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SVAZEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

LINEAR VISCOELASTICITY WITH COUPLE-STRESSES 

MlROSLAV HLAVACEK 

(Received April 22, 1968) 

INTRODUCTION 

In this paper the linear isothermal quasi-static theory of homogeneous and isotropic 
viscoelastic bodies with couple-stresses is established. 

In [3] M. MISICU deals with constitutive equations for linear viscoelastic bodies 
with couple-stresses. He presents both integral and differential form of these equ­
ations. In the second part of [3], using the complex variable method, only plane 
problems are dealt with. M. E. GURTIN and E. STERNBERG present in [1] the mathe­
matical theory of linear viscoelastic bodies (without couple-stresses) which is based 
on systematic employment of Stieltjes convolutions. Stress and strain histories dis­
continuous at time t = 0 are admitted. 

Following the conception of [1] we present the couple-stress theory with con­
strained rotations for linear viscoelastic bodies. In Section 1 some auxiliary definitions 
and theorems needed in the subsequent analysis are given. They are mostly taken 
from [1]. Section 2 deals with the linear hereditary laws between stress tensors 
and strain tensors. The general representations of these laws are presented for 
anisotropic and isotropic bodies. Stress tensors and strain tensors are assumed to be 
in HM'N, i.e. discontinuities at time t = 0 are admitted. The hereditary laws are 
formulated not only in an integral form but also in a differential form. In Section 3 
the definitions of the elastic state and of the viscoelastic state are presented. The 
displacement equation of equilibrium is derived. Section 4 is devoted to setting 
the mixed boundary-value problem and proving its uniqueness. The behaviour 
of material at time t = 0 is examined. At t = 0 it is possible to compute directly 
all initial time derivatives of the field quantities of a sufficiently smooth viscoelastic 
state by solving certain mixed boundary-value problems for a certain elastic body 
with couple-stresses. Section 5 presents the generalization of Betti's theorem to 
viscoelastic bodies with couple-stresses. Section 6 deals with the integration of the 
displacement equation of equilibrium with help of stress functions. The generaliza­
tions of the Galerkin and Papkovich solutions are obtained. 
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1. AUXILIARY DEFINITIONS AND THEOREMS 

The theorems and definitions of this section are mostly taken from [1], where 
these theorems are proved. 

Definition 1.1. Function in C* on (a, b). Let f(t) be a real-valued function defined 
on (a, b). Denote 

/<»>(,). «m 
w d f 

where n is a non-negative integer. If/(M)(t) are continuous on (a, b) for each n = 
= 1, 2, ..., N, we say that f(t) is in CN on (a, b), i.e. / e CN. 

Definition 1.2. Functions in CN on [a, b]. Let a real-valued function f(t) be in C^ 
on (a, b) and be continuous in a from the right, in b from the left. Let the limits 

lim/ ( M )( t), lim/ (n )(t) 
t->a+ t-*b-

(which exist because of f e CN on (a, b)) be finite. Then we say that f(t) is in CN 

on [a, &]. 

Similarly it is possible to define f(t) in CN on [a, b) or (a, &]. 

Definition 1.3. Functions in HN. Let / ( t ) be a real-valued function defined on 
( - c o , oo) and let 

( 1 ) / = 0 on ( - o o , 0 ) 

(2) feCN on [0, oo). 

Then we say that f(t) is in HN. 

Now we consider the three-dimensional Euclidean space E3 and let xt (i = 1, 2, 3) 
be the Cartesian coordinates of the point whose radius-vector is x. In the sequel 
let R denote an open bounded region in E3 the boundary of which consists of a finite 
number of smooth surfaces. R denotes the closure of R in E3. R x (a, b) stands 
for the Cartesian product of R and (a, b). 

Definition 1.4. Functions in CN on R. Let f(x) be a real-valued function defined 
on R. Let 

m*) =, (x) 
- ~ — -J,ij...k\x) 
OX: OX: . . . OXv ^——' 

. l J , n 
n 

exist and be continuous on R for n = 1, 2, ..., N. Then we say that f(x) e CN on JR. 
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Definition 1.5. Functions in CN on R. Let f(x)eCN on R. Let f,0...k(x), n = 

= 1, 2, ..., N, be continuously extendible to R. Then we say that f(x) e CN on R. 

Definition 1.6. Functions in HM,N on R x (— oo, oo). Let f(x, t) be a real-valued 
function defined on R x (— oo, oo) and f = 0 on R x (— oo, 0). Let 

OXi OXi . . . GXt 

exist, be continuous on R x (0, oo) and continuously extendible to R x [0, oo) 
for m = 0, 1,..., Af, n = 0, 1, ..., N. Then we say that f(x, t) e HMN on R x 

x (—oo, oo). 

Definition 1.7. Functions in HM,N on R x (—oo, oo). Let f(x, t) be defined 
on R x (— oo, oo) and be in HMJV on R x (— oo, oo) and letf^"? fc for n = 1, 2, . . . 

m 

...,N, m = 1,2, . . . , M be continuously extendible to R x [0, oo). Then we say 

that/(x , t) e HM* on K x ( - oo, oo). 

Definition 1.8. Stieltjes convolution. Let cp and \j/ be functions defined on [0, oo) 

and (—oo, oo), respectively and let the Rieman-Stieltjes integral 

ә(o = ę(t — т) dф(т) 

exist for all t in (— oo, oo). Then the function $ defined by this integral on (— oo, oo) 

is the Stieltjes convolution of cp and \j/. We write 

5 = c/> * di/J . 

Theorem 1.1. Properties of the Stieltjes convolution. Let (peH°, ij/ and co e H1. 

Then 

(a) <p * dij/ e H° , i/t * dco e Hl , 

(b) c/> * di/̂  = \j/ * dc/>, 

(c) c/> * d(i/̂  * dco) = (cp * di/̂ ) * dco = cp * di/f * dco , 

(d) cp * d(i/̂  + co) = cp * di/> + cl) * dco , 

(e) cp * dij/ — 0 implies cp = 0 or 'ij/ = 0 , 

(f) cp * di/t = «A(0) cp(t) + J ^ ( r - T) IA ( 1 ) (^) dT on [0, GO) . 
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Theorem 1.2. The Stieltjes inverse. Let (peH1. Then there exists at most one 
function i// e H1 such that 

(p*d\j/ = 0 on (—00,0), 

(p * d\j/ = 1 on [0, 00) . 

if this i// exists, it is said to be the Stieltjes inverse of (p and we write 1// = (p~x. 
If (p e H1, a, f$ e H°, then cc * d(p = p implies a = j? * d(p~x (if (p"1 exists). 

Theorem 1.3. Existence of the Stieltjes inverse. If (p e H2, then the necessary 
and sufficient condition that (p~x exist is 

(p(0) * 0 . 

Theorem 1.4. Let (p e H1,0, (/> e H1,1 on R x (—00, 00) and 

$ = (p * dxj/ on R x (—00, co) . 

Then 9 e H1,0 on R x (—00, 00) and 

Sfi(x, t) = (pA * di/> + (p * d^j£ on R x (—00, 00) . 

In particular, if \j/(t) e H1 (i.e. \jj is independent of the position) then 

9ti(x, t) = (pti * dijj on R x (— 00, 00) . 

The theorem stays true if R is replaced by R. 

Now we come to tensor functions. Tensors are denoted by letters set in boldface. 
If o is a tensor of order n, we write uijtk for the components of u, where indices 

n 

i, j , . . . , k are assumed to range over the integers 1, 2, 3. Summation over two repeated 
indices is assumed and a comma denotes differentiation with respect to the cor­
responding Cartesian coordinate. Only orthogonal transformations of coordinates 
are taken into account. We say that a tensor function u(x, t) defined on R x (— 00, 00) 
is continuous at a point (x, t), if uij§ttk are continuous at the point (x, t). It is pos­
sible to extend all the definitions and theorems given above to tensor-valued func­
tions. We only replace for example f(t), f(x, t), f(n)(t), f(?/.<fc by up(t), up(x, t), 
v(

Pq(t), vp
n

q\ijmJc(x, t), (p, q = 1,2, 3), respectively. For Cartesian coordinates and 
orthogonal transformations, up

n
q\ijmJc are components of a tensor of the (m + 2)-nd 

order. ^T 

Definition 1.9. Admissible tensor functions. We say that a tensor function a(x, t) 
is admissible if it is continuous on (— 00, 00) for each x e K and if 

o(x, t) = 0 

for each x e R and t e (— 00, 0). 
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Definition 1.10. Linear hereditary operator. A transformation L that associates 
with every admissible tensor function b(x, t) a tensor function a(x, t) 

(1.1) a = Lb 

is called a linear hereditary operator, if it has the following properties: 

Let b' and b" be arbitrary admissible tensor functions and let 

a' = Lb', a" = Lb" . 

Then there is for every x e R: 

(1) for every pair of real numbers X' and X" 

L(X'b' + X"b") = X'Lb' + X'Lb" 

(2) for every fixed X the relation 

b"(x, t) = b'(x, t - X) for all t e (- oo, oo) 

implies 
a"(x, t) = a'(x, t - X) for all r e (— oo, oo) 

(3) for every fixed t, b' = b" on (— oo, t] implies a' = a" on (— oo, *] 

(4) for every fixed t and every a > 0 there exists 9t(a) > 0 such that the inequality 
lo.1(T)l < 9t(a) holding for all T e (— oo, t] implies 

|oJX0l<« (i,7 = L2,3). 

Theorem 1.5. A linear hereditary operator maps admissible tensors into admis­
sible ones again. 

Theorem 1.6. Corresponding to every linear hereditary operator L there exists 
one and only one tensor G(t) of the fourth order defined on (— oo, oo) with the fol­
lowing properties: 

(1) G(t) = 0 on f -oo ,0 ) , 

(2) G(t) is of bounded variation on every closed subinterval of (—oo, oo), 

(3) G(t) is continuous from the right on (—oo, oo), 

(4) for every pair of admissible functions atj(x, t), btj(x, t) satisfying (1.1) 
there holds 

(1.2) au = bkl*dGijkl. 

Conversely, every tensor-valued function G(t) of the fourth order defined on (— oo, oo) 
and having properties (l) —(3) generates by (1.2) a linear hereditary operator 
between a and b in the sense of Definition 1.10. 
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; 1 2. STRESS-STRAIN RELATIONS 

( ' : : : ' : • 

If we consider couple-stresses, the state of stress at a point is characterized by the 
asymmetric stress tensor T and the couple-stress tensor n (see for example [2]). 
The equations of statical equilibrium take the form (see for example [4]) 

(2.1) T , l t , - f - f , - . 0 , 

^jij ~^~ SijkTjk + Cj = 0 . 

Here F and C are the body force vector and the body couple vector per unit volume, 
respectively. eiJk stands for the usual alternator. Equations (2.1) can be rewritten 
in the form 

(2.2) amn%m - ieimn(nfiJm + Ciffn) + Fn = 0 , 

Tm« = ~"28imn\}ikk,i ' fljij ' ^ i j * 

o-̂  and rfy denote the symmetrical and the antisymmetric part of T0-, respectively. 
/*?• stands for the deviator of fitJ. 

In the couple-stress theory with constrained rotations the state of deformation 
at a point is characterized by the classical symmetric strain tensor 

(2.3) i * 6ij = | ( w u + uJti) 

and by the deviator 

(2-4) Xtj = 2ejklultki 

where u{ are the components of the displacement vector. If cot is the rotation vector 

°)j — isjkiui,k 

then 

For viscoelastic bodies we assume a quasi-static state, i.e. we neglect inertial 
forces in the dynamical equations and therefore in this theory we take into account 
equations (2.1) or (2.2). All vectors and tensors in (2.1) —(2.4) are assumed to be 
functions of position and time. 

Now we derive compatibility conditions for s and x. 

Theorem 2.1, Compatibility conditions. 

(1) Let R be a simply connected region and let x e H1,0, s e H2,0 on R x (— oo, oo) 
and let 

( 2 - 5 ) . .,.•• FijkSmnlekl,jn ~ ^ ' 

(2.6) Xij — ejkl£ik,l 
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hold on R x ( - c o , oo). Then there exists a vector u e H2,0 on R x (—00, 00) 
such that (2.3) and (2.4) are satisfied on R x (—00, 00). The vector u is given 
by the line integral 

• ' ) 

(2.7) u;(x, t) = r [ey({, t) + (xk - Q {6 f M («, t) - Cjyt<(«, 0} d£, 
J x0 

where the line integral is taken along a smooth curve in R joining x0 and x. 

(2) Let UEH3,0 on R x (—00, 00) a/td /el (2.3), (2.4) define stj and xtj on R x 
x (—00, 00). Then (2.5), (2.6) are satisfied on R x (—00, 00). ; 

Proof . (1) If s^ satisfy (2.5), the expression in (2.7) under the integral sign is a total 
differential and therefore u{ is independent of the integral path. If we substitute u{ 

from (2.7) into (2.3), we have an identity. Using (2.6), (2.3) we obtain (2.4). 

(2) Let ueH3,0 and let (2.3), (2.4) be satisfied on R x ( - 0 0 , 00). Then 

eijk£mnlekl,jn ~ £ijk8mnl • 2\Uh,ljn + Ul,kjn) = 0 » 

~ejklsik,l = ~~sjkl • 2\ui,kl + uk,il) ~ ~2ejklul,ki = X i j • 

Hence, (2.3), (2.4) yield (2.5), (2.6) if u e H3'0 on R x ( - oo, oo). 

REMARK. If (2.5) holds, (2.6) is equivalent to the equation 

C2-8) £ijk><km,j = 0 . ,V : : \ \ ' ! 

Therefore it is possible to replace (2.6) by (2.8). The equations (2.5), (2.6) or (2.5), 
(2.8) are called the compatibility equations. 

In the theory of elastic bodies with couple-stresses and with constrained rotations 
the first invariant jikk of /i is indetermined. To avoid this indeterminacy we put 
formally 

(2.9) fikk - 0 , i.e. jiij = fifj. 

To formulate constitutive equations for viscoelastic bodies we suppose that there 
is a certain linear functional dependence between stress tensors if, fi arid strain 
tensors s, x in the following form 

(2.10) <r = Lts + L2x, 

(2.11) n - L3s + L4x 

• ' '^•:.t i : 

where Lt(i — 1,2, 3, 4) are linear hereditary operators in the sense of Definition 1.10. 
For a homogeneous material, Lt- do not depend on x. According to Theorem 1.6 
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there exist tensors Gijkl(t), Mijkl(t), Nijkl(t), Hijkl(t) which have properties (l) —(3) 
of Theorem 1.6 and such that (2A0), (2.11) can be rewritten in the form 

(2-12) Oij = ekl * dGijkl + xkl * dMijkl, 

(2.13) jxtj = ekl * dNijkl + xkl * dHijkl. 

Further we will deal with isotropic homogeneous bodies only. 

Theorem 2.2. For an isotropic material, to every linear hereditary operators 
Lt (i = 1,2,3,4) in (2.10), (2.11) there exist real-valued functions Gt(t), G2(t), 
Ht(t), H2(t) defined on ( - c o , oo) with properties 

(1) Gt(t) = G2(t) = H1(t) = H2(t) = 0 on ( - c o , 0 ) , Gt(t), Ht(t) (i = 1,2) are 
continuous from the right and are of bounded variation in every closed subinterval 
of (-co, oo); 

(2) for every pair of admissible tensors ou, eu and fitj, xu for which (2.10), 
(2.11) hold there is 

(2.14) ofj = efj * dGx , okk = ekk * dG2 , 

(2.15) fiij = xtj * dH! + Xjt * dH2 , 

where the index D denotes the deviator. 

Proof. For isotropic materials Gijkl(t), Mijkl(t), Nijkl(t) and Hijkl(t) are isotropic 
tensors. xtj and fly are defined as axial tensors, but etj and au are absolute tensors. 
We see from (2.12), (2A3) that Mijkl(t) and Nijkl(t) must be axial, as well. Therefore, 
we have 

Mijkl(t) = Nijkl(t) = 0 on ( - c o , oo) . 

The statement of this theorem concerning Gx(t), G2(t) was proved in [1], Theorem 2.5. 

It remains to prove (1) and (2) of this theorem only for H^t), H2(t). 

As Hijkl(t) is an isotropic tensor we may write 

(2.16) Hijkl(t) = H,(t) Srfjt + H2(t) SnSjk + H3(t) 8 ^ 

where Hi(t) (i = 1, 2, 3) are real-valued functions defined on (— oo, oo). Property (1) 
of the theorem follows from properties (1) —(3) of Theorem 1.6. Property (2) of the 
theorem follows in this way: Using (2.16) we write 

Hu(x, t) = xkl(x, t - T) dHijkl(T) = xkl(x91 - T) SuSjtdHifr) + 
J — 00 J — 00 

+ xkl(x, t - T) 8u5jk dH2(z) + xkl(x, t - T) S^dH^) = 
J — 00 J —oo 

= Xij * dH! + xjt * dH2 
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because 

«*Al = Xii = o . 

Next we shall not restrict ourselves to admissible tensors, but we shall assume that 
8, a, x, n belong to HN (for fixed x), i.e. these tensors can be discontinuous at t = 0. 
The next two theorems deal with the inverse forms of (2.14), (2.15). 

Theorem 2.3. Let Gt(t), G2(t) e H2, Gx(0) + 0, G2(0) 4= 0. Then 

(1) for every a e H° there exists one and only one se H° such that (2.14) holds, 

(2) if se H° and if (2.14) holds, then as well 

4 = 4 * d G r 1 ' c t t = crtt*dGJ1 

where G^1, G2
X denote the Stieltjes inverse of G1? G2, respectively. 

To p r o v e Theorem 2.3, see the proof of Theorem 3.3 in [1]. 

Theorem 2.4. Let Hx(t), H2(t) e H2, Hx(0) + H2(0) * 0, Hx(0) - H2(0) * 0. 
Then 

(i) for every ft e H° there exists one and only one x e H° that (2.15) holds, 

(2) if x e H° and if (2.15) holds, then there exist Kx(t), K2(t) e H1 such that 

(2.17) Xij =-= fiij * dKi + fiji * dK2 

where 

K,(t) = i[{H.(r) + H2(t)}'
1 + {-/.(») - H2(0}_1] , 

K2(t) = i[{£-.(0 + ^(t)}"1 - {Hx(0 - if2(0}_1] . 

Proof : Let p,xeH° and satisfy (2.15). Then 

(2.18) ntJ m i(ntJ + % ) = i (x ; , + xn) * d("f, + tf 2) = xs
tJ * d(Ht + H2), 

(2.18) 4 = i(ix,j - ^ ( ) = < * d(H. - H2) . 

By hypotheses, Theorem 1.3 yields the existence of (#1 + J f 2 ) _ 1 , ( # ! — / / 2 ) _ 1 6 H 1 . 
Define for an arbitrary fie H° the tensor x by equations 

(2.19) K ^ / z ^ d ^ + f f , ) - 1 , 

xfj^nfj^^H.-H,)-1. 

According to Theorem 1.1, (a), xeH° and Theorem 1.2 yields (2.18), (2.19) and 
property (1) of the theorem is proved. If x e H°, then (2.18) implies [i e H°. If we add 
equations (2.19) we obtain (2.17). 
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It is also possible to formulate the linear relation between c and a or pi and x 

in a differential form. 

Let us denote the differential operators 

Л, 

I 
k = 0 

£ p\Dk = Pt(D) , ^q^^QІD) (i = l,2,3,4) 

where 

D V ( 0 = / W ( 0 . 

p\, q\ are real numbers, pN' 4= 0 or tjf' =t= 0 (r = 1, 2, 3, 4). Let afj, efj e HN', akk, 

ekk e HNi, p,s,j, x\j 6 HN3, ixfj, xfj e HN". Let us demand the differential equations 

P,(D) <r?j = Q,(D) efj , P2(D) akk = Q2(D) skk , 

P3(D) n*l} = Q3(D) x\j , P4(D) ^ = e 4 ( D ) xfj 

to be satisfied for t e (0, oo), (i, j = 1, 2, 3) and the initial conditions 

/Vi 

Irt 
ð« r-k) D 

Ч 

дf (r-k) 

Ni я(г-vғ

D 

= І 9 Î -
r = o+ r = , [ дt(r~k) 

r-k). Nг Ы. 

У>_-
r = / 2 ðř(Г-fc) |ř = 0 + 

N2 Я<Г~~ f c>P 

= ľй-—-
r = k д&~k) 

í = 0 + 

lVз 

LVз 
Ć ( Г ~ ' H 

ðř° r-t ) 

Nз д(r~k)xs 

= y Qr _ Ъ± 
r~k F)&~к) 

ř = 0+ r~к ül 

_ * Є^xfj 

к = 1,2, ...,JV, 

fc = 1,2, ...,JV2 

fe = 1, 2,. 

fe = 1, 2,. 

!V, 

ІV_ 

to be satisfied at t = 0 (i,j = 1, 2, 3). A certain sufficient condition and a certain 

necessary condition for transforming the relations between a and e, /i and x from 

the integral form into this differential form are given in [1], Theorem 4.1 and Theorem 

4.3. Conditions for the inverse transformation are given in [1], Theorem 4.4. It is 

sufficient only to replace the scalars o and e and the function G(t) in those theorems 

by ofj, akk9 ns

ij9 t4j and efj9 ekk, xs

ij9 xfj and Gt(t)9 G2(t)9 H_(t) + H2(t), H_(t) - H2(t), 

respectively. 

3. VISCOELASTIC STATE 

Definition 3.1. Viscoelastic state corresponding to Gl9 G 2, Hl9 H2. We say that 

[u, s, a9 x9 ft] is the viscoelastic state on R x ( - c o , oo) corresponding to Gl9 G2, 

Hl9 H2 and to the body forces F, C if 
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(1) Gi9 G2,Hl,H2eH1, u e H40 on R x ( - 0 0 , 00), F e H°'° on R x ( - 0 0 , 00), 
C e H 1 ' 0 on R x ( - 0 0 , 00), 

(2) u, s, a, x, fi, F, C satisfy on R x (— 00, Qo) the equations 

(3-0 '«y = K " i j + > i ) . 

(3-2) xtj = ^ i i H , 

(3.3) trl7)i - iekij(filkili + £*,..) + Fj = 0 , 

(3.4) afj = efj * dG t , akk *= ekk * dG2 , 

(3.5) JUU = x t7 * dH! + xjt * dH2 . 

In case that we have the inverse relations to (3.4), (3.5) 

(3.6) efj = afj * dJ , , ekk = r/fcfc * dJ2 , 

(3.7) xu = fiij * dK! + Uji * dK2 , 

we define the viscoelastic state corresponding to Il912, Kt, K2 in the following way: 

Definition 3.2. Viscoelastic state corresponding to Ii9 I2, Kl9 K2. We say that 
[u, s, a, x, ji] is the viscoelastic state on R x (—00, 00) corresponding to Iu I2, 
K1? K2 and to the body forces F, C if 

(1) Iu I2, Kl9 K2 e H1, u e H2'0 on R x ( - 00, 00), /1 e H2*0 on K x ( - 0 0 , 00), 
aeHU0 on K x ( - 0 0 , 00), F e H ° ' ° o n K x ( - 0 0 , 00), C e H1'0 on R x ( - 0 0 , 00), 

(2) u, s, <r, x, n, F, C satisfy on R x (—00, 00) equations (3A) —(3.3), (3.6), (3.7). 

Definition 3.3. Elastic state. We say that [u, s, a, x, /1] is the elastic state on R 
corresponding to the constants jn, x, n, & and to the body forces F, C if 

(1) u G C4 on R, C e C1 on R, 

(2) u, g, <r, x, /1, F, C satisfy on K equations (3.1) —(3.3) and equations 

afj= 2fisfj, akk = 3xekk, 

Hij = Wu + S^i • 

The next theorem gives the displacement equation of equilibrium. 

Theorem 3.1. Let [u, s, a, x, /1] be the viscoelastic state on R x (—00,00) 
corresponding to G1, G2, Hl, H2 and F, C. Then 

(3.8) Uijj * dGx + w i j f * dK + i(uktikjj - uiMJJ) * dH! + 2F£ + sijkCkJ = 0 
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on R x (—00, oo) where 

K = i(G, + 2G2) . 

IfFeH1-0, CeH2>° on R x ( - 0 0 , 00), 2GX + G2 ^ 0 and 

Fi,i - 0 

on R x ( - 0 0 , 00), then (3.8) lakes the form 

(3.9) ufJi * dGx + t i ^ , * dK - iuiMjj * dHt + 2Fr. + «yjfcCw = 0 . 

Proof. (3.4) imply 

ou = Sij * dG, + iSifiu * d(G2 - Gx). 

We substitute this equation and (3.5) into (3.3), then using (3A), (3.2) we obtain 
(3.8). Considering the divergence of (3.8) and using the hypotheses of the theorem 
about F, C we have 

Uijjj * d(2Gx + G2) = 0 . 

Theorem 1.1, (e) yields 

uUjJ = 0 i.e. ekkJJ =0 on R x ( - 0 0 , 00) 

and we obtain (3.9). 

4. THE MIXED BOUNDARY-VALUE PROBLEM AND THE UNIQUENESS 
OF ITS SOLUTION 

Let [u, s, 0, x, fi] be a viscoelastic state on R x (—00, 00). Using (2.1), if v/x, t) e 
e H2'0 on R x (— 00, 00) is an arbitrary vector, we have 

0 = [(TU,i + FJ) VJ + (8JikTik + Vij.i + Cj) . ifiiw»Pf J dK . 
JR 

Integrating by parts we obtain 

(4-1) Ifri/Pij + vJ,d + W ^ . , . i ] d # = 

= ( T o^ + iVijsjuvvv,u) nt dS + ( F ^ + $eJWCjV0tM) dK 
J s J R 

where 5 is the boundary of R and n^ stands for the unit outward normal to S. If we 
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choose Vj(x, t) = Uj(x, t) in (4.1) where uj(x, t) is the displacement field, then we 
obtain 

(4.2) (ai}eis + fi^x^dR = (T^UJ + fly©,) ntdS + (Fjiij + CjCOj)dR 
J R JS J R 

where 

Mj = &jklulfk. 

Denote 

PV = (7i/0 . + jU^;,- . 

Using (3.4) and (3.5) we have 

Gijsij = e?js?j * d G i + iekk^n * d G 2 -

l̂yXy = XyKy * AHX + XW(HJ, - xfy * dH2 = 

= x^j * dHi + (*£-*£, - xfafy * dH2 . 

Assume that Gl9 G2, Hl9 H2eH1
9 then using Theorem 1.1, (f) and Theorem 3.4 

in [ l ] we can write PVin the form 

(4.3) W(x, t) = G.(0) e»(x, t) ef/x, t) + JG2(0) eu(x, t) 6„(x, t) + 

+ Ht(0) xu(x, t) xtJ(x, t) + H2(0) [xf,(x, t)xs
u(x, t) -

4(x, o <.(x, ř)] + j V д * - т) ef/x, o 4(x, т) + 

+ iG(

2

X)(t - T) skk(x, t) en(x, T) + H[l\t - x) xis(x, t) xtJ(x, x) + 

+ H?\t - T) {X%(X, t) xs

u(x, x) - xfj(x, t) xfj(x, T)}] dT . 

Similarly, using (3.6), (3.7) we obtain 

(4.4) W(x, t) = Jt(0) afj(x, t) afj(x, t) + iJ 2(0) akk(x, t) au(x, t) + 

+ X.(0) ntJ(x, t) ntj(x, t) + K2(0) [ 4 ( x , t) ns

tj(x, t) -

- 4(x, t) 4(x, t) + j\j?\t - x) afj(x, t) afj(x, x) + 

+ $J2

l\t - T) akk(x, t) au(x, x) + K[1}(t - x) ^(x, t) /i,7(x, T) + 

+ K<£\t - T) {4 (X, t) 4(x , T) - fifj(x, t) 4(x, T)}] dT 

iih,I2,Kt,K2eHl. 
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Assuming that S is smooth and using Stokes's theorem, we can rewrite (4.2) in the 
form (see [4]) 

(4.5) I WdR = [(piUi + njtiJk{Ski - nkn^ cot) dS + 
J R J 5 

+ J (FiUi + CtcOi)dR 

where 

(4.6) Pi = njcxji + &m[pultU - (iijknjnk)a + Ct] nh. 

Denote 

(4.7) njfijk(Ski - nkHi) = q-, 

(4.8) (5ki - wfcnf) cof. = CD[ . 

g- and OJ- are tangential components to S of the vectors njfijk and oyt, respectively. 

In the next definition the mixed boundary-value problem is formulated and the 
next theorem gives the proof of the uniqueness of the solution of this problem for 
certain G1, G2, Hx and H2. 

Definition 4.1. The mixed boundary-value problem. Let R be bounded by a smooth 
surface S. Let S = Sx u S2 be a mutually disjoint decomposition of S. Let ph q\ 
be given on Sx x ( - c o , co) and ut, cb\ on S2 x ( - c o , oo) so that pt, q\ are conti­
nuous on S! x [0, oo) and vanish on Sx x (— oo, 0), ut, cb\ are continuous on 
S2 x [0, oo) and vanish on S2 x ( - c o , 0). Let the body forces F e H 0 ' 0 , CeH10 

on R x ( - c o , oo) be given on R x (— oo, oo). 

Then the viscoelastic state [u, s, a, x, /i] on R x (—oo, oo) corresponding to 
Gu G2, Hx, H2 (I3,12, Kl9 K2) and to the same F, C for which 

(4.9) Pi = Pi, q\=q\ on St x [0, oo) , 

u{ = Hi, CD\ = cb\ on S2 x [0, oo) , 

ph q\, CD\ being defined by (4.6) —(4.8), is called the solution of the boundary-value 
problem corresponding to the vectors P£, q\, uh cb\. 

R e m a r k . (4.9) is met on S in the sense of continuous extension of all quantities 
in (4.6)-(4.8). 

Theorem 4.1. The uniqueness. Let R be a bounded region the boundary of which 
is a smooth surface S. Let [u, s, a, x, fi] and [u', s', a', x', /i'] be viscoelastic states 
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on R x (— GO, GO) corresponding to the same F, C and Gl9 G2, Hl9 H2 (ll912, Kl9 K2) 
and let 

(4A0) Gt(0) > 0 , G2(0) > 0 , Hi(0) > 0 , H2(0) > 0 

(or Ix(0) > 0 , I2(0) > 0 , Kt(0) > 0 , K2(0) > 0) . 

Further, let 

Pi = Pi, q\ = q? on S{ x ( - o o , GO), 

ut = u\, CD\ = oj-r on S2 x (—oo, oo) 

where p'i9 q'\9 co? refer to [u', s'9 a', x', / i ' ] . 

Thew • M 

u — u' -= w , £ = e' , <r = a' , 

x = x ' , /i = p' on K x (— oo, oo) 

where w(x, t) represents a rigid motion of the body. 

Remark . (1) As in the classical viscoelasticity, it is possible to replace conditions 
Gj(0) > 0, G2(0) > 0, Hi(0) > 0, H2(0) > 0 in Theorem 4.1 by the following ones: 
Gj(0) = G2(0) = Hi(0) = H2(0) = 0 and G[x\ G(

2
1}, H[x\ H2

l) are positive definite 
functions. (The definition of the positive definite function see in [1], Definition 8.L) 
The proof of the uniqueness for this case is analogous to that of Theorem 8.2 in [1]. 

(2) It is possible to formulate Theorem 4.1 when using differential operators 
Pi(D)9 Qi(D) (i = 1, 2, 3, 4). If pf' > 0, qf * > 0, the uniqueness can be proved 
using Theorem 4.1 and Theorem 4.4 in [1]. 

P roof of T h e o r e m 4.1. As (3.1) —(3.7) are linear, [u — u'9 s — s'9 a — a', 
x — x', /i — p'~\ is a viscoelastic state on R x (—oo, oo) corresponding to Gl9 G2, 
Hl9 H2(ll9 I2, Kl9 K2) and to zero body forces. The boundary conditions are equal 
to zero for this state and therefore the right hand side of (4.5) is also zero, i.e. 

W(x9 t) = 0 on R x ( - c o , oo) . 

If (4.10) holds, then (4.3) or (4.4) and Theorem 8.1 in [1] yield 

£ = 0 , x = 0 on R x ( - 0 0 , 0 0 ) . 

If s = 0, then the displacement vector is of the form 

w,(x, t) = a{t) + eijk bj(t) xk . 

But 

2emnpWp,nk ~ 0 

and therefore the condition x = 0 gives no further restriction on w and the proof 
is complete. 

The next two theorems deal with the behaviour of viscoelastic bodies at t = 0. 
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Theorem 4.2. Let [u, s, <r, H,/*] be a viscoelastic state on Rx ( — oo, oo) cor­
responding to Gl9 G2, Hl9 H2 and F, C. Then [u(x, 0), s(x, 0), o(x, 0), x(x, 0), 
Kx» ^)] l s a n elastic state on R corresponding to the constants 

H = ^Gl(0), % = iG2(0), 

n = ff.(0), 9 = Jf2(0) 

and to the body forces F(x, 0), C(x, 0). Here u(x, 0), s(x, 0) etc. denote 

u(x, 0) = lim u(x, t) etc. 
t-»0 + 

Proof. Using Theorem 1.1, (f) we can write for example (3.5) in the form 

/^(x, t) = Hx(0) xtj(x, t) + f x f/x, f - T) H?XT) dT + 

+ H2(0) xjt(x, t) + | \ . f ( x , t - T) H ^ T ) dT . 

Hence 

liu(x, 0) = lim iitj(x, t) = Hx(0) xtj(x, 0) + H2(0) xjt(x, 0) 
r->0 + 

and comparing with Definition 3.3 we obtain 

Ht(0) = n, H2(0) = &. 

Proceeding to the limit in (3.1) — (3.3) as t -> 0 +, we complete the proof. 

Theorem 4.3. Let [u, s, a, x, /*] be a viscoelastic state on R x (—oo, oo) cor-
responding to Gl9 G2, Hu H2 and F, C. Further, let Gl9 G2, Hl9 H2 eHN, u eH*'N 

on R x (—oo, oo), where N ^ 1. Define the following functions of x 

(4.11) % ( x ) = G.(0) «lf)(x, 0) + #y[G-(0) - G.(0)] 4*>(x, 0) , 

(4.12) X ( * ) = IIi(O) *.YX*. 0) + II2(0) <>(*- 0) , 

(4+3) wEi(x) = Ff>(x,0) + 

+ " l {Gf ->(0) 8 &(x, 0) + l[Gf->(0) - G<ff->(0)] ^ . ( x , 0)} , 
n = 0 

(4.14) "C i(x) = C<">(x,0) + 

+ " l {H<"->(0) x j ^ x , 0) + H</->(0) <>((x, 0)} 
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where for example we denote 

e<f (x, 0) = lim SW(x, 0 , e™(x, *) = flllM etc. 
t-+o+ of 

Then [u(iV)(x, 0), a(JV)(x, 0), N<r(x), K(N)(X, 0), */*(x)] is an e/aslic state on R corre­
sponding to the constants 

1^ = ^ ( 0 ) , x = iG2(0), n^H^O), S = H2(0) 

and to the body forces NF, NC. Further, there is 

(4.15) <>(x,0) = % ( x ) + 

+ I ' {G<r">(0) *$(*, 0) + ^,.,[G^->(0) - Gf->(0)] e$(x, 0)} , 
n = 0 

(4.16) nm(x, 0) = % ( x ) + Y {Hf-">(0) x<">(x, 0) + H<"-">(0) x<">(x, 0)} . 
n = 0 

Proof. Differentiate (3.1) —(3.5) N-times with regard to t and proceed to the 
limit as t -* 0 +. We obtain 

e<J>(x,0)=i[«<>,0) + « < > , 0 ) ] , 

^(M) = ^,«r>,o), 
(4.17) <rW(x, 0) - K u K M * , 0) + C$(x, 0)] + Ff >(x, 0) = 0 , 

(4.18) <>(x, 0) = £ G<r ">(0) e<n)(x, 0) + 

+ &„ I [G<"-">(0) - G<N-">(0)]sГ(x,0), 
п = 0 

(4.19) „<Дx, 0) = £ { H Г ">(0) *«(*, 0) + Hf->(0) *<">(*, 0)} . 

(4.11) and (4.18) yield (4.15). (4.12) and (4.19) yield (4.16). (4.15)-(4.17) imply 

NaihJ(x) - $ekU[Nfi,kM(x) + "Ct,,(x)] + »Fj(x) = 0. 

(4.11) implies 

»af/x) = G.(0) e<f(x, 0) , »okk(x) = G2(0) eg>(x, 0) . 

Now it is obvious from Definition 3.3 that [u(N)(x, 0), £(iV,(x, 0), Na(x), xm(x, 0), 
"/.(x)] is the corresponding elastic state. 
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5. BETTI'S THEOREM 

In this section a generalization of Betti's theorem to elastic and viscoelastic bodies 
with couple-stresses is established. 

Theorem 5.1. Betti's theorem for viscoelastic bodies. Let R be bounded by a 
smooth surface S. Let [u, £, a, x, /i] and \u', s', a', x', ji'] be viscoelastic states 
on R x (— oo, co) corresponding to the same Gu G2, Hi, H2 and to the body forces 
F, C and F', C, respectively. Further, let u, u' e H4J on R x (—oo, oo). Then for 
all t e (— oo, oo) 

(5.1) (p\ * duf + q'i * dcD;) dS + (F; * du{- + C'i * dc0f) dR = 
Js JR 

= fay * d£,7 + /^7 * dxl7) dK = (<TIV * dejy + /zl7 * dx^dR = 
JR J R 

= (pi * du; + q' * dco'i) dS + (Ff * du; + Ct * dco'i) dR 
J s JR 

where ph q\ are defined by (4.6), (4.7). 

Proof. If is smooth, then using Stokes's theorem we obtain from (4.1) 

(5-2) [iaij(vij + vj,d + iHiftuvVvtui] dR = 

= (jPî i + q' • i^ikivi,k) d$ + (-V,- + jCi8iuvvv>u) dR 
J s JR 

where pt and qj are defined by (4.6) and (4.7). Now we put 

v,(x, t) = u;.(x, 0) 

and (5.2) has the form 

(5.3) f [crr7(x, t) £;7(x, 0) + fiij(x, t) x'ij(x9 0)] dR = 

= f [Pi(x, 0 u;(x? 0) + q\(x, t) oo\(x, 0)] dS + 

+ f [F,.(x, t) u;.(x, o) + Q ( X , t) cD;(x, o)] d R . 

JR 

Further, writing in (5.2) 

u ; U ) ( x , T ) s M ^ 
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instead of vt(x, T), (5.2) yields 

(5.4) f [<ry(x, t - t) e'tfXx, t) + ^(x, t - t ) «#>(*• t)] dR = 
J R 

= f [Pi(x, t - T) U' ;
( I )(X, T) + c7|(x, J - T) <of\x, t )] dS + 

+ f [H*> * - t) u'i(i\^ t) + Ci(x, f - T ) « ; ( 1 ) ( X , t)] dR . 

Theorem 1.1, (f), yields for example 

(5.5) f (ai} * du'y) dR = f I T t-./x, t - t) de'u(x, t ) l dR = 

JR JRLJ-oo J 

= (Tl7(x, t) s'ij(x9 0) dR + a 0 (x , t - T) e;(1)(x, T) dr dR etc. 
J R J R LJ o J 

f (pi * duj) dS = f [ Pi(x, t - T) du;(x, T)1 dS = 
J S JsLJ-oo J 

= Pi(x, t) u'i(x, 0) dS + pf(x, t - T) u;(1)(x, T) dT dS etc. 
J 5 J S L J 0 J 

Integrating (5.4) with respect to time from 0 to t, adding it to (5.3) and using (5.5) 
we obtain one part of (5A). Further, we write 

liij * dx\j = fiSij * dxfj + $ * dx'if = (Hx + H2) * dx?y * dx£ + 

+ (Hx - H2) * dxfj * d x # = (Hi + H2) * dx'J * dx?. + (H t - H2) * dx# * dx£ = 

= /L;y * dx lV . 

Similarly 

°ІJ * de'0. = a'ij * Љy 

and the proof is complete. 

Theorem 5.2. Betti's theorem for elastic bodies. Let R be bounded by a smooth 
surface S. Let [u, a, <r, x, ft] and [u', <r', e', x', /i'] be elastic states on R corresponding 
to the constants \i, x, 17, # and to the body forces F, C and F , C , respectively. Then 

(5.6) I (P*u; + q;co;) dS + f (Ff.u; + o ; ) dR = 
JS J R 

= ( ( JOeO+ Vtj*u)dR = ( a 0 6 u + H'ijXij)AR = 
J R J R 

= I (p'lMi + « '> i )ds + f (F;uf + c;.cOt.)dR 

w/iere p„ a; are defined by (4.6), (4.7). 
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Proof . (5.6) follows from (5.2) setting v{(x, t) = u-(x). It is easy to verify that 

Vijx'ij ^ VijXU > ai/iJ = aiJSU • 

Theorem 5.3. Betti's theorem for separable loads. Let R be bounded by a smooth 
surface S and let [u, s, a, x, /*] and \u', s', a', x', /i'] be viscoelastic states cor­
responding to Gj, G2, Ht, H2 and to the body forces F, C and F', C, respectively. 
Further, let <P(t) e H1 and 

(1) F(x, t) = F(x) . <P(t) F'(x, t) = P (x ) . <P(t) 

C(x, t) = C(x) . <p(t) C'(x, t) = C'(x) . <P(t) on R x (- oo, oo) 

(2) on Si for all te(—oo, oo) 

p(x, t) = p(x) . <p(t) p'(x, t) = p'(x) . $(t) 

q'(x, t) = q'(x) . <P(t) q"(x, t) = q"(x) . <!>(t) , 

(3) on S2 for all t e (— oo, oo) 

u(x, t) = u(x) . <P(t) u'(x, t) = u'(x) . <P(t) 

co\x, t) = cof(x) . ^>(t) co"(x, f) = o)"(x) . <2>(t) . 

Then (5.6) holds on (— oo, oo). 

The p r o o f of this theorem follows from Theorem 1.1, (e), (f) and Theorem 5.1. 

6. STRESS FUNCTIONS 

In this section the general solutions of equation (3.8) are obtained. They are 
generalizations of the functions G, \jf and cp in [1], Section 9, concerning linear 
viscoelastic bodies without couple-stresses, and generalizations of the functions 
G, B and B0 in [2], Section 11, concerning elastic bodies with couple-stresses. 

Theorem 6.1. Generalized Galerkin solution. Let Gl9 G2, H1 e H1 and 2G1 + G2 

possess the Stieltjes inverse (2GX + G2)
-1- Furthermore, let FeH0,0, CeH1,0 

on R x (—oo, oo). Let a vector function G(x, t)eH8,0 on R x (— oo, oo) satisfy 
the equation 

(6.1) GiJJkk * dG, - \GlJJkm * dH t = - ( F ; + \eiJkCkJ) * d(2Gx + G,)'1 

on R x (—oo, oo). Then u(x, t) defined by 

(6.2) ut = 2GUJ * d(2G1 + G2) - GJJt * d(G, + 2G2) - \GJJikk * dH, 

satisfies (3.8) on R x (—00, 00). 
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Theorem 6.2. Generalized Papkovich solution. Let Gl9 G2, Ht e H 1 , let Gx and 
2Gt + G2 possess the Stieltjes inverses G^1 and (2Gi + G 2 ) _ 1 . Furthermore, 
let F e H 0 ' 0 , C e H 1 0 on R x ( - 0 0 , oo). Let the vector function ^(x, t ) e H 7 ' 0 

on R x (—00, 00) satisfy the equation 

(6.3) ^ , j 7 * dG- - #, j y f c f c * dHx = - 2 F , - sijkCkJ 

on R x (—00, 00). Let fhe scalar function cp(x, t)e H5,0 on R x (— 00, 00) satisfy 
the equation 

(6.4) -9fll = x / 2 F , + ejklCltk) * dGr 1 

On R x (—00, 00). Then the vector function u(x, t) defined by 

(6.5) ut = ij/t + ^(xj\l/jM)fi - ixj/jji * dH! * dGj-1 - i ( x ^ + <p)ti * 

* d(Gi + 2G2) * d(2Gt + G2y
l - i(x/J%fcfe),f * dH! * d(2Gx + G,)"1 

satisfies (3.8) On R x (—oo, oo). 

The validity of Theorem 6.1 can be easily verified if we put (6.2) into (3.8) using (6.1). 
To prove Theorem 6.2 we could proceed in the same way as in [2], Section 11 for 
the case of elastic bodies with couple-stresses. The completeness of functions ^, q> 
and G can be proved similarly to [5]. 

In equations (6.1), (6.4), (6.3) it is possible to remove integration with respect 
to time using the Laplace transform. The proofs of the last two theorems follow 
from the properties of the Laplace transform. 

Theorem 6.3. Let all the assumptions of Theorem 6.1 be satisfied. Further, let 
(2GX + G 2 ) _ 1 e H 1 . Let us assume that there exists a real number s0 such that 
for every x e R 

G, Gl9 Hl9 (2G- + G 2 ) - \ F,Ce 0(eSQt). 

Then for every s > s0 

G (x ?) G M - \G (x s) H (s) - 3[2j^(*> g) + £ijk CkJ(x, s)] 
^ijjkk{x, S) <Jl{S) - tVtJjkklA*' S) nAS) T^n ( \ ! n ( W 

s\2Gx(s) + G2(sJ] 

on R where G^s) etc. denote the Laplace transforms of G±(t) etc., respectively. 

Theorem 6.4. Let all the suppositions of Theorem 6.2 be satisfied. Further, let 
us assume that there exists a real number s0 such that for every x e R 

ik,(P,Gl,H1,F,CeO(eSQt). 
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Then for every s > s0 

fo,„(x, s) s Gt(s) - ^iJJkk(x, s) s Ht(s) = -2F,(x, s) - elJk CkJ(x, s) , 

?,,.(*, s) s 5,(3) = x,[2F,(x, s) + e,*, cu(x, s)] 

oři R. 
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Výtah 

LINEÁRNÍ VAZKOPRUŽNOST S MOMENTOVÝMI NAPĚTÍMI 

MIROSLAV HLAVÁČEK 

V článku je podána lineární isothermická, kvasi-statická teorie homogenních, 
isotropních, vazkopružných látek s momentovými napětími. Materiálové rovnice 
jsou uvedeny jak v integrálním, tak i v diferenciálním tvaru. Dokazuje se jedno­
značnost smíšené okrajové úlohy a odvozují se věta Betti a zobecněné Galerkinovy 
a Papkovičovy funkce napětí. 
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