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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSL01 

ON THE BEHAVIOUR OF AN INTERMITTENTLY WORKING SYSTEM 
WITH THREE TYPES OF COMPONENTS 

A, K. GOVIL and SANTOSH KUMAR 

(Received May 13, 1969) 

INTRODUCTION 

Many situations exist where an equipment should always be in operational readi­
ness though it may be required to perform its mission intermittently. It means that 
such system though not in use, should remain in operable condition even in the idle 
state so that it may be recalled to perform its function as and when required. Consider 
for example a telephone exchange (Strowger System, 2000 type), which is required to 
operate intermittently, where the different components can broadly be classified as 
follows: 

(i) Break in line or blowing of main power supply fuse (connected in series) results 
in complete breakdown of the system as a whole. 

(ii) Faulty switches in racks result in a reduction of the efficiency though system 
continues to work. 

(iii) Failure of the ringing machine or any other fault in the circuit will cause automat­
ic switchover to anothe machine. 

Aggraval [1], Garg et. al [4], Prakash et. al [5] sutdied the behaviour of such an 
intermittently working system having one or two types of components. In all the 
above mentioned studies, no effort has been made to consider a realistic situation. 

In this paper, the behaviour of an intermittently working system having three 
classes of components (denoted hereafter as classes L l 9 L 2 & L 3 ) is considered. 
A mathematical model is developed to investigate the behaviour of this system under 
the following assumptions: 

Class L. (i) This class consists of N components connected in series, where 
failure of any one component results in complete breakdown of the 
system. 

(ii) Failure, waiting and repair times follow exponential distribution with 
means Af1, a-~\ and /xf1, respectively. 
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Class L2 (i) This class consists of M components where failure of any one com­
ponent brings the system to a reduced efficiency state. 

(ii) Failure and repair times follow exponential distribution with means 
XJ1 and fij1, respectively. 

Class L3 (i) This class consists of K identical components connected in stand-by 
redundancy, it means that K-l are the redundant components and the 
system fails only when all the K components of this class fail. 

(ii) Failure, waiting and repair times follow exponential distribution with 
means X"~\ a"~l and JI"~\ respectively. 

(iii) Switching over device is 100% efficient. 
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Figure 1. 
Difference-differential equations governing the behaviour of the system. 

The idle and recall times are assumed to follow exponential distribution with 
means a " 1 and P~\ respectively. 

It is assumed that the components of the three classes behave independently, i.e. 
the parameters of the classes L 1 ? L 2 and L 3 are unchanged by a non-disabling 
failure. 

In the end, a numerical example is solved to illustrate the method. 

A flow diagram connecting various states of the system is given in figure 1. 



Define 

P0 m(t) = the probability that at time t, the system is operating with m components 

of class L 3 and all the components of classes Lx and L 2 are in working 

order. 

^wism(0 = l n e probability that at time t, the system is waiting for repair due to the 

failure of /-th component of class L< and only m components of class L 3 

are in working order. 

Pr.$m(t) = the probability that at time t, the i-th component of class Lj is being 

repaired, m components of class L 3 being in working order. 

PR m(t) = the probability that at time t, the system is operating in reduced efficiency 

due to the failure of /-th component of class L 2 and m components of 

class L 3 are in working order. 

PWK(t) = the probability that at time t, the system is waiting for repair of all the K 

components of class L 3 . 

P7 m(t) = the probability that at time t, the system is in idle state and m components 

of class L 3 are in working order. 

PRjc(t) = the probability that at time t, all the K components of class L 3 are being 

repaired. 

It may be noted here that 

N M 

Л = £ Л ; , Л' = £Л,. 
; = i j = i 

and 1 _ m ^ K, in all above mentioned definitions. 

Using elementary probability considerations, we may get the following forward 

equations: 

(1) P0Jt + A) = P„Jt) [(1 - XA) (1 - X'A) (1 - aA) (l - X"A)] + 

+ Pjjt) pA + P0,m+1(t) X"A, m = l,2,...,K-l. 

(2) P0Jt + A) = PuJt) [(1 - XA) (1 - X'A) (I - aA) (1 - X"A)] + 

+ Pjjt) fiA , 

(3) PRjJt + A) = PRjm(t) [1 - ^ A ] + P0Jt) X)A , 

(4) PRK(t + A) = PRK(t) [1 - ti"A\ + PWK(t) a"A , 

(5) PWK(t + A) = PWK(t) [1 - a"A] + P0Jt) X'A , 

(6) PWiJt + A) = Pwtm(t) [1 - aJA] + P0Jt) XtA, m = 1, 2,. . ., K . 



