magnetic coupling.
In this work we shall develop the articles [1] and [2] and generalize the cut-set
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method so as to make it applicable to linear networks which contain ideal voltage
sources together with ideal current sources and whose branches may be mutually
magnetically coupled in any manner.

In the following treatment we shall divide the branches of the given network in such
a way that each of them may be classified as one of the three kinds of branches, name-
ly, the branches containing only ideal voltage sources (Fig. 1a) — they will be called
“voltage branches”, further those containing only ideal current sources (Fig. 1b) —
we shall call them “current branches” and finally those containing only passive
elements (Fig. Ic) which will be called “passive branches”. For example, if a net-
work contains a voltage source which is not ideal (i.e. which has a non-zero internal
impedance), it must be considered as a voltage branch and a passive branch con-
nected in series (Fig. 2).

The cut-set method was introduced into the theory of electric network by Guille-
min [3] who followed the results from topology published by Whitney [4]. The
possibilities of a matrix formulation of the cut-set method were disclosed by Seshu
and Reed [5].

2. THE CUT-SET MATRIX ANALYSIS OF NETWORKS CONTAINING
VOLTAGE SOURCES AND CURRENT SOURCES

Let us first formulate the cut-set matrix method for the case when the network
includes ideal voltage and current sources but has no magnetic couplings between its
branches.

Let the network considered have k nodes, s separate parts and ! branches, con-
sisting of voltage branches, ¢ current branches and r passive branches (I = p +
+ g + r). The number of tree branches will be denoted by m (= k — s) and the
number of link branches by n (= I — m).

First we shall characterize the topological structure of the network. The graph
of the network considered is oriented as follows: the voltage and current branches
are oriented in agreement with the polarity of the voltage and current sources,
respectively (according to Fig. 1a, b) and the passive branches are oriented arbitrarily.
In the graph of the network we choose a tree containing all the voltage branches, no
current branches and an arbitrary number of passive branches’). If we assign to every
branch of this tree one “cut-set”?) incident to the respective tree branch, not

1y As we know (see e.g. [3]) there exists at least one such tree for any network having a physical
sense.

2) Let us explain the term ‘‘cut-set”. Into a connected network we introduce an arbitrary
continuous simply closed surface (in the case of planar networks it will be sufficient to introduce
any simply closed curve), incident at only one of its points to the network branches but to none of
the network nodes. From the geometric viewpoint this surface is a topological sphere (or, for
planar networks, a topological circle called the Jordan curve). Thus the introduction of a topo-
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incident to the respective tree branch, not incident to another branch of the tree but
possibly incident to any link branch?®), we obtain a set of m linearly independent
cut-sets which we shall call the ‘“basic set of cut-sets™. If all the tree branches are
oriented in such a sense that they are directed to the outside of the spatial area closed
by its corresponding cut-set, we obtain a cut-set called the “well oriented set of
basic cut-sets” (see [7]).

When numbering the network branches we shall proceed in the following order:

— voltage tree branches
— passive tree branches
— passive link branches and
— current link branches.

When numbering the cut-sets we number first the cut-sets belonging to the voltage
tree branches and then those belonging to the passive tree branches.

The oriented network graph numbered in this manner is algebraically represented
by the third incidence matrix (or cut-set matrix) H. This matrix, which describes the
topological structure of the network, is of the type (I; m) and expresses the incidence
of the branches and the cut-sets of the oriented graph of the network considered. The
rows of matrix H correspond to the graph branches and its columns to the cut-sets.
Its elements are: h;; = 41 if the oriented i-th branch is directed to the outside of
the j-th cut-set, or h;; = —1if the orientation of the i-th branch is opposite, or h;; = 0
if the i-th branch is not incident to the j-th cut-set. In the book [7] it was shown that
for a well oriented basic set of cut-sets the third incidence matrix H may be expressed
as a partitioned matrix consisting of a square submatrix H,(m) and a rectangular
submatrix Hy(n; m), the matrix H; being a unit matrix:

aan,
(1) H= =
H;; }” H;; }”

The physical structure of the network analysed is characterized as in the
logical sphere into an electric network is uniquely determined by the branches to which this
sphere is incident. A set of these branches is called the “‘cut-set”.

From the above definition of the cut-set it follows that if in a given connected network we
interrupt the branches of its cut-set the network will split into two separate parts. If any one of
these branches is connected again the network will be restored to a connected one.

3_) It is useful (but not necessary) to introduce the cut-sets in such a way that they be incident
to the relevant branches just once. The reason is that the equations of the network will thus be
formally simplified. If we assign to each tree branch just one cut-set, we can say that this cut-set
represents a set of a minimum number of branches whose interruption causes the network to split
into two separate parts.
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method of node voltages (see [1], [7]), i.e. by the diagonal matrix of branch admit-
tances

(2) Y(I) = diag [Y,y,..., Y]

and by the column matrix of branch current sources l,,(l; 1), by the column matrix of
branch voltages U(I; 1), by the column matrix of branch currents I(I; 1) and further-
more by the column matrix of branch voltage sources E(I; 1).

For the elements of the matrix of branch admittances, corresponding to the voltage
branches, there evidently holds

limY;;, = +o0 for i,...,p
and for its elements corresponding to the current branches we have
limY; =0 for i=1—-q+1,...,1

The elements of matrices U and I corresponding to voltage and current branches,
are given by the known values of the sources

(3a) U;,=—E; for i=1,...,p
and ’
(3b) I,=1, for i=I]—-q+1,...,1

In further applications it will be advantageous if we express the matrices 1,(/; 1),
U(1; 1), I(I; 1) and E(/; 1) as partitioned matrices:

“ m lJI )4 I

I,=| 0 }n»«q, U=|Uj, }m»—-—p’ =11, }nv—q’ E= 0 }nzap

L }‘7 Uy }” 19%%

“According to Egs. (3) it is evident that
(5) U =—-E and I =1,y

When analysing the network we know the matrices H, Y and the submatrices
1,;;rand E; and search for matrices U and I, more exactly, with regard to Eq. (5), only
for their submatrices Uy, U, I and 1. It will apparently suffice if we find the sub-
matrix U,; (whose elements are the voltages across the passive tree branches) or the sub-
matrix I;; (whose elements are the currents in the passive link branches). From these
submatrices it is then easy to find the remaining submatrices Uy and | (see e.g.

[6]. [7]. [8D)
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We start from the equation
(6) I=YU +1,

which follows from Ohm’s law and Kirchhoff’s current law. Now we use the general-
ized Kirchhoff’s current law according to which the sum of all the currents incident
to any cut-set of the network is identically equal to zero [7] In the matrix form it
may be expressed by the equation

(7) HI =0

Multiplying Eq. (6) by the matrix "H and using Eq. (7) we obtain the equation
(8) “1,=-"YTU
This so-called “‘cut-set matrix equation’ expresses the application of the generalized
Kirchhoff’s current law to the set of m cut-sets in the network considered. Matrices
“1,(m; 1) and " Y(m) are determined by the relations

9) “1(m; 1) = 'HI,
and
(10) “Y(m) = 'HYH

(the matrix ~Y is apparently a symmetric one) and the so-called “matrix of cut-set
voltages™ ~U(m; 1) is related to matrix U by a simple relation

(11) U=H"U

Since we have chosen a well oriented basic set of cut-sets, for which the third
incidence matrix H assumes the form given by Eq. (1), we have, according to Egs. (4)
and (5):

(12) “U = _EI }p

U, }mp

i.e. the cut-set voltages are the voltages across the corresponding tree branches.

If the network considered contains only current sources (q # 0) and no voltage
sources (p = 0) its analysis is comparatively easy: by solving the cut-set equation (8)
we determine the voltages across all the tree branches:

(13) U,=-"Y"'71,

Let us now investigate a more general case when the network contains voltage
sources in addition to current sources (p + 0, ¢ + 0). Again, we are interested in
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voltages across all the tree branches; it will apparently suffice to calculate the sub-
matrix Uy, from the cut-set equation (8). We divide the matrices "I, and " Y into the
corresponding submatrices

0 }n —q ~1,, }p
(14) 1, = 'H, |

v
! L }”

and

(15)

After a simple rearrangement we obtain
(16) ~|ou = NYZIEI - ~Yzzuu

which is a matrix representation of the generalized Kirchhoff’s current law applied
to m — p linearly independent cut-sets. From this equation we obtain

(17) Un = —~Y2_21(~|v11 - NYZIEI)

The element in the i-th row of the matrix ~1,,,(m — p; 1) = [ b,,;] is the sum of
currents on the current branches, incident to the i-th linearly independent cut-set
(i=p+1,..., m), the element in the i-th row of matrix Uy (m — p; 1) = [U,] is
represented by the voltage along the i-th passive branch (i =p + 1,.... m) and
finally the element in the i-th row of matrix E,(p; 1) = [E;] is the value of the source
voltage of the i-th voltage branch (i = I, ..., p).

