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SVAZEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

ON THE DECOMPOSITION OF A POSITIVE REAL FUNCTION INTO 
POSITIVE REAL SUMMANDS 

JlRI GREGOR 

(Received November 7, 1967) 

We shall deal with functions of one complex variable z, £ etc. supposing that these 
functions have some of the following properties: 

A) the function f is analytic in the open right half-plane (hereafter, ORHP); 

B) Ref(z) > 0 for Re z > 0; 

C) f takes real values only on the real positive half-axis, i.e. f(z) is real for z real 
and positive; 

D) f is a rational function. 

A function with properties A, B will be called positive, the set of positive functions 
will be denoted by 0. A function satisfying A, B, C will be called positive real; 0 will 
stand for the set of positive real functions. A function with properties A, B, C, D 
will be called Brune function, the set of Brune functions will be denoted by £$. 

Let us start with a theorem the proof of which could be given using the well-known 
theorem of Herglotz and modifying slightly the proof of Nevanlinna's formula (see 
e.g. [1], p. 118). 

Theorem 1. Let f be a complex function finite in the ORHP and let 

(1) f(z)=jp + »z+ f " L t i ^ d o f t ) for R e z > 0 , j2 = - 1 , 
J -oo Z +jt 

where /3 and fi are real, ft ^ 0 and a is a non-decreasing function of bounded 
variation. Thenfe0. Conversely: if f e0 then there exist real numbers fi ^ 0, /? 
and a non-decreasing function a of bounded variation such that (1) holds in ORHP. 

The analogous theorem in the class 0 of positive real functions reads as follows: 
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Theorem 2. Letf be a complex function finite in the ORHP and let 

(2) f(z) = ЏZ + 
dт(ř) 

+ Jt 
f- /or Re z > 0 , x ) 

where ft ^ 0 and x is a non-decreasing function with its even part2) equal to zero 
almost everywhere and 

*+co dx(t) 

i + Ѓ 
< oo 

Then f'e 01. Conversely: if fe0t then there exists a real nonnegative number JJ, 

and a function x with the mentioned properties so that (2) holds in the ORHP. 

Proof. Let x have the supposed properties. The function 

U J - l + 9 2 

does not decrease; a is a function of bounded variation because lim a(t) exists and 

is finite. The even part of a is constant almost everywhere: f~*°° 

* dx(S) r* drflj) 

*+<-*-ÏЉЛ 1 + S2 

'' dт(Я) 

1 + s2 

- f d < ď ) f dт(-ď) = Г00 dт(g) 
~ J _ M l + ð 2 + J + 0 0 l + ð 2 J _ „ . l + S 2 < oo . 

Furthermore, if A > 0 then 

ЛA ЛA ЛO (*A 

tda(t) