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SVAZEK 15 (1970) APLIKACE MATEMATIKY CIsLo 5

CRITICALITY CONDITIONS FOR A FINITE HOMOGENIZED NATURAL-
URANIUM FUELED REACTOR WITH PRESCRIBED THERMAL NEUTRON
FLUX

RoOSTISLAV ZEZULA
(Received July 15, 1969)

Let us consider a finite homogenized natural-uranium fueled reactor (with reflector)
whose core Q is described by means of two-group equations (in usual notation [1])

(1a) —div (D grad ®) + (2, + Z3) @

q
(1b) —div(rgrad q) + ¢ = kX}®

where D = D(x) e CP(Q), ©=1(x)e CP(Q), Xy = Zy(x) e C¥(Q) are given
functions, Q@ < R, is a given domain in the n-dimensional real Euclidean space
R,, n>1 and x = (xl, X2, .. X,) € Q is the radiusvector. The influence of the
reflector on the core is expressed by two given functions 9,(£2), 9,(£) on the boundary
Q of the core Q.
By introducing the following notation for the relative fuel concentration

2y _ oy
) M = M(x) = =7 = = Ny(x)

Iy Iy
and by eliminating the slowing-down density g = g(x) € C‘®)(Q) we obtain from
(1a), (1b), if 7 = 0, for the thermal neutron flux ¢ = ®(x) € C¥(R) the equation

) A(D 4) + Agrad D . grad ®) — ASS[(M + 1) 8] — 2 40 —

_gradt

grad [—D A® — grad D . grad ® + Z3(M + 1) &] —
~ Ngrad D. grad @) + L 55 [M(1 — K) + 1] @ = 0
T T
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where
© k = k(M)

is a given function of M = M(x), so that the equation (3) is nonlinear (quasilinear)
in M.

By means of the well known formulae we can transform the equation (3) into the
following one:

(%) {D A(49) + (3 grad D + D grad r) grad 49 +
T

+|:AD+lgradr.gradD—B—2fw(M+1)]Ad5+
T T

+ 2grad§—D—+£il—)—grad'c grad—qg+...+
X, T 0x; X4

. grad 6;45 +
0x,,

+ (2 grad oD + 1db grad r)
X, T 0x,

+ [grad AD — 12L(M + 1) grad T — 2(M + 1) grad 2§, — 224, grad (M + 1)]
T

.grad¢+&dt ﬂIs—grada—D-i- +a£gradg—D— +
T 0x, 0x4 0x, 0x,

+ 2{2?}1,[M(1 — k) + 1]— (M + 1) grad 7. grad 23, — (M + 1) <2} —
T

— grad (M + 1) (23, grad  + 27 grad 2},) — 123, A(M + 1)} =0
from which we obtain the implication
(6) ® = const # 0= {Z3,[M(l — k) + 1] — (M + 1) grad 7 grad 2}, —
— (M + 1)t 425, — grad (M + 1) (25, grad © + 27 grad X)) —
— 12y AM + 1)} =0.

This implication gives us the following necessary condition for the relative fuel
concentration M(x) producing a flat thermal neutron flux @ = const in the reactor
core 2

(1)  AM + gfad‘f+2gfad2M grad M + k(M)—1+gradr.grad2M+
T Zy T T P

AE‘,",] M+ <1 grad 7 grad X%, AE‘,’W)
T T 2 Xy
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and in case of the symmetry of the core Q we have for (7) the condition

(7a) dM(0) =0

which together with the boundary condition on the boundary Q of the core Q
(7) M(Q) = 9,(2)

determines (under physically plausible assumptions) for the given function 9,(Q) e
€ C(Q) uniquely the function M e C*(Q). We see also that under the usual conditions

(7¢) Y4 =const > 0, 7 = const >0

the equation (7) reduces to the well known nonlinear elliptic equation (Goertzel’s
equation [1])

(7d) AM + E(M—)_ﬁ] !

M—==0
T T

which together with the initial condition (7a) gives (in one-dimensional reactor
geometries) for M(0) = M, a nonlinear (quasilinear) Cauchy’s problem, investigated
(for one-dimensional geometries) in [1], [2], [3], [4], [5], [6]. Sufficient conditions
for the existence of a unique solution of linear and quasilinear elliptic boundary value
problems are given e.g., in [7]

Let us now suppose that this necessary condition for the thermal flux flattening
in a symmetric reactor core is fulfilled, i.e., that there is a relative fuel concentration
M(x) which is the unique solution of the Dirichlet’s problem (7), (7b) satisfying (7a).
Then it follows from the equation (5) and from the symmetry of the problem consid-
ered that the thermal neutron flux @ in the core with this relative fuel concentration
M(x) necessarily must obey the (evidently linear) biharmonic equation

D
(8) L(M) ¢ = {D A(4P) + (3 grad D 4+ — grad r) grad A® +
T
1 D
+ [AD + —gradt.grad D — — — Z4(M + 1)]41(15 +
T T
+ 2grad6—D + la—Dgradr grad-ag + ...+
0xy 7T 0xq X4
+ 2grad§2+1@gradt gradais +
ox, 7 0x, ox,

+ [grad AD — 1E}‘W(M + 1) grad © — 2(M + 1) grad X3, — 224, grad (M + 1)] .
T

D oD P
.grad<1>+&dr »a~grad—+...+?~grad§2 =0
T 0x;y 0xy X, ox,,

330



with the symmetry relations

(8a) do(0) =0, d¥o(0) =0
and with the boundary conditions (for given functions (Q) € C(Q), w(Q) e C(Q))
. . P .
(50 o@) = (@), | = ue)
o

where dn = en denotes an infinitesimal translation in the direction of the outer
normal 7, Hﬁn =1 to the interface Q between the core and reflector. Conversely,
from the relations (7), (7b) for M and (8), (8b) for @ it follows that the equation (5)
holds.

If we suppose that the Dirichlet’s boundary value problem (8), (8b) has on the
given Q for every y(Q)e C(Q), w(Q)e C(Q) the unique solution & = @(y, )
which satisfies (8a), then a sufficient condition for the flattening of the thermal
neutron flux & = &, = @,(0, ;) in the reactor core is given by the equations

) Y(Q) =0, o(Q) =&, =const > 0.

We shall show now that this sufficient flux-flattening condition together with the
reactor criticality condition determines the critical core Q¥.

Let us consider a two-parametrical system of symmetrical surfaces (with the
parameters Ny, Py)

(10) Q = O(No, Py)
whose elements Q(x,, ..., x,; No, P,) are given by the parametric formulae
(11) X; = XS, o0 Su-13Noy Po) (i=1,2,..,n), n>1.

Then we see that by the Dirichlet’s problem (7), (7b) there corresponds (for given
94(s1, ... Sy—13 No, Py)) to all values of the real parameters No, P, a unique value
M, = M(0) (where 0 is the center of symmetry of Q):

(12) M, = f(No, Po)
Let us make the following assumptions:

I) The two-parametrical system of symmetrical surfaces Q = Q(N,, P,) can be
chosen in such a way that solution M(xy, ..., x,; No, P,) of the Dirichlet’s problem
(7), (7b) fulfils for all Ny, P, the condition

(13) G1(51,-~, Su—1>No, Po) =
oM weeosSue13N0s Po)yeeos Xu(S1s-cvsSy—1: No,P
= [X1(51 Sp—1 0 o;n x(s, Sp—1 0 o] —92(s1,...,s,,_1;N0,P0)=

= g1(S1s . Su—13 No» Po) . Hy(Ng, Po)
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where the function g,(s,, ..., $,—1; No, P,) is bounded and is not identically zero:
(132) ‘gl(sl, wees Sn—1; No, P0)| S const, gy(sy, .., 5,—15 No, Po) £ 0
and 9,(2) e C(Q) is a given function on the boundary Q of the core Q.
II) The implicit “criticality condition”
(14) Hy(Noy, Po) = 0
can be explicitely solved in the variable N,
(15) No = hy(Py).

Then it follows from (13), (14), (15) that for the values N, = h,(P,) the criticality
condition

(16) OM[x,(S1s --vs Su=15 B3(Po)s Po)s -+ ey X(S15 -2 s Sy 13 B1(Po), Py)] _
on

= 92(31, v Sp—15 hl(PO)’ Po)

is fulfilled, so that
(16a) Q= Q[hy(Py), Po]

is a one-dimensional family of “possible critical shapes” of the reactor core and

(17) My(Po) = f[hy(Po), P]

is the corresponding maximal relative fuel concentration in this critical core.

If we denote by Mp, = M(xy, X, ..., X,; h1(Po), Po) the solution of the Dirichlet’s
problem (7), (7b) for a possible critical shape Q[h,(P,), Po] of the reactor core, and
by Py py = Pae(X1, .- .» X5 hy(Po), Po) the corresponding solution of the Dirichlet’s
problem

(18) L(Mp,) @ = 0, @{Q[h,(P,), Po]} = ®o = const

OB p[x1(S15 +- s Su15 B1(Po)s Po)s «-es Xu(S1s o Su—13 B1(Po), Po)] _
on
= Y{Q[hy(Po), Po]}

and if we make further assumptions:

(18a)

III) The one-parametrical system of possible critical surfaces Q= Q[h 1(Po), Po]
can be chosen in such a way that the function

Go(S1s «v s Su—13 hy(Py), Po) =

= aqu[xl(sl,u-, Sn-1§h1(Po), Po),.,.,x,,(s1,..., Sn—15 (Po) Po)]
on
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can be splitted into a product of two functions

(19) Gy(51s - e Sum15 1(Po), Po) = 9a(51, s Su1; Ry(Po), Po) Hay[hy(Py), Po]

where the function g,(sy, ..., s,— 15 h1(Py), Po) is bounded and not identically zero:

(192) |g2(s,, coes Sum13 hy(Py), Po)[ S const, ga(Sys .- Sp—15 By(Po), Po) £ 05
1V) the equation

(20) Hy[hy(Po), Po] = 0

has in the given interval P{" < P, < P{? the unique root P}

(20a) H,[hy(P§), P§] =0, Pse (PP, PPy ;

then we see that for the values of the parameters

(21) Py, N§ = hy(P3)

the thermal neutron flux @ = &* in the reactor core with the critical shape

(21a) Q = Q(Ng, PY)

fulfils evidently the sufficient conditions (9) for the flux flattening so that we have

22)

*
Dy = Pp(xy, ..., x,3 No, P3) = Do =const ; L(Mp,) Py =0; 9Py

=0.

N | G3(No*,Po%)

By the foregoing considerations we have proved the following

Theorem 1. Let us suppose that for the functions M(xy, ..., X,), D(xy, ..., X,)
the following conditions are fulfilled:

1. The domain Q of the functions M, ® is bounded by a two-parametrical sym-
metric boundary @ = Q(N,, P,) (given by the parametric formulae (11)), on which
four continuous real functions 9,(R), 9,(2), Y(Q), () are given.

2. There exists a function M = M(xl, «ves Xp3 No, Po) which is the unique solution
of the Dirichlet’s boundary value problem (7), (7b) on Q and satisfies the symmetry
condition (7a) and the assumptions 1), II).

3. The Dirichlet’s boundary value problem (8), (8b) has for this M and for every
¥(Q) e C(Q), (R) € C(R) a unique solution & = Dp(, ®) = B(x; Ny, Py, M, 1, ®)
in Q (and particularly the solution @y p, = Dp(Xy, ..., Xu3 hy(Py), Po) for Y(Q) =
= Y{Q[hy(Py), Po]}, ®(Q) = @, = const) which satisfies the symmetry conditions
(8a) and the assumptions 1II), TV).
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Then among the “possible critical shapes” Q = Q[h(P,), Po] of the reactor
core given by (16a) and depending on the real parameter P there is the critical
shape Q(N§, P5) given by (20a), (21) for which the function ®y = ®(x,, ..., X,;
N, Pb, Mp,.) fulfils the sufficient flattening conditions (22) for Mpy. = M(x, ...

o Xu3 N§, PO).

It can be directly seen that under the conditions (7(:) and under the usual further
condition

(23) D = const > 0

relation (8) for the thermal neutron flux @ reduces to the linear biharmonic equation
(23a)

L(M) @ = D A(49) — [9 orn(M 4 1)]Aq> 2t grad (M + 1) grad @ = 0
T

with the symmetry conditions (8a) and with the boundary value conditions (8b),
(or (9) for the flattened flux @ = @), which together with the simplified relations
(7d), (7a), (7b) for the relative fuel concentration distribution M can be solved evi-
dently in the same manner and under the same assumptions asin Theorem 1. However,
numerical solution will be much easier.

We shall consider now a problem induced by the equation (5) which is a far reaching
generalization of the problem of the thermal flux flattening: for the given thermal
neutron flux &(x,,...,x,) > 0 in the critical reactor core Q the distribution
M(xl, e x,,) of the fuel concentration is to be determined which induces this given
flux ®(x, ..., x,) and obeys the following boundary value conditions [2]

(24) M(Q) = 3,(2; 2(Q)),
(242) M 5,(0; 0(a)

where 3; = 3,(2; (Q)). §, = J,(Q, (Q)) are given continuous functions expressing
the influence of the reflector on the core. From the equation (5) it follows that the
function M(xy, ..., x,) in this case has to obey the following nonlinear elliptic equation
(in general nonhomogeneous):

2
(25) AM + ! grad © + £l grad X4, + il grad @ | grad M —
T Zy ()

i (1 — k(M) — igrad 7. grad 2§, — - AZ5 | —
T 2 z5

M

2 1 1
— ——grad 2y, .grad ® — —gradt.grad ® — -~ A®d\ M =
oxy, B ot £ @ }
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1 D
= ey {D A(4®) + (3 grad D + — grad ‘c) .grad A9 +
T

M

1 D
+ (AD + —-gradt grad D — — — Z“M>A<I> + [<2grad ob + 1ob grad r)
T

T 0x, 1 0x,
0P oD 10D
.grad — + .. 2 grad — + — e grad 7). grad (33 +
0x, ox, T 0x, 0x,

1
+ <grad AD — = X4, grad t — 2 grad Z&) .grad @ +
T

1 0 oPp 1
grad 7 . grad —~) — .. grad 7. grad @__ f_ig +
0x(/ 0x, 0x,/ 0x,

Z <1 — —grad 7. grad 2§, — o AZ;,) (D}

T 2y M

which under the usual conditions (7c), (23) assumes the simplified form (from which
we see that for @ for which its right-hand side vanishes identically it will be homo-
geneous)

(25a) AM + 2 grad @ . grad M — {1 [1 = k(M)] — 1 A(I)} M =
P T [¢]
! [D A(49) — <9 + 2;‘4) AP + fp{”i].
GZ“ T T

The equation (25) or (25a) for M(xy, ..., x,) together with the boundary value
condition (24) represents again a quasilinear Dirichlet’s problem which for ¢ =
= const obviously reduces to the Dirichlet’s problem (7),(7b) or (7d), (7b) respectively.
If we consider again the two-parametrical system of surfaces (10), (11), choose
a fixed extreme fuel concentration value M, in (12) and make the assumptions 1)
and I[) and a further assumption:

V) the equation (implied by (12))
(26) f[hi(Po), Po] = M,
has in the given interval P{" < Py, < P{? the unique root P3*:
(262) P3* = F(Mo) e (PG, Py, Ng* = hy(P5¥),
then we obtain by an analogous consideration as above
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Theorem 2.: Let us suppose that for the given thermal neutron flux 5(x1, ooy Xp) €
e C®)(Q) which satisfies the symmetry conditions (82) there exists a fuel concentr-
ation M(xy, ..., x,; B) € C?(Q) which obeys the following conditions:

1. The domain Q of the functions M, & is bounded by a two-parametrical sym-
metric boundary @ = Q(N,, Py) (given by the parametric formulae (11), so that
M = M(xy, ..., x,; B, Ny, Py)), on which two continuous functions §,(Q; (Q)),
3,(Q, $(Q)) are given.

2. The function M(xy, ..., X,; &, N,, P,) is the unique solution of the Dirichlet’s
boundary value problem (25) or (25a), (24), which assumes the fixed extreme fuel
concentration M, at the center of symmetry 0, satisfies the symmetry relations (7a)
and the assumptions I),II), V).

Then among the “possible critical shapes” @ = Q[h(P,), P,] of the reactor
core given by (16a) and depending on the real parameter P, there is a critical
shape Q(N§*, P3*) given by (26a) for which the fuel concentration M(xy, ..., X,;
@, N3*, P3*) induces in the reactor core Q the given thermal neutron flux &(x, ..., x,)

We have still to show under which assumptions in the both above mentioned
problems the usual two-group equations in the reflector A [1]

1 1
27 —Ad +—¢ =
( ) R LR R DRqR
1
(273) —AqR+—qR=0
TR

with the usual boundary conditions (expressing the continuity of the thermal and the
fast neutron fluxes and currents) on the interface © between the core Q and the
reflector A (where we have ®(Q) = w(Q), (00[on)s = Y(Q), M(Q) = J, and
(oM(@)on) = 5)

(29) Ba(6) + 2228

= o(Q) +

nig

= ¢(Q) Iy {Eg )i [l + M(Q)] + ‘Z\fﬂ} -

Zull + M(Q)] - a_an [div (D grad ®)]

|
(282)  gx(@) + 2 aq“
on

Q

_ (EZ)r div (D grad @) + g?
n

(62 s)A

and with the usual further conditions on the external face of the reflector

o) Q Q

(29) ¢R(/i) =0
(29a) qr(4) =0
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can be solved. Let us consider again a two-parametrical system of surfaces (with
the parameters S, Tp)

(30) A = A(So, To)
whose elements A(yy, ..., y,; So, Tp) are given by the parametric formulae
(31) Vi=yity, contiei380, Tp) (i=1,2,. ,n), n>1.

If we make the following assumptions:

VI) Both the Newton’s boundary value problems (27), (28) and (27a), (28a) have
unique solutions @} and g respectively on A.

VII) For these solutions the system of two boundary value conditions (29), (29a)
assumes the form

(32) D[ A(So, To)] = @(t1s -+ tae15 Sos To) H3(So, Tp) = 0
(322) arlA(So, To)] = Q(ty, .-, tu—13 So, To) Hu(So, To) = 0
where the coupled system of equations

(33) H3(So, To) =0, Hy(Sy, Tp) =0

has the unique solution S, = S§, Tp = Ty, i.e.,

(34) Hy(S5, To) =0, H,(Ss, 1) =0,

then there obviously holds the following

Theorem 3.: Under the assumptions VI), VII) there exists a unique outer surface
A = A(S§, Ty) of the reflector A of the reactor whose core Q has the prescribed
thermal neutron flux &(x), x € Q.

Remark 1. We see immediately that we can fulfil the assumptions (13), (19) or (32),
(32a) by putting e.g., 5y =8, = ... =S,_, =N, S, =Py or t; =1, = ... =
=t,_, =Sy, t,1 = Tp, respectively.

Remark 2. For numerical solution of the problem considered, one can use e.g.,
finite difference methods, or finite element methods.
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Souhrn

PODMINKY KRITICNOSTI PRO KONECNY HOMOGENIZOVANY
REAKTOR NA PRIRODNI URAN S PREDEPSANYM TOKEM TEPELNYCH
NEUTRONU

ROSTISLAV ZEZULA

V &dnku se matematicky formuluje (v dvougrupovém difuznim pfibliZeni a pro
vicerozmé&rné geometrie) ndsledujici problém z teorie jadernych reaktorti: Pro zadany
prabéh toku @ tepelnych neutront v aktivni zoné Q koneéného homogenizovaného
reaktoru uréit rozloZeni koncentrace paliva M(x) v , které tento tok @ vytvéii.
Jsou uddny podminky (zejména na tvar hranice Q jadra reaktoru Q resp. hranice A
jeho reflektoru A) postacujici pro existenci jediného feSeni tohoto problému, a zejména
téZ pro existenci jediného feSeni ve specidlnim pfipad€ vyrovnaného toku tepelnych
neutrontt @ = @, = konst v aktivni zon& Q reaktoru, ktery md prakticky vyznam,
nebot ddvd minimum kritické hmoty.

Author’s address: Dr. Rostislav Zezula, CSc., Matematicky ustav Karlovy university, Sokolovska
83, Praha 8 - Karlin.
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