Let us note that the elements Y, (i = 1, ..., p) given by Egs. (2) cannot appear in
the submatrices " Y,, and " Y, (this follows from the knowledge concerning the
values of elements of matrix ~ Y described in [7]), so that the fact that the voltage
sources considered are ideal (i.e. that lim Y;; = +o00) makes no difficulties in the
solution.

If we know the matrix ~ U, then using Eq. (11) we can easily determine the matrix U
whose elements are the voltages across all the remaining branches of the network
considered.

The currents in the link branches are given by the submatrices I;; and I,;;. With

regard to Eq. (5) the submatrix I;;, is known and the submatrix I, is calculated from
the relation

(18) I, = diag [Ym+ Lm+1s o0 Yl—q.l—q]
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If we know the currents in the link branches (they represent the elements of the
submatrices 1;; and 1;;;) we can casily determine (see e.g. [6], [7], [8]) the currents
in the tree branches (i.e. the submatrix I).

Note. At the beginning of this chapter we have expressed the assumption that the
network considered may contain both current sources and voltage sources, but later
we used Eq. (6) which holds if the network includes current sources only. Now we
shall show that this procedure does not lead to wrong results.

Let us admit that the network voltage sources are not ideal but have internal
impedances Z;; (i=1, ..., p). Then they can be replaced by equivalent current sources
and Eq. (6) is justified. Instead of Eq. (3a) it holds

I =Z,l; — E;

If we put lim Z;; = 0, then Eq. (3a) holds as well as Eqgs. (5) and (12) and the fact
that this limit implies the validity of lim Y;; = + oo doesn’t matter, as already stated.

Summarizing the results attained, the practical procedure in the cut-set network
analysis may be formulated in the following six steps:

1. We orientate the network in the described manner, choose one of its trees
containing all the voltage sources, number the network branches in a prescribed order
and introduce a well oriented set of basic cut-sets.Then we form the matrix H.

2. We construct the submatrices Ej, I,;;; and Y. Using Eq. (14) we calculate the
submatrix ~I,;; and by aid of Eq. (10) we obtain the matrix ~ Y which we divide into
submatrices " Y (i,j = 1,2).

3. We calculate the inverse ~ Y3, of the submatrix ~Y,,.

4. From Egq. (17) we calculate the matrix U,;; then we form the matrix ~ U
according to Eq. (12).

5. From Eq. (11) we calculate the matrix U.

6. Matrix I is determined as follows:

(a) From Eq. (18) we calculate the submatrix of currents in the passive link
branches I,;.

(b) We introduce a well oriented complete.basic set of loops of the network [7].
We number the loops in the same order as the corresponding link branches. We set
up the incidence matrix C’(m; n) whose rows and columns correspond to tree branches
and independent loops, respectively.

(c) The submatrix of tree-branch currents I;(m; 1) is then determined according to
the relation
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3. EXAMPLES OF USING THE CUT-SET MATRIX METHOD

To illustrate the method just described we trace the execution of the analysis of two
networks.

I. Let us solve the network of Fig. 3. It was already oriented, a tree containing
a voltage branch was chosen (in Fig. 3 this tree is indicated by heavy lines) and a set

Fig. 3. Electric network without magnetic coup-
lings, analysed by the cut-set method (/ = 8,
m=3,n=5p=1,q9=2,r=25).

of well oriented basic cut-sets was introduced. The topological structure of the net-
work is characterized by the third incidence matrix

1 2 3

1 1 r

2 1 [

37 1
H = -

5 1| -1

6| —1 1

71 |-

8 1 -1

Its physical structure is characterized by the matrices:
(20) Y = diag [Y,;, ... . Ye, 0]
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where

Iu7
(21) ’vIII = [/
Iv8

and

(22) E, = \:EZi

We perform a transformation according to Egs. (9) and (10) and divide the calculated
matrices into submatrices according to Eqs. (14) and (15) and obtain

(23)

24 Y, =

~Yis

Y33 + YSS + Y()(il _Y66

Substituting into Eq. (17) we find

(25) Uu =

|
U, = _EI\ _El‘

is known. Using Eqs. (4), (11) and (12) we find the voltages across the remaining
branches of the network:

The matrix

(26) UIII = Hu fffffff
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The given network is very simple, so that each of the three cut-sets introduced
separates from it the part containing only one node. Thus the cut-set method actually
turns into the node voltage method. The solution of a more complex network will
be shown in the following example.

Fig. 4. Electric network without magnetic  Fig. 5. Oriented graph of the network shown
couplings, analysed by the cut-set method in Fig. 4 into which a well oriented set of
(=9, m=4,n=35 p=2,qg=1, r=6). basic cut-sets has been introduced.

II. Let us consider the network of Fig. 4. Fig. 5 shows its oriented graph with the
indicated tree (by heavy lines) and with the introduced set of well oriented basic
cut-sets. The third incidence matrix is

1 2 3 4
1 1
2 1
3 1
\ 4 1 |
o S———— j(m)
(27) H=s5 1 -1 N
H,(n; m)
6| —1 1 —1
7 —1 1 —1
8 —1
9 1| —1 1
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Now we write the matrices
(28) Y(9) = diag [Y,y, Yss, ..., Ygg, 0]

where Y, = Y,, » 4+

(29) lvlll(q; ]) = : 11)9 |

n

and E/p;1)=|——
E;

perform their transformation and divide them into submatrices. We obtain

0 _109
(30) Li(p; ') = L(m — p; l) =
109 Iv9
Y3 + Y55 +
+ Y66 + Y77 Y66 Y77
Y, (im-p)=|{—— |
Yoo + Yoo +
Y. —_Y 44 66
66 77 Y,
|
Yss — Yoo I -Y;
~ |
Y, (m—pip)=|
Yoo Y,
|

By substituting these matrices into Eq. (17) we calculate U,,. The matrix of the cut-
set voltages (i.e. the matrix of the voltages across the tree branches) is then

_El

-E —E,

(1) NU(m; ==
U, | U,

Us
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From the equation ~U,,(n; 1) = H;,” U we then determine the voltages of the
link branches.

The branch voltage matrix of the given network is

(32) V) e —

4. GENERALIZATION OF THE CUT-SET MATRIX METHOD TO THE
ANALYSIS OF NETWORKS WITH MAGNETIC COUPLINGS

If the network to be analysed contains magnetic couplings the method described
above cannot be applied directly. The reasons are the same as those concerning the
nodal method [1]. We shall show how the cut-set matrix method may be generalized
to be applicable to networks with mutual inductances. Thus we arrive at a method
having an entirely general validity in the field of linear networks.

The method is based on the validity of the superposition theorem. According to
this theorem we can split the network solved into two partial networks, formulate
for each of them the basic equations and then pass from these equations to the equa-
tion of the given network. By finding the solution of this equation we have substantial-
ly brought the analysis to its end.

First we shall describe in detail how to establish the two partial networks.

The first partial network is obtained by omitting all the branches containing in-
ductances with magnetic couplings. However, formally we shall continue to take
account of these omitted branches, their admittances and magnetic couplings being,
of course, equal to zero. The second partial network is constituted by the removed
branches of the network (i.e. those containing magnetically coupled inductances); the
remaining branches of the network (i.e. those without magnetically coupled induc-
tances) will be formally considered, their impedances will, of course, be infinitely
large.

Now we shall proceed to the mathematical application of the suggested ideas. Let
the network contain several groups of magnetically coupled branches. We select
a tree in such a way that all the voltage branches be in the tree branches and all the
current branches in the link branches. Then we number the branches of the network.
The numbering may be arbitrary but in order to maintain reference to the third
chapter of this article and to facilitate numerical calculations we shall accept the
convention adopted in the third chapter completing it by the order of numbering the
branches with mutual inductances. The branches are numbered in the following

35



sequence:

— voltage tree branches (their number is p)

passive tree branches without magnetic couplings (their number is r,)
passive tree branches with magnetic couplings (their number is r,)

— passive link branches with magnetic couplings (their number is r;)

— passive link branches without magnetic couplings (their number is r,) and
— current link branches (their number is g).

|

Now we split the network into the first and second partial networks. The quantities
belonging to the first partial network are denoted by the index () and those of the
second partial network by the index .

