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SVAZEK 14 (1969) APLIKACE MATEMATIKY CisLo ¢

LINEAR VISCOELASTICITY WITH COUPLE-STRESSES

MirosLAV HLAVACEK

(Received April 22, 1968)

INTRODUCTION

In this paper the linear isothermal quasi-static theory of homogeneous and isotropic
viscoelastic bodies with couple-stresses is established.

In [3] M. Misicu deals with constitutive equations for linear viscoelastic bodies
with couple-stresses. He presents both integral and differential form of these equ-
ations. In the second part of [3], using the complex variable method, only plane
problems are dealt with. M. E. GURTIN and E. STERNBERG present in [1] the mathe-
matical theory of linear viscoelastic bodies (without couple-stresses) which is based
on systematic employment of Stieltjes convolutions. Stress and strain histories dis-
continuous at time ¢ = 0 are admitted.

Following the conception of [1] we present the couple-stress theory with con-
strained rotations for linear viscoelastic bodies. In Section 1 some auxiliary definitions
and theorems needed in the subsequent analysis are given. They are mostly taken
from [1]. Section 2 deals with the linear hereditary laws between stress tensors
and strain tensors. The general representations of these laws are presented for
anisotropic and isotropic bodies. Stress tensors and strain tensors are assumed to be
in HM'N je. discontinuities at time t = 0 are admitted. The hereditary laws are
formulated not only in an integral form but also in a differential form. In Section 3
the definitions of the elastic state and of the viscoelastic state are presented. The
displacement equation of equilibrium is derived. Section 4 is devoted to setting
the mixed boundary-value problem and proving its uniqueness. The behaviour
of material at time ¢t = 0 is examined. At t = 0 it is possible to compute directly
all initial time derivatives of the field quantities of a sufficiently smooth viscoelastic
state by solving certain mixed boundary-value problems for a certain elastic body
with couple-stresses. Section 5 presents the generalization of Betti’s theorem to
viscoelastic bodies with couple-stresses. Section 6 deals with the integration of the
displacement equation of equilibrium with help of stress functions. The generaliza-
tions of the Galerkin and Papkovich solutions are obtained.
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1. AUXILIARY DEFINITIONS AND THEOREMS

The theorems and definitions of this section are mostly taken from [1], where
these theorems are proved.

Definition 1.1. Function in C" on (a, b). Let f(t) be a real-valued function defined
on (a, b). Denote

FO(t) = d’ f (‘)

where n is a non-negative integer. If f®(z) are continuous on (a, b) for each n =
= 1,2,..., N, we say that f() is in C" on (a, b), i.e. fe CV.

Definition 1.2. Functions in C" on [a, b]. Let a real-valued function f(t) be in C¥
on (a, b) and be continuous in a from the right, in b from the left. Let the limits

lim f®(¢), lim f®(2)
t=a+ t=b—

(which exist because of fe C¥ on (a, b)) be finite. Then we say that f(¢) is in CV
on [a, b].
Similarly it is possible to define f(t) in CV on [a, b) or (a, b].

Definition 1.3. Functions in H". Let f(t) be a real-valued function defined on
(— o0, 0) and let

(1) f=0 on (—o0,0)
(2) feC" on [0, ).
Then we say that f(¢) is in H".

Now we consider the three-dimensional Euclidean space E; and let x; (i = 1, 2, 3)
be the Cartesian coordinates of the point whose radius-vector is x. In the sequel
let R denote an open bounded region in E; the boundary of which consists of a finite
number of smooth surfaces. R denotes the closure of R in E;. R x (a, b) stands
for the Cartesian product of R and (a, b).

Definition 1.4. Functions in C" on R. Let f(x) be a real-valued function defined
on R. Let

el = g

0x; 0x; .
n
exist and be continuous on R for n = 1,2, ..., N. Then we say that f(x) e C¥ on R.
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Definition 1.5. Functions in CV on R. Let f(x)e C" on R. Let f,;;...4(x), n =

[Shi—
= 1,2,..., N, be continuously extendible to R. Then we say that f(x) e C¥ on R.

Definition 1.6. Functions in H*'" on R x (—o0, o). Let f(x, ) be a real-valued
function defined on R x (—o0, o) and f = 0 on R x (—o0, 0). Let

amr(x, 1)
0x; 0x;j ... 0%,

N e
m

= (% 1)

exist, be continuous on R x (0, c0) and continuously extendible to R x [0, o)
for m=0,1,..,M, n=0,1,...,N. Then we say that f(x,r)e H*" on R x
x (=00, o).

Definition 1.7. Functions in H"" on R x (—o0, o). Let f(x,t) be defined
on R x (— o0, o) and bein HN on R x (—o0, o) and let f§) , forn = 1,2, ...
e —

...N, m =1,2,...,M be continuously extendible to R x [0, o). Then we say
that f(x, 1) e H¥"" on R x (— o0, o).

Definition 1.8. Stieltjes convolution. Let ¢ and ¥ be functions defined on [0, o)
and (— oo, ), respectively and let the Rieman-Stieltjes integral

) = [ "ol - ) v

exist for all ¢ in (— o0, o). Then the function $ defined by this integral on (— oo, o)
is the Stieltjes convolution of ¢ and . We write '

3=q@=xdy.

Theorem 1.1. Properties of the Stieltjes convolution. Let ¢ € H°, y and w e H'.
Then

(@) pxdyeH®, Yy xdweH",

(b) +dy = ¢ xdo,

(¢) @*d(y xdw) = (¢ *dy) *dw = ¢ *dy *x dw ,

(d) *d(y + 0) = o*dy + ¢ *xdw,

() o xdy =0 implies ¢ =0 or Yy =0,

(f) @ *dy = y(0) o(t) + [oe(t — 7)Yy *(r)dr on [0, ).
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Theorem 1.2. The Stieltjes inverse. Let ¢ € H'. Then there exists at most one
function Y € H' such that

p*dy =0 on (—o0,0),
pxdy =1 on [0, ).

If this \ exists, it is said to be the Stieltjes inverse of ¢ and we write Yy = @~ '.
If pe H', «, Be H®, then oo x dp = B implies a = B dp ™" (if ™" exists).

Theorem 1.3. Existence of the Stieltjes inverse. If ¢ € H?, then the necessary
and sufficient condition that ¢~ ! exist is

0(0) 0.

Theorem 1.4. Let 9 € H"°, y e H"*! on R x (— o0, ) and
: 9=¢*dy on R x (—o0, ).
Then $€ H"° on R x (— o0, ) and
Sx, ) =@ ;*dy + ¢xdy; on R x (—o0, ).
In particular, if Y(t) e H' (i.e. { is independent of the position) then
9(x,1)=¢;*dy on R x (—o0, ).
The theorem stays true if R is replaced by R.

Now we come to tensor functions. Tensors are denoted by letters set in boldface.
If u is a tensor of order n, we write u;; , for the components of u, where indices
e —

i,Jj, ..., kare assumed to range over the integers 1, 2, 3. Summation over two repeated
indices is assumed and a comma denotes differentiation with respect to the cor-
responding Cartesian coordinate. Only orthogonal transformations of coordinates
are taken into account. We say that a tensor function u(x, ) defined on R x (— o0, 00)
is continuous at a point (x, t), if u;; , are continuous at the point (x, 7). It is pos-
sible to extend all the definitions and theorems given above to tensor-valued func-
tions. We only replace for example f(t), f(x, t), f™(1), fG). . by uy(t), u,(x, 1),
o0(1), v w(x. 1), (p,q = 1,2, 3), respectively. For Cartesian coordinates and
orthogonal transformations, uf,';),ij_”,( are components of a tensor of the (m + 2)-nd
order. T

Definition 1.9. Admissible tensor functions. We say that a tensor function a(x, t)
is admissible if it is continuous on (— o0, o) for each x € R and if

a(x,1) =0

for each xe R and t € (— o0, 0).
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Definition 1.10. Linear hereditary operator. A transformation L that associates
with every admissible tensor function b(x, t) a tensor function a(x, t)

(1.1) a=1Lb

is called a linear hereditary operator, if it has the following properties:
Let b’ and b” be arbitrary admissible tensor functions and let
a =1Lb, a" =Lb".

Then there is for every x € R:
(1) for every pair of real numbers 1’ and 1"

L(A/bl + l”b//) — A/Lbl + lll'_bll
(2) for every fixed A the relation

b’(x,t) = b'(x,t — 1) forall te(—o0, )"
implies .
a'(x,t) = a'(x,t — 2) forall te(—o0, )

(3) for every fixed ¢, b’ = b” on (— oo, t] implies @’ = a@” on (— oo, 1]
(4) for every fixed t and every « > 0 there exists 9,(«) > 0 such that the inequality
|674(7)| < 9(«) holding for all 7 e (— oo, ] implies

lai(t)] <o (i,j=1,2,3).

Theorem 1.5. A linear hereditary operator maps admissible tensors into admis-
sible ones again.

. Theorem 1.6. Corresponding to every linear hereditary operator L there exists
one and only one tensor G(t) of the fourth order defined on (— o, o) with the fol-
lowing properties:

(1) G(t) =0 on (—x,0),

(2) G(¢) is of bounded variation on every closed submterval of(—oo ),

(3) G(¢t) is continuous from the right on (— o0, ),

(4) for every pair of admissible functions a;fx, t) bi(x, 1) satisfying (1.1)
there holds

(1.2) a;; = by *dGy, .

Conversely, every tensor-valued function G(r) of the fourth order defined on(— oo, o)
and having properties (1)—(3) generates by (1.2) a linear hereditary operator
between a and b in the sense of Definition 1.10.
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SRRV B 2. STRESS-STRAIN RELATIONS
.

If we consider couple-stresses, the state of stress at a point is characterized by the
asymmetric stress tensor t and the couple-stress tensor u (see for example [2]).
The equations of statical equilibrium take the form (see for example [4])

(2.1) T+ Fi=0,
”ji,j + eijijk + Ci =0.

Here F and C are the body force vector and the body couple vector per unit volume,
respectively. &, stands for the usual alternator. Equations (2.1) can be rewritten
in the form
(22) amn,m - %Eimn(ﬂjpi,jm + Ci,m) + Fn = 0 1)

Ty = —%'simn(.ukk,i + H?i,j + Ci)'
g;; and r?j denote the symmetrical and the antisymmetric part of 7;;, respectively.
iy stands for the deviator of p;;.

In the couple-stress theory with constrained rotations the state of deformation
at a point is characterized by the classical symmetric strain tensor

(2.3) o ey = Hui; + uy,)

and by the deviator

(2-4) Hij = Fejally ki

where u; are the components of the displacement vector. If w; is the rotation vector
w; = '%Ejkzul,k

then

Ky = W;

ij Jii

For viscoelastic bodies we assume a quasi-static state, i.e. we neglect inertial
forces in the dynamical equations and therefore in this theory we take into account
equations (2.1) or (2.2). All vectors and tensors in (2.1)—(2.4) are assumed to be
functions of position and time.

Now we derive compatibility conditions for ¢ and .

Theorem 2.1. Compatibility conditions.

(1) Let R be a simply connected region and let x € H°, e € H*° on R x (— o0, o)
and let

(2'5) o : & ikEmmi€ii, jn = 0,
(2.6) Kij = ~EikiCik,1
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hold on R x (—oo, o). Then there exists a vector ue H*® on R x (+ o0, o)
such that (2.3) and (2.4) are satisfied on R x (—oco, oo) The vector .u is given

by the line integral
)

(2.7) uyx, t) = (j;x [ei(& 1) + (xc — &) {eul& 1) — ey & 1)} dE;

where the line integral is taken along a smooth curve in Rjoiﬁing X, bnd x.
(2) Let ue H*® on R x (— o0, ) and let (2.3), (2.4) define ¢;; and »;;on R x
x (— o0, ). Then (2.5), (2.6) are satisfied on R x (— oo, o). SR

Proof. (1) If e;; satisfy (2.5), the expression in (2.7) under the integral sign.is a total
differential and therefore u; is independent of the integral path. If we substitute u;
from (2.7) into (2.3), we have an identity. Using (2.6), (2.3) we obtain (2.4).

(2) Let ue H*° and let (2.3), (2.4) be satisfied on R x (— o0, o). Then
EijkEmniCkl jn = €ijkEmni - %(“k,zjn + “t,kjn) =0,
— &ty = —E - S + Uin) = St = % -

Hence, (2.3), (2.4) yield (2.5), (2.6) if ue H*>° on R x (— o0, o).
REMARK. If (2.5) holds, (2.6) is equivalent to the equation

(2.8) & iHim; = 0.

Therefore it is possible to replace (2.6) by (2.8). The equatlons (2. 5) (2.6) or (2.5),
(2. 8) are called the compatibility equations.

In the theory of elastic bodies with couple-stresses and with constrained rotations
the first invariant g, of u is indetermined. To avoid this indeterminacy we put
formally

(2‘9) Ky = 0, i.e. Hij = H?j .

To formulate constitutive equations for viscoelastic bodies we suppose: that there
is a certain linear functional dependence between stress tensors o, ﬂ and strain
tensors ¢, » in the following form P :

(2.10) . 6=Le+ Lx,

(2.11) =1L+ Lix N
! [ :

where L; (i = 1,2, 3, 4) are linear hereditary operators in the sense of Definition 1.10.
For a homogeneous material, L; do not depend on x. According to Theorem 1.6
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there exist tensors: Gj(t), Myu(t), Niju(t), H;j,(f) which have properties (1)—(3)
of Theorem 1.6 and such that (2.10), (2.11) can be rewritten in the form

(2.12) 0i; = & * dGyjy + 2 * dM
(2.13) ‘ Hij = & * ANy + 2 % dH e -

Further we will deal with isotropic homogeneous bodies only.

Theorem 2.2. For an isotropic material, to every linear hereditary operators
L, (i =1,2,3,4) in (2.10), (2.11) there exist real-valued functions G(t), Gz(t),
H,(t), Hy(t) defined on (— oo, o) with properties

(1) G(t) = G5(t) = H,(t) = Hy(t) = 0 on (—0,0), G(1), H{t) (i =1,2) are
continuous from the right and are of bounded variation in every closed subinterval
of (o, ©);

(2) for every pair of admissible tensors o,j, &; and p;j, x%;; for which (2.10),
(2.11) hold there is

(2.14) U?j = EZ *dGy, o =gy *xdG,,
(2'15) Hij = n;*dH; + %+ dH,

where the index D denotes the deviator.

Proof. For isotropic materials Gj(t), M j,(t), Nijp(f) and H;j,(f) are isotropic
tensors. %;; and y;; are defined as axial tensors, but ¢;; and o;; are absolute tensors.
We see from (2.12), (2.13) that M,;,(t) and N;,(t) must be axial, as well. Therefore,
we have

M;t) = Nij(f) =0 on (—oo, 00).

The statement of this theorem concerning G4(t), G(t) was proved in [1], Theorem 2.5.
It remains to prove (1) and (2) of this theorem only for H,(t), H(t).

As H,;,(t) is an isotropic tensor we may write
(2-16) Hijkl(t) = Hl(t) 5ik5jl + Hz(t) 5”5]‘]( + H3(t) 5ij6kl
where H(t) (i = 1,2, 3) are real-valued functions defined on (— 0, 00). Property (1)
of the theorem follows from properties (1)—(3) of Theorem 1.6. Property (2) of the
theorem follows in this way: Using (2.16) we write

pif(x, 1) = J

t

. t
a(X, t — ) dH (7)) = .[ (X, t — 1) 0y, dH,(7) +

— 0 -

t

t
+ j wa(X, t — 1) 6,8, dH (1) + J (X, t — 1) 8,0, dH (1) =

— 00

= x;;*dH, + %;;*dH,

482



because

Mgy = %3 = 0.

Next we shall not restrict ourselves to admissible tensors, but we shall assume that
¢, 6, %, u belong to HY (for fixed x), i.e. these tensors can be discontinuous at ¢t = 0.
The next two theorems deal with the inverse forms of (2.14), (2.15).

Theorem 2.3. Let G(), G,(t) € H?, G,(0) # 0, G,(0) + 0. Then
(1) for every a € H® there exists one and only one & € H® such that (2.14) holds,
(2) if e H® and if (2.14) holds, then as well

D _ D -1 _ -1
g; =0y *dGy ", &y = 0y *xdG,

where G, G, ! denote the Stieltjes inverse of G, G,, respectively.
To prove Theorem 2.3, see the proof of Theorem 3.3 in [1].

Theorem 2.4. Let H,(t), H,(t)e H?, H,(0) + H,(0) + 0, H,(0) — H,(0) = 0.
Then

(1) for every pe H° there exists one and only one x € H® that (2.15) holds,

(2) if x € H® and if (2.15) holds, then there exist K (1), K,(t) € H' such that

(2.17) % = py; * dKy + pj+ dK,
where
Ky(t) = $[{H\(1) + Ha(0} ™" + {Hi()) — Ho1)} '],
Ky(t) = 3[{H(1) + Hy()} ™" — {Hi(t) — Ho())} 7]
Proof: Let u, x € H® and satisfy (2.15). Then
(2.18) ;= H(wi; + pi) = 30e; + ;) * d(Hy + Hy) = »j;+d(H; + H,),
(2.18) Wiy = My — 1) = wiy= d(Hy — Hy).

By hypotheses, Theorem 1.3 yields the existence of (H; + H,)™*,(H, — H,)"' e H".
Define for an arbitrary g e H° the tensor x by equations

(2.19) xy; = pi;*d(H, + Hy)™1,
%f’ = I"‘l‘]*d(Hl - Hz)_l .

According to Theorem 1.1, (a), » € H® and Theorem 1.2 yields (2.18), (2.19) and
property (1) of the theorem is proved. If % € H°, then (2.18) implies u € H°. If we add
equations (2.19) we obtain (2.17).
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It is also possible to formulate the linear relation between & and ¢ or g and x
in a differential form.

Let us denote the differential operators

N Ni
Y pip* = P(D), Y qiD*=Q(D) (i=1,2,34)
k=0 k=0
where
D f(1) = f*(),
D

p, 4} are real numbers, p}' + 0 or ¢} + 0 (i = 1,2, 3,4). Let o), ¢f; € H', oy,
e € H', 1, o5y € H™, pfi, #f; € H™. Let us demand the differential equations

P(D)o}; = Q(D)e;, Py(D) oy = Qy(D) &y,

Py(D) ui; = Qs(D) xij P4(D) !‘?j = Q4(D) "?j
to be satisfied for t € (0, 00), (i, j = 1, 2, 3) and the initial conditions
Ny , a(r—k)O_iDj Ny , a(r-—k)gD

Yoi——H = Y4 4

- ~ k=1,2..,N,
B LA PP Ml AL N

N> a(r——k)o_ N> a(r—k)gu

> Py ——t = quz

oon , k=1,2,..,N,
R N

=0+

, k=12 ..,N,

t=0+
Na a(r—k) A Na (r—ky, A4
Wi 0 [
YPi ol = Xdi ool - k=1L2...N,
r=k ot =0+ r=k ot t=0+

to be satisfied at t = 0 (i, j=1,2, 3). A certain sufficient condition and a certain
necessary condition for transforming the relations between ¢ and ¢, u and % from
the integral form into this differential form are given in [1] Theorem 4.1 and Theorem
4.3. Conditions for the inverse transformation are given in [1], Theorem 4.4. It is
sufficient only to replace the scalars ¢ and ¢ and the function G(f) in those theorems
by 07}, O 1), iy and 7, e, 335, %15 and Gy(1), G,(t), Hy(t) + Hy(1), H,(t) — H,(t),
respectively.

3. VISCOELASTIC STATE
Definition 3.1. Viscoelastic state corresponding to G, G,, H,, H,. We say that
[u, ¢, 6, %, p] is the viscoelastic state on R x (— oo, oo) corresponding to Gy, G,

H, H, and to the body forces F, C if
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(1) Gy, Gy, Hy, Hye H', ue H** on R x (~ o0, ), Fe H°° on R x (-0, ),
CeH"® on R x (—o0, o),

(2) u. & 0, %, u, F, Csatisfy on R x (— o0, %) the equations

(3.1) ey = M Uy

(3-2) ij - 2E i »

(3.3) 0iji = Yewif(Hmi + Crg) + F; =0,
(3.4) op = €D %dG,, ou = g, *dG,,
(3.5) fi; = %y dH, + 2% dH, .

In case that we have the inverse relations to (3.4), (3.5)
(3.6) e =opnxdly, gy =ouxdl,,
(3.7 » wij = pi;*+dK; + py+dK,
we define the viscoelastic state corresponding to Iy, I,, K, K, in the following way:

Definition 3.2. Viscoelastic state corresponding to I, I,, K;, K,. We say that
[u, & o, %, u] is the viscoelastic state on R x (—oo, c0) corresponding to I, I,,
K, K, and to the body forces F, C if

(1) I, I, Ky, K,eH', ue H**° on R x (=00, o), pe H*® on R x (— o0, ),
ceH"® on R x (—o0, ), FEH*®0onR x (—o0, 0),Ce H"**onR x (— o0, ),

(2) u, & 0, %, p. F, Csatisfy on R x (— o0, ) equations (3.1)—(3.3), (3.6), (3.7).

Definition 3.3. Elastic state. We say that [u, e, o, %, p] is the elastic state on R
corresponding to the constants u, %, #, 3 and to the body forces F, C if

(1) ueC* on R, Ce C" on R,

(2) u, & o, %, p, F, C satisfy on R equations (3.1)—(3.3) and equations

D D
0= 2ueij, Oy = ey,
Wij = nrg; + Yo
The next theorem gives the displacement equation of equilibrium.

Theorem 3.1. Let [u, ¢, 0,% u] be the viscoelastic state on R x (— oo, o)
corresponding to G, G,, H,, H, and F, C. Then

(3-8) ;% dGy + uj i % dK 4 $ug iy — i) * dH + 2F; + £,3C, ; =0
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on R x (— o0, o0) where
K = (G, + 2G,).
If FeH'°, Ce H*® on R x (— o0, ), 2G; + G, £ 0 and
Fii= 0
on R x (—o0, ), then (3.8) takes the form
(3.9 u; ;% dGy + uj ;% dK — Yy ¥ AHy + 2F; + 3Gy = 0.
Proof. (3.4) imply
;= &;*dG, + $d;8u * d(G, — G).

We substitute this equation and (3.5) into (3.3), then using (3.1), (3.2) we obtain
(3.8). Considering the divergence of (3.8) and using the hypotheses of the theorem

about F, C we have
*d(2G, + G,)=0.

Uiijj
Theorem 1.1, (e) yields

u 0 ie. &g,;; =0 on R x(—o0, )

Lijj =

and we obtain (3.9).

4. THE MIXED BOUNDARY-VALUE PROBLEM AND THE UNIQUENESS
OF ITS SOLUTION

Let [u, &, 6, %, u] be a viscoelastic state on R x (— oo, ). Using (2.1), if v)(x, t) €
€ H*® on R x (—o0, o0) is an arbitrary vector, we have

0= JR[(rij,i + F))v; + (jutu + tiji + C;) - 3€u00,.4] R .
Integrating by parts we obtain
(4.1) J‘RBGU(U"J + 07,0) + HtiBiucbo ] AR =
= js(rijvj + i€ junly ) 1y AS + j (Fv; + 1€;,Civ,,) dR
R

where S is the boundary of R and n; stands for the unit outward normal to S. If we
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choose vj(x, 1) = uj(x, t) in (4.1) where uj(x, t) is the displacement field, then we
obtain

(4.2) J‘ (o485 + mijnij) AR = ‘[(t”ui + pyw;) n; dS +J- (Fju; + Cjw;)dR
R S R

where
w; = te,u
Jj 2CjkI% 1,k -
Denote

W= o;je;; + wipes; -
Using (3.4) and (3.5) we have

_ DD 1
6;i6i; = €i;€i; * AGy + deey * dG,,

s A
HijHi = H;¥;5 % dH, + ”kt("‘kl - “kz) *dH, =

s.s A A
= sy AHy + (s — %) * dH,

Assume that G, G,, Hy, H, € H', then using Theorem 1.1, (f) and Theorem 3.4
in [1] we can write Win the form

43) W(x, t) = G(0) eD(x, t) eX(x, t) + 3G,(0) e, 1) eyy(x, £) +
+ H,(0) %(x, 1) ;(x, ) + Ha(0) [, 1) x5(x, 1) —

t
— sdx, f) wx, £)] + J [GO(t — 7) eB(x, 1) eB(x, 7) +
0

+ 3Gt — 1) eulx, 1) epyx, 1) + H(t — 1) 2i(x, 1) 3,5(x, 7) +
+ HO(t — 1) {wdi(x, 1) wi(x, ©) — xfj(x, 1) xff(x, 7)}] dr .

Similarly, using (3.6), (3.7) we obtain

(4.4) W(x, 1) = J,(0) o7(x, 1) ap(x, 1) + 3J2(0) oa(x, 1) o1(x, 1) +
+ K31(0) pij(x, 1) mif(x, 1) + K(0) [ui(x, 1) pif(x, 1) —

t
— pi(x, 1) pi(x, 1) + J [ = 1) oP(x, 1) o7(x, ) +
0

+ LIt = 1) ol(x, 1) opyx, T) + K{O(t — ) gy, 1) pi(x, 1) +
+ Kt — <) {u(x, 1) (%, 7) — wij(x, 1) i(x, 1)} de

ifI,,1,, Ky, K, € H".
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Assuming that S is smooth and using Stokes’s theorem, we can rewrite (4.2) in the
form (see [4])

(4.5) j WdR = j(p,-u,- + nup {0 — mn} ;) dS +
R s

+ J (Fu; + Ciw;)dR
R

where

(4.6) pi = njo;; + Yeplpa. — (wpnm),, + Cl ny.
Denote

(4.7) n; (O — moms) = qi,

(4.8) (61; — meny) w; = wj .

q;and w} are tangential components to S of the vectors n;u;, and w;, respectively.

In the next definition the mixed boundary-value problem is formulated and the
next theorem gives the proof of the uniqueness of the solution of this problem for
certain G, G,, H; and H,.

Definition 4.1. The mixed boundary-value problem. Let R be bounded by a smooth
surface S. Let S = S; U S, be a mutually disjoint decomposition of S. Let p;, G
be given on S; x (— o0, ) and #i;, @} on S, x (—o0, ) so that j, g} are conti-
nuous on S; x [0, ) and vanish on S; x (—o0,0), @;, @} are continuous on
S, x [0, o0) and vanish on S, x (— o0, 0). Let the body forces Fe H>°, Ce H"°

on R x (—o0, 00) be given on R x (— 00, ).

Then the viscoelastic state [u, e, o, 2, #] on R x (—o0, ) corresponding to
Gy, Gy, Hy, H, (I,.,1,, K, K,) and to the same F, C for which

(4'9) pi="pi» q;i =4d; on Slx[O,OO),

~ t
u;, =1i;, o;

~

@ on S, x [0, ),

Il

pi» 4} @} being defined by (4.6)—(4.8), is called the solution of the boundary-value
problem corresponding to the vectors p;, G, il;, @}

Remark. (4.9) is met on S in the sense of continuous extension of all quantities
in (4.6)—(4.8).

Theorem 4.1. The uniqueness. Let R be a bounded region the boundary of which
is a smooth surface S. Let [u, &, o, %, ] and [u', ¢, 6', ', 5] be viscoelastic states
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on R x (— o0, ) corresponding to the same F, Cand G, G,, H,, H, (I, 1,, K, K;)
and let

(4.10) G,(0) >0, G,(0)>0, H,(0)>0, Hy0)>0
(or 1,00) >0, I,(0)> 0. K,0)>0, K,0)>0).

Further, let
pi=Pi» q; =4q; on S x (=00, o),
’ t rt

u; =uj, =0 on S, x(—ow,w0)

where pi, q'i, o} refer to [u', &, o', %', p'].

Then

u—u=w, g=¢, o6=0d,

’

x=%, p=pu on R x (—o0, )
where w(x, t) represents a rigid motion of the body.

Remark. (1) As in the classical viscoelasticity, it is possible to replace conditions
G,4(0) > 0, G,(0) > 0, H,(0) > 0, H,(0) > 0 in Theorem 4.1 by the following ones:
G,(0) = G,(0) = H,(0) = H,(0) = 0 and G{", G, H\", H'" are positive definite
functions. (The definition of the positive definite function see in [1], Definition 8.1.)
The proof of the uniqueness for this case is analogous to that of Theorem 8.2 in [1].

(2) It is possible to formulate Theorem 4.1 when using differential operators
P{(D), Q(D) (i = 1,2,3,4). If pl" > 0, g} > 0, the uniqueness can be proved
using Theorem 4.1 and Theorem 4.4 in [1].

Proof of Theorem 4.1. As (3.1)—(3.7) are linear, [u —u',e — ¢, ¢ — o/,
x — %', p— p'] is a viscoelastic state on R x (—oo, o) corresponding to Gy, G,
H,, H, (I,, I,, K4, K,) and to zero body forces. The boundary conditions are equal
to zero for this state and therefore the right hand side of (4.5) is also zero, i.e.

W(x,t) =0 on R x (—o0, ).
If (4.10) holds, then (4.3) or (4.4) and Theorem 8.1 in [1] yield
e=0, x=0 on R x (=00, ).
If ¢ = 0, then the displacement vector is of the form
wi(x, 1) = at) + & b1) x, .
But
%Emnpwp.nk = 0

and therefore the condition % = 0 gives no further restriction on w and the proof
is complete.
The next two theorems deal with the behaviour of viscoelastic bodies at t = 0.
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Theorem 4.2. Let [u, &, 6, %, p| be a viscoelastic state on R x (—o0, o) cor-
responding to Gy, G,, Hy, H, and F, C. Then [u(x,0), &(x, 0), o(x, 0), »(x, 0),
u(x, 0)] is an elastic state on R corresponding to the constants

1 =1G,0), »=1G,0),
1=H(0). 9="H(0)

and to the body forces F(x, 0), C(x, 0). Here u(x, 0), &(x, 0) etc. denote

u(x, 0) ='Eg}r u(x, ) etc.

Proof. Using Theorem 1.1, (f) we can write for example (3.5) in the form
t
i, 1) = H,(0) o3, 1) + J aix, t — 1) HO(@) de +
V]

t
+ H,(0) »;i(x, 1) + j w;(x, t — 1) HV(r) dr .
0

Hence
(%, 0) = lim p;(x, 1) = H,(0) »;,(x, 0) + H,(0) x;(x, 0)
-0+

and comparing with Definition 3.3 we obtain
H0)=7n, Hy0)=9.
Proceeding to the limit.in (3.1)—(3.3) as ¢t - 0+, we complete the proof.
Theorem 4.3. Let [u, ¢, o, %, p] be a viscoelastic state on R x (—o0, ) cor-

responding to Gy, G,, H,, H, and F, C. Further, let G, G,, H,;, H, e H, ue H*"
on R x (—o0, ), where N > 1. Define the following functions of x

(4.11) Yo i(x) = G4(0) &(x, 0) + 45,,[G,(0) — G4(0)] £X(x, 0) ,
(4.12) Mug(x) = H,(0) {(x, 0) + H,(0) $Y(x, 0),
(4.13) NFi(x) = F{M(x, 0) +

£ 5 607(0) . 0) + 3[GE0) — GEIO)] e x. 0
(4.14) NC;(x) = ¢{V(x, 0) +

N-1
+ Y {HPT(0) 1 (x, 0) + HY (0) 27 (x, 0)}
n=0
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where for example we denote

Mey(x, 1)

&P(x, 0) = hm e(N)(x, 1), &P(x,1) = p
t"

Then [u™)(x, 0), e&™(x, 0), ¥o(x), x™(x, 0), "u(x)] is an elastic state on R corre-
sponding to the constants

r=13G,(0), x=1G,(0), n=H,0), 3 =H,0)
and to the body forces F, NC. Further, there is
@.1s) oPx,0) = "oy (x) +

+ 3 (G0) e,0) + $5,[680) — 61O e, 0}

(4.16)  Hi(x, 0) = uyy(x) + Z {H™7(0) %, 0) + HE'™™(0) #{(x, 0)} .

Proof. Differentiate (3.1)—(3.5) N-times with regard to ¢ and proceed to the
limit as t - 0+. We obtain

eP(x,0) = 3[ufx,0) + . 0)],
%(x,0) = 2esj,‘,u,,“(x 0),

(4.17) a(x,0) — 2e,“,[m,’(”“(x, 0) + CM(x, 0)] + F{M(x,0) =0,

(4.18) {P(x,0) = Z G M(0) &(x, 0) +
+ 49y Z [G5777(0) — G{"(0)] (%, 0) »

(419)  uV(x,0) = z {HY=(0) x%(x, 0) + HY~(0) »(x, 0)} .

(4.11) and (4.18) yield (4.15). (4.12) and (4.19) yield (4.16). (4.15)—(4.17) imply
Yo1,(%) = ewiiBui(x) + YCoi(x)] + VFi(x) = 0.

(4.11) implies
NoP(x) = G,(0) &V(x,0), You(x) = G,(0)&(x,0).

Now it is obvious from Definition 3.3 that [u™(x, 0), £™(x, 0), Yo(x), %¥(x, 0)
Nu(x)] is the corresponding elastic state.
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5. BETTI’'S THEOREM

In this section a generalization of Betti’s theorem to elastic and viscoelastic bodies

with couple-stresses is established.

Theorem 5.1. Betti’s theorem for viscoelastic bodies. Let R be bounded by a

smooth surface S. Let [u, &g, 0, %, ;t] and [u’, &, 0, %, y’] be viscoelastic states
on R x (— o0, o0) corresponding to the same Gy, G,, Hy, H, and to the body forces
F, C and F', C', respectively. Further, let u, u’€ H*' on R x (—o0, o). Then for

all te(— oo, o)

(5.1) ~[(p:.*du,- + q;' * dw;) dS +j (Fi*du; + C;*dw;)dR =
s R
= f (0 * de;; + pj; * dx;;) R = f (0 * dej; + pyj = daj;) dR =
R R
=f(pi*du} + ¢} * dw}) dS +f (F; *du; + C; » dw;)dR
S R

where p;, q; are defined by (4.6), (4.7).
Proof. If is smooth, then using Stokes’s theorem we obtain from (4.1)

(5-2) f B‘Uij(ui,j + 05) + i€l ui] AR =
‘ R
= J (PiUi + q;. *zLEiszI,k) ds + J (FiU.' + %Cib‘iuuvv,u) dr
s R

where p; and q; are defined by (4.6) and (4.7). Now we put
vi(x, t) = ui(x,0)

and (5.2) has the form

(5.3) f [, 1) €,(x, 0) + sy, 1) ¢, (x. 0)] dR =
_ f [pix. 1) u(x, 0) + qi(x. 1) wi(x. 0)] dS +
" f [F x. ) wi(x, 0) + Ci(x. 1) wi(x, 0)] dR .

Further, writing in (5.2)
ui(x, 1) = Ll:'gx’—)»
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instead of »(x, 1), (5.2) yields
(5.4) J\ [oi(x, t = 1) eiV(x, 1) + pij(x. t — 1) %$(x, 7)] AR =
R
- f [pi(x. t — ©) ufD(x, 7) + gi(x. 1 — 1) wD(x, 7)] dS +
S
+ J‘ [Fix,t — ) uiP(x,7) + Cix,t — 1) 0(x, )] dR .
R

Theorem 1.1, (f), yields for example

(5.5) ‘[ (o » e 4R = j R J ou(x.t — 7) de;j(x,f)] dR =

-0

~ t
= .[ oi(x, 1) e;(x,0)dR + ['[ o (x, 1 — 1) (x, 1) dr]dR etc.
J R

0

R
[t
J (p; * duj) dS = j J pi(x, t — 1) dui(x, r)] ds =
N S L~
t
= J px, t) ui(x,0)dS + J [.[ pix, 1t — 1) uiV(x, 1) dr] ds etc.
N N V]

Integrating (5.4) with respect to time from 0 to 1, adding it to (5.3) and using (5.5)
we obtain one part of (5.1). Further, we write

pij x daey; = u,?j wdojf + plx dodf = (H, + H,) = dw; + djy +
+ (Hy — Hy) xdufy % dejf = (H, + H,) = dw] xdu; + (H; — Hy) = du}} » duf; =
= .u’ij * dxij .
Similarly
o;; * dej; = oy; * dey;
and the proof is complete.

Theorem 5.2. Betti’s theorem for elastic bodies. Let R be bounded by a smooth
surface S. Let [u, &, 6, %, p]and [u', 6, ¢, ', p'] be elastic states on R corresponding
to the constants p, x, 1, $ and to the body forces F, C and F', C', respectively. Then

(5.6) j(piug T glol)ds + J (Fu, + Cowl) dR —
S R
= f (aije'ij+ wijxi;) dR =J‘ (o381 + mip;) dR =
R R
= J (pju; + qj'w;)dS +J (Fu; + Ciw;)dR
S R

where p;, q; are defined by (4.6), (4.7).
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Proof. (5.6) follows from (5.2) setting v(x, 1) = u/(x). It is easy to verify that

ro__ o
Wiy = Wigki;, 08 = 0585 .

Theorem 5.3. Betti’s theorem for separable loads. Let R be bounded by a smooth
surface S and let [u, ¢, 0,%, p] and [u', &, 6, %', '] be viscoelastic states cor-
responding to G, G,, Hy, H, and to the body forces F, C and F', C', respectively.

Further, let &(t)e H' and
(1) F(x,1) = F(x) . o(1) F'(x,1) = F(x) . (1)
C(x, 1) = C(x). (1) C'(x,1)=C(x).P(t) on R x (—o0, )

(2) on S, for all te(—o0, )
) = p(x) - 9() Plx 1) = P(x) . 90
g 1) = q00). 9) 4°Cx ) = a°(x). 900

(3) on S, for all te(—oo, )
u(x,t) = u(x). d(t) u(x,1)= u(x).d(t)
o'(x, 1) = o'(x). (1) o'(x,1) = o’ (x). d(t).

Then (5.6) holds on (— 0, o).
The proof of this theorem follows from Theorem 1.1, (e), (f) and Theorem 5.1.

6. STRESS FUNCTIONS

In this section the general solutions of equation (3.8) are obtained. They are
generalizations of the functions G, ¥ and ¢ in [1], Section 9, concerning linear
viscoelastic bodies without couple-stresses, and generalizations of the functions
G, B and B, in [2], Section 11, concerning elastic bodies with couple-stresses.

Theorem 6.1. Generalized Galerkin solution. Let G,, G,, H, € H! and 2G, + G,
possess the Stieltjes inverse (2G; + G,)”'. Furthermore, let Fe H°°, Ce H"°
on R x (=0, ). Let a vector function G(x,t)e H*® on R x (— o0, ) satisfy

the equation

(6.1)  Gijju*dGy — 3G, sy * dH{ = —(F; + 36,4C, ;) * d(2G, + G,)™*!
on R x (— o0, o). Then u(x, t) defined by

(6.2) u; = 2G; ;; *d(2G, + G,) — G; ;; * d(G; + 2G,) — 3G, jus * dH,

satisfies (3.8) on R x (— o0, ).
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Theorem 6.2. Generalized Papkovich solution. Let G,, G,, H, € H', let G, and
2G, + G, possess the Stieltjes inverses Gi' and (2G, + G,)™'. Furthermore,
let FeH*°, CeH"® on R x (—o0, o). Let the vector function ¥(x, t)e H°
on R x (—o0, ) satisfy the equation

(6.3) Vi *dGy — Wi e x dH | = —2F; — £,3Cy ;

on R x (—o0, ). Let the scalar function ¢(x,t)e H>° on R x (—oc0, ) satisfy
the equation

(64) (p,ii = xj(sz + ejlel,k) * dGI_l
on R x (—o0, ). Then the vector function u(x, t) defined by

(6'5) u; =y; + %(xjwj,kk),i — 3 xdH * dGy' — %(xj‘ﬁj + (P),i *
*d(Gy + 2G,) *d(2Gy + G,) ™' — (x¥j ). * dH, *d(2G, + G,)7*

satisfies (3.8) on R x (— o0, ).

The validity of Theorem 6.1 can be easily verified if we put (6.2)into (3.8) using (6.1).
To prove Theorem 6.2 we could proceed in the same way as in [2], Section 11 for
the case of elastic bodies with couple-stresses. The completeness of functions ¥, ¢
and G can be proved similarly to [5].

In equations (6.1), (6.4), (6.3) it is possible to remove integration with respect
to time using the Laplace transform. The proofs of the last two theorems follow
from the properties of the Laplace transform.

Theorem 6.3. Let all the assumptions of Theorem 6.1 be satisfied. Further, let
(2G, + G,) ' e H'. Let us assume that there exists a real number s, such that
for every x e R :

G, G, H,,(2G, + G,)"',F, Ce 0(e").
Then for every s > s,

3[2F(x, s) + & Ci (X, s)]
s[2G4(s) + Ga(s)]

Gi,jjkk(xa S) 61(5) - %Gi,jjkku(xy 5) Hl(s) =
on R where G(s) etc. denote the Laplace transforms of G,(t) etc., respectively.

Theorem 6.4. Let all the suppositions of Theorem 6.2 be satisfied. Further, let
us assume that there exists a real number s, such that for every x e R

l/” (p’ Gla H17 F; C € O(eSot) .
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Then for every s > s,

Viif(%, 8) s Gy(s) — Wi (%, 5) s Hy(s) = —2F(x,s) — &, C\ j(x, ),
?,i(%:8) s Gy(s) = x,[2F(x, 5) + &1 Cra(s 5]

on R.
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Vytah
LINEARNI VAZKOPRUZNOST S MOMENTOVYMI NAPETIMI

MIrROSLAV HLAVACEK

V ¢ldnku je podédna linedrni isothermickd, kvasi-statickd teorie homogennich,
isotropnich, vazkopruznych ldtek s momentovymi napétimi. Materidlové rovnice
jsou uvedeny jak v integrdlnim, tak i v diferencidlnim tvaru. Dokazuje se jedno-
znaénost smiSené okrajové Glohy a odvozuji se véta Betti a zobecnéné Galerkinovy
a PapkoviCovy funkce napéti.
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