(7) Pjjt + A) = Pj-Jt) [1 - J8A] + I PRjJt) »A + E PnJt) ^ + 
J = l i = l 

+ P0,ra(f)aA, m = 1,2, . . . , £ - 1., 
M AT 

(8) P/iK(( + A) = P/>K(0 [1 - j?A] + E P K„K(0 4 A + E ^ . .KO) M + 
; = i i = i 

+ P0,K(f) aA + P K K ( 0 /."A , 

(9) Pr,.,m(f + A) = PnJt) [1 - /.(A] + PWlJt) a.A, m=l,2,...,K. 

Equations (l) through (9) when A'-* 0 give 

(10) ["•£ + X + X' + X" + a ] P0Jt) = /? P/>m(0 + X" P0,m+1(t) , 

m = 1,2,....X - 1, 

(11) ["I + X + X' + X" + a ] P0Jt) = p Pjjt) , 

02) [jt+ri'j~\pRjJt) = X'jP0Jt), 

03) [ | + !*"] I^O) = " - " ^ 0 . 

04) g + «"]pwjE(t) =A'P8 f l(0. 

(15) T~ + a;] PW(>m(f) = A, P0Jt), m = 1, 2, ..., K , 

Vd 1 M N 

(16) - + p\ Pjjt) = X P*„m(t) H'j + E ^..-.(O A'i + « f0.ra(t) . 
L t̂ J /=i i=i 

(17) 

(18) 

m = 1,2, ...,K - 1 , 

+ /3 

+ ЏІ 

м N 

-,/.«<0 = E Ѓ* ,.-(') //; + E PnJt) rч +«-VЛO + pRк(t) n".. 
j = i ; = i 

PГi,m(ř) = a'ŕ PWl>m(0 , m = 1, 2,..., K - 1. 

Assuming that the system is operating in the state of normal efficiency initially so 
that P0fK{fy = 1 a n d other probabilities are zero. 

Let the Laplace Transform of the function f(t) be denoted by f(s) 

70) = e" s ' . / (ř)dř, R e ( s ) > 0 



Using initial conditions and taking Laplace Transformation of equations (10) 

through (18), we have 

(19) [s + X + X' + A" + a] P0Js) = fi Pjjs) + A" P0,w+1(s) , 

m = 1, 2,.. ., K — 1 , 

(20) [s + X + A' + A" + a] P0>K(s) = 1 + p Pj,K(s) , 

(21) [s + 4 ] PR j > m(s) = X) P0,m(s) , 

(22) [s + /i"] PK K(s) = a " P W K ( s ) , 

(23) [s + a"]P W K (s) =A"p- 0 > 1 (s), 

(24) [s + a';] PWi.m(s) = A; P0>m(s) , m - 1, 2, . . . , K , 

M N _ 

(25) [s + /?] PJ>m(s) = __ PR,>m(s) n) + X Pn > m(s) .a. + a P0,m(s) , 
j = i « = i 

m = 1, 2,. . . , K — 1, 

(26) [s + /?] P/>K(s) = __ P f i j > K(s) p; + __ P r i i _( s ) M, + a P0,K(s) + M" P«K(S) . 
j = i i = i 

(27) [s + nt] Pri,m(s) = aj PWi>m(s) , m = 1, 2,. . . , K - 1 . 

Using relations (21), (24) and (27) in (25), we get 

(28) (s + p) PI>m(s) = Ъ гт^гrтjA ' + o e ] 1 , - > ) 

+ 

[_j = i s + pij i=i s + juf s + a, 

Using relations (21), (22), (23), (24) and (27) in (26), we obtain 

(29) (s + fi) PIfK(s) -_ [ £ - A - A} + £ - ^ - ?!___ Af + J poJs) 

+ __.___riu.). 
s + JU" s + a" 

Making use of relations (28) and (29) in (19) and (20) respectively, we get 

(30) r . + _4,-__.__...__U£..j,-^.__.i + 

+ « + 
s + ß 

A"ІPo > m(s) = A ' P 0 > m + 1 ( s ) , 



(30 r .+iAji--J- .-a- .__i_ufAJi-- j - ._j iLi 
L í = 1 ( s + l3 s + Mi s + a'J , = i ( s + £ s + ju;j 

a + A"l P0Js) =i + - J ~ . -*—. • ̂ -j, V -U>) • 
s + p s + fji s + a 

+ 

s 

+ s + p 

In order to solve equations (30) and (31), we now introduce the following generating 
function: 

(32) G(e,s) = _]P0js)em. 
m = l 

Multiplying the relations (30) and (31) with the appropriate values of 0, and using 
(32) we have 

(33) (A - j \ G(e, s) = eK + s f r P„.,(s) - r P„,,(s). 

_r,+^j1____.___..___-i + 
L t=i ( s + j8 s + |ij s + a j 

+ I i ; . { i - - i - . ^ - l + ^ - a + r l 
. - i [ s + /_ s + n'j\ s + p J 

Where 

аnd 

в _ ß џ' 
s + p s + \i' s + a" 

Putting 9 = k"jA in relation (33) and solving it, we get 

Thus, we obtain 

(35) q,,I),^-(*r.-JL-
V ' V ; AK - (A")K,B A. - A" 

and 

(36) p ( ^Mt: 
V J °""V) AK-(ATi.' 

Using relation (36) in (21), (22), (23), (24), (27) and (28), we get the probacies of 
different states 

(37) p ( . )-• X'J (4r______ 

(37) F*U»)-a + ltyÁK_pfB' 



(38) *,.(») = 
s + a"' s + џ" ' Aк - (Гf B ' 

iţ (Ay-Ҷ-r 
ь <*; ' A K - (r 

1 (Å"f 

s + a"' Aк - (Гf B ' 

(39) P (s) = -А_ ( л Г Ҷ я Ţ -v J w U j s + «;' Aк-(rfв ' 

(40) Rwк(s) = 

(41) P' ( ^ J Ľ Ж . Ö Г , 
^ l Г r - m ^ s + a ; s + / i. л к - ( Я " Yß ' 

(42) 
AПt-í Ţ M u' N I] CĽ "1 (ľ'ìK~m 

FlÁs) = 7Tß L?i ľťй Я; +«?. sT^.' ľ+^;Яí + aJ A^~(řfЪ' 

Following Erdelyi [2], relations (36) through (42) may be inverted to obtain 
po,M PRj,M PRM P^,M Pn,M P w K (0 and PxJt). 

PARTICULAR CASES 

(a) Now, consider an intermittently working system consisting of two types of 

components with classes h1 and L 3 only, i.e. X'j = fij = a = p = 0. 

We have 
/ - "\K - m 

P M -= J U 
(A')K~m+i ' 

Where 
A' = (S + X + /l") . 

Similarly, probabilities corresponding to other states are obtainable from relations 

(21), (24), (25) and (27), respectively. 

(b) Consider an intermittently working system consisting of only one component 

of class L 3 and classes L x & L2. Here, puting K = m = 1 we obtain 

where 

,.,rs+£i,f1__±_.^L._jLi + 
L i = i t s + /x£ s + a£ s + //J 

+ Z.jji-JL..JLl + - £ - . + .-l. 
A 1 s + /J s + Ai}J ^ + /? J 

(c) An intermittently working system consisting of class Lx and only one com­
ponent of class L3, i.e. K = m = 1, X] = pi] = 0. 



We have 

Poл(s) 
1 

Where 

- 1 -[4Hl 

Ax - Å"B 

ß Џl 
s + ß s + Џi s + a'i) s + ß í s + ß J 

NUMERICAL EXAMPLE 

Substituting N = M = K = 1, X = a = p = ju£ = a', = /i) = a" = /*" = 1, A' = 3 
and A" = 2 in relation (36), we have 

-*.,(») 1 + 2s + s2 

which is of the form 

(43) 

(l+0-2s)(l + 13-4s)(l+0-4s) 

1 + as + bs2 

1 
(l + Г._)( l + T2s)( 1 + T3s) 

.01 

.06 

\ .05 

^.04 
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.02 
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i I I 
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TIME 

Fig. 2. 

Relation (43) gives 

(44) f{t) = b - aTl + r ' , e-'/ri 

+ 
ь - aт2 + т^ -t/T2 

W - r 2 ) (r, - T2) T2(T2 - Tx) (T2 - T3) 

b - AT_ + T? 
+ 

+ 

- - a T з + Гf _ . t / Г з > 0 š ř 

T3(T3-T1)(T3-T2) 

Substituting a = 2, _• = 1 and Tt = 0-2, T2 = 13-4, T, = 0-4 in (44), we get 

(45) PoA(t) = l-2e-5' + 007e-°-07' - 0-27e~2-5'. 



The values of P0l(t) as a function of time have been tabulated and plotted. These 
are given in table 1 and figure 2, respectively. 

Table 1. 

t 0 2 3 5 8 OO 

poл 1 59-1 X 10~ 3 56-5 X 10~ 3 49-3 X 10" 3 39-9 X 10~ 3 0 

It may be concluded that the reliability of such a system goes on decreasing with 
the passage of time. 

Further, using the above approach P0stn(t) can be tabulated for different values of K. 
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Souhrn 

O CHOVÁNÍ PŘERUŠOVANĚ PRACUJÍCÍHO SYSTÉMU 
S TŘEMI TYPY KOMPONENT 

A. K. GOVIL a SANTOSH KUMAR 

V článku se studuje chování přerušovaně pracujícího systému s třemi typy kom­
ponent včetně pojmů záložní přebytek a snížená výkonnost. Je vypracován matema­
tický model pro exponenciální rozložení selhání, čekacích časů a časů oprav a odvo­
zeny Laplaceovy transformace rozložení pravděpodobností odpovídající různým 
stavům systému. Jsou diskutovány některé zvláštní případy a uveden numerický 
příklad pro ilustraci metody. 
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