If we apply the cut-set method to the first partial network then, with regard to
Eq. (16), the cut-set matrix equation holds in the form

~11) _ ~y(Ed ~y () _ ~
(33) 15y — TYSPE® + YU = T

This equation is a matrix representation of the generalized Kirchhoff’s current law
for m — p independent cut-sets belonging to the passive tree branches. On the left
hand side of Eq. (33) we obtain (after multiplication) column matrices whose elements
in the i-th rows are the sums of the currents in the current branches, the currents in
the voltage branches and the currents in the passive branches, incident to the i-th
cutset (i = p + 1,..., m). The submatrices ~ Y3 and ~Y{ are determined from
matrix ~ Y obtained by transforming the matrix of branch admittances

(34) YO(l) = diag [Yy1s ooy Yyrp pirs Os-n s 0,
e —
rptrs

A AN U
e —
q

where Y;; > +o0 (i = 1,..., p). With regard to Eq. (10) the matrix ~ Y is deter-
mined from the transformation relation

(35) TYD = (HYWH

For the matrix of branch voltages of the second partial network U)(J), the
equation

(36) U® = z@@

holds where Z(2)(I) denotes the symmetric matrix of branch impedances and 1*)(1; 1)
the matrix of branch currents. With regard to the adopted method of numbering
branches, matrix Z‘*’ may be expressed as a quasidiagonal one in the form

(37) Z)(l) = diag [Z1(p + r1)s Zoo(rz + 13)s Zas(ra + 9)]
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where Z; and Z;5 are diagonal submatrices and their elements are the values of
branch impedances of the first partial network; these impedances assume infinitely
large values. The submatrix Z,, is symmetrical and its elements Z;; are the impedance
values of the self-inductances (for i = j) and the mutual inductances (for i # j) of the
second partial network.

From Eq. (36) we express

(38) 12 = YOU®

where Y = Z®~1 i the matrix of branch admittances. With regard to Eq. (37)
matrix Y@ must be quasidiagonal too:

(39) Y(Z)(l) = diag [Yll(p + 7'1)7 Yzz("z + 7'3), Y33(l’4 + q)]

The submatrices Y,; = Z7;' and Y53 = Z3! are both equal to zero — this can be
proved as in the paper [1] — and the matrix Y,, = Z3;' is symmetrical. Therefore

(40) Y® = diag [0(p + ry), Z75(ry + 13), O(ry + q)]

For easier numerical inversion of the symmetric submatrix Z,, (i.e. the calculation
of Y,, = Z3}), that is to say, for an easier calculation of the matrix Y@, it is of
advantage if the non-zero elements of matrix Z,, are as close to the principal diagonal
as possible. (Matrix Z,, can then be expressed, by dividing it into further submatrices,
as a quasidiagonal matrix; the inversion of this matrix is relatively easy.) This form
of the matrix Z,, can be attained if, when numbering the branches, we indicate the
branches of each magnetically coupled branch group by successive numbers. By this
we achieve that the order of the diagonal submatrices of the quasidiagonal matrix Z,,
will be minimum; it is equal to the number of branches of the releveant group.If the
network considered includes only groups of magnetically coupled branch pairs, then
this technique enables us to achieve that all the diagonal submatrices of the matrix Z,,
are only of the second order and thus their inversion is very easy.

By using Egs. (9), (38) and (11) we obtain the cut-set matrix equation expressing
the application of Kirchhoff’s current law to m independent cut-sets of the second
partial network:

~2) D) — YO UR) — YO H U@
(41) I HI HY®U HY®H U
Denoting

(42) “Y® = 'HY®H

we obtain the cut-set matrix equation for the second partial network:
(43) 1@ = Ty Ty

The matrix ~ 1%’ is a column matrix and the value of the element located in its i-th
row is given by the currents in the branches with magnetic couplings, incident to the
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i-th cut-set (i = 1, ..., m). We are, however, not interested in all of the m independent
cut-sets, but only in m — p of them belonging to the passive tree branches. Therefore,
we express Eq. (43) in terms of partitioned matrices:

(44) T =

The voltage branches of the second partial network belong to the removed branches
and we consider them only formally. Nevertheless we must take into account the
voltages of these branches (the nodes of these branches may in fact be identical with
those of the actual branches of the second partial network — and then we have to
deal with the voltages between these nodes); let these voltages be the elements of
amatrix denoted by — E{®. Thus, for m — p independent cut-sets of the second partial
network the cut-set equation

(45) STYRER + YR TUR = I

holds. Now we pass from the two partial networks to the given network. Let the
voltages of the voltage and passive tree branches be equal in both partial networks.
Then it holds:

(46) E) = EY = E, and U{) = UD = U,

Therefore, we can interconnect the nodes of all mutually corresponding tree branches
of both partial networks. Mathematically, this interconnection corresponds to
summing the cut-set equations (33) and (45):

Using Eq. (46) we obtain
IO LTI 9
(47) TEY = YR + YU, - TYEY B+ YU, =0

Thus we have arrived at the cut-set equation of the given network. On its left hand
side there are (after multiplication) column matrices whose elements located in the
i-th row are the currents in the current branches, the currents in the voltage branches,
the currents in the passive branches without magnetic couplings and finally the
currents in the passive branches with magnetic couplings incident to the i-th cut-set
(i=p+1,...,m). Rearranging and solving this cut-set equation we obtain the
passive-branch voltage matrix of the given network:

(48) Uy = (T3 + 7Y [+ (YY) + TYR) Ef]
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Now it will be easy to determine the voltages across the remaining branches of the
network: since we know the voltages of the voltage branches, which are elements of
the matrix — E;, we also know, by Eq. (12), the matrix ~U and so we determine from
Eq. (11) the branch voltage matrix U of the given network.

The currents in the link branches and then also the currents in the tree branches are
determined in the same manner as for a network without magnetic couplings as
described in the conclusion of Chapter 2.

The procedure for the analysis of a network with magnetic couplings by the
generalized cut-set method may again be divided into six steps. In comparison with
the procedure shown at the end of the preceding chapter for networks without mag-
netic couplings the individual steps will be changed or supplemented as follows:

1. In numbering the branches we obey a somewhat modified rule supplemented by
an instruction for numbering branches with magnetic couplings. We see to it that
successive numbers be assigned to every magnetically coupled branch group. (Thus
we guarantee that the non-zero elements of matrix Z’ will be as close to the principal
diagonal as possible.)

2. (a) We split the given network into two partial networks. We set up a diagonal
matrix Y for the first partial network and a quasidiagonal matrix Z® for the second
partial network and perform the inversion Z 7! = Y,

(b) Using Egs. (35) and (42) we calculate the matrices ~ Y and ~Y® and divide
them into the submatrices ~ Y, TYSD), TYR) YR

3. We perform the inversion (" Y$) + TY)~ "

4.—6. These three steps are the same as those for the networks without magnetic
couplings except that the submatrix is calculated according to Eq. (48).

5. EXAMPLES OF AN APPLICATION OF THE GENERALIZED
CUT-SET MATRIX METHOD

To illustrate the generalized cut-set matrix method we shall describe the procedure
to be followed in the analysis of two networks differing from those solved in Chap. 3
in that there are inductive couplings between paris of some of their branches.

I. Let us consider the network of Fig. 6. The orientation of the network, the choice
of the tree and the introduction of a well oriented basic set of cut-sets is the same as
in the preceding example so that the third incidence matrix H too, is expressed by
Eq. (19).

The network considered splits into two partial networks shown in Figs. 7 and 8.

For the first partial network (Fig. 7) we find the branch admittance matrices by
using Eq. (34):

(49) Y = diag [Y, 1> Y12, 0,0, Y55, Yoo, O, 0]
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where Y;; — + 0. The matrix lyrrr and the transformed matrix ~lorr are the same
as in the preceding example — see Eqs. (21) and (23) and the matrix E{¥ is analogous
to Eq. (22):

0 = ’ﬂ

Fig. 6. Electric network with magnetic couplings  Fig. 7. First partial network of the network
analysed by the cut-set method (/ == 8, m = 3, shown in Fig. 6.
n=S5p=1Lri=1r=1ry3=1r,=2).

We transform the matrix Y of Eq. (49) using the relation (10), and after dividing it
into submatrices we find

’Yzz + Yss
(51) YL = .
—Yss ;Yss + Y66l

— YS 5 ! 0
v -

_‘Y66

For the second partial network (Fig. 8) we find the branch admittance matrix by

using Eq. (40): '
(52) Y@ = diag [0(2), Y,,(2), 0(4)]
where
o Y33 | Yiu o 1 Zas |—Z3s
53 Y3 = = Z®-1 =
) “ AV )
Y3 | Yau —Z43| Z3;s
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We transform the matrix Y® of Eq. (52) using the relation (10) and after dividing it
into submatrices we find

Yis | Yas
(54) NY(zzz) =

Y34- Y3 3

We substitute the matrices expressed by Egs. (23), (50) (where we put E{" = E,),
(51) and (54) into Eq. (48) and thus calculate the matrix of voltages across the passive
branches U;; of the network considered.

Fig. 8. Second partial network of the network  Fig. 9. Electric network with magnetic coup-

shown in Fig. 6. lings analysed by the cut-set method (/= 9,
m=4n=5p=2,r=1r,=1r3=73,
4= 1,q=1).

Fig. 10. Oriented graphs of both partial networks belonging to the network of Fig. 9; into each
graph a well oriented set of basic cut-sets has been introduced.
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I1. Let us consider the network of Fig. 9. Its third incidence matrix H is given by
the equation (27). We divide the network into two partial networks whose oriented
graphs with indicated tree and with introduced complete set of well oriented basic
cut-sets are shown in Fig. 10.

For the first partial network we have
(55) Y = diag [Y,,, Y33, Y33, 0, 0,0, 0, Ygg, 0]

where Y, » 400, Y;, = +00. In this case the submatrices 1¢}),, E{V, I, T1(0).
UL, Tu® u® TYD and YY) are the same as those found in example IT of Chap,

3 if we substitute into them Y, = Y55 = Y56 = Y77 = 0.

For the second partial network we have

(56) Y = diag [0, 0,0, Y, 0, 0]
where
zZ,;t 0 ’
Y-z -
0 | z;;!
and
! §
] ZSS _Z45 ] Z77 ‘—267
z,;1 = 75 - _ [
ZysZss — 72 ZsoZq — Z2
44455 45 _245 244 66477 67 —267:‘ 266

Using Eq. (42) we calculate the matrix ~ Y® and by its division into submatrices
we find TY{ and Y. It holds further:

(57) B - BV — E,

We substitute these values into Eq. (48) and calculate from it the matrix Uy,
With regard to Eq. (12) we therefore know the matrix ~U:

_EI

From Eq. (11) we then calculate the matrix U.
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6. CONCLUSION

The submitted article formulates a generalized cut-set method. The technique
described is applicable to the analysis of linear networks which may contain ideal
current sources together with ideal voltage sources and may also include magnetic
couplings between their branches. In comparison with other methods of network
analysis the generalized cut-set method is very advantageous. In numerical calculations
connected with the analysis of a network in steady state we always meet the require-
ment to perform a matrix inversion; this is the most difficult computing operation
whose complexity grows rapidly with the order of the matrix being inverted. Therefore
the order of the matrix to be inverted may be considered as a rough criterion of the
usefulness of the whole method. From this viewpoint it is therefore an important
indication that this method requires to invert a matrix of the (m — p)-th order and if
the given network includes magnetic couplings one must invert a further matrix of the
(ra + r3)-th order; for a simpler arrangement of the magnetic couplings this matrix
may be quasidiagonal which greatly facilitates its inversion.

The formulation of the generalized cut-set method has been worked out in such
a manner that it may be directly used as a basis of an algorithm suitable for writing
a program for analysing the network on a digital computer.

In this article we have confined ourselves to the formulation of a generalized cut-set
method for the analysis of networks in steady state. However, it is apparent that this
method may be used as a basis for the formulation of equations describing transient
responses of networks.

Acknowledgment. I wish to express my sincere thanks to Mr. J. Kotlan, Mr. J. Kis
and Mr. S. Racek for a very careful reading of the manuscript of this article.
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Souhrn

ANALYZA ELEKTRICKYCH OBVODU ZOBECNENOU
MATICOVOU METODOU REZU

DANIEL MAYER

V praci je zobecnéna metoda fezit') tak, aby ji bylo mozno aplikovat na analyzu
linearnich obvodu, jeZ obsahuji idealni zdroje napéti a soucasné idealni zdroje
proudu, pfi¢emz mezi vétvemi analyzovaného obvodu mohou byt induktivni vazby.
Metoda fezli vychazi ze zobecnéného prvniho Kirchhoffova zakona. P¥i jeji formulaci
se v n&kterych podrobnostech cituji zejména vysledky praci [1] a [2], v nichZ autor
provedl obdobné zobecnéni metody uzlovych napéti.

Nejprve je provedeno zobecnéni metody ezl pro piipad, Ze analyzovany obvod
obsahuje oba typy zdroja, ale mezi jeho vétvemi nejsou induktivni vazby. Postupuje
se tak, Ze se zvoli takovy Uplny strom, ktery obsahuje v8echny napétové vétve, libo-
volné pasivni vétve a Zadné proudové vétve feSeného obvodu. Vhodnou orientaci
a oCislovanim vétvi obvodu docilime, aby tfeti incidenéni matice H, jeZ popisuje
topologickou strukturu obvodu, méla tvar vyjadfeny rovnici (1) Matice, které vystu-
puji v zékladnich rovnicich obvodu vyjadfime jako matice rozdélené. Matici vétvo-
vych nap&ti U uréime takto: podle rov. (17) vypo&itame jeji submatici Uyy, jejiz
prvky jsou napétimi na pasivnich vétvich stromu. Submatici U, jejiZ prvky jsou napéti
idedlnich napéfovych zdrojt, vzhledem k rov. (5) zname a submatici Uy, jejiz
prvky jsou nap&ti na nezavislych vétvich, pak jiZ snadno uréime podle rovnic (11)
a (12).

Matici vétvovych proudt I uréime takto: Submatici I, jejiz prvky vyjadfuji proudy
v pasivnich nezavislych vétvich, vypoditame z rov. (18). Prvky submatice lj;; jsou
hodnoty ideélnich proudovych zdroji, tedy tato submatice je ddna. Ze submatic I,
a l;;; pak jiz snadno nalezneme submatici I}, jejimiZ prvky jsou proudy ve vétvich
stromu.

Zobecnéni popisované metody na obvody se vzijemnymi indukénostmi je zaloZeno
na principu superpozice. Analyzovany obvod se rozlozi na dva dil¢i obvody. Prvy
dil¢i obvod ziskame tak, Ze z feSeného obvodu vypustime vSechny vétve, které obsa-
huji induké&nosti s induktivnimi vazbami. Druhy diléi obvod sestava pravé z téchto
veétvi. Pro prvy dil¢i obvod 1ze na zakladé vyse popsané metody snadno formulovat
zakladni rovnici — tzv. maticovou rovnici fezu, rov. (33). Pro druhy diléi obvod se
vychazi z Ohmova zékona, rov. (36), a vypoctem Y?) = Z®~1 se pfechazi na rov.
(38), jeZ je analogick4 k rov. (33). Vhodnym od&islovanim vé&tvi lze docilit, Ze mati-
ce Z® je kvazidiagonalni a tedy jeji inverze je snadna. S uZitim principu superpozice
pfechazime z rovnic obou dil¢ich obvodi na rovnici analyzovaného obvodu — rov.

1y Misto oznadeni ,,metoda fez(*“ (angl. ,,Cut-Set Method*) se v Ceské literatute (napft. [7])
pouZiva téZ termin ,,metoda J kiivek‘.
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(47). Refenim této rovnice dostavame submatici napéti pasivnich vétvi stromu U,;,
rov. (48). Ostatni submatice vétvovych napéti a proudl urtime pak jiz snadno.

Aplikace odvozené zobecnéné metody Fezii je ilustrovana Styimi priklady. V prvych
dvou prikladech je naznaceno provedeni analyzy obvodu bez vzdjemnych indukénosti
a v dalSich dvou ptikladech je naznaCeno feSeni obvodu s induktivné vazanymi
dvojicemi vétvi.

Ukazuje se, Ze v porovnani s jinymi metodami analyzy obvodl je popisovana
zobecnénd metoda fezl velmi vyhodna. V pieloZené praci je tato metoda formulovana
pro analyzu obvodl v ustaleném stavu, lze ji vSak téZ pouzit pfi formulaci rovnic po-
pisujicich pfechodné jevy v obvodech.

Author’s address: Prof. Ing. Daniel Mayer, CSc., Katedra teoretické elektrotechniky, elektro-
technick4 fakulta VSSE, Nejedlého sady 14, Plze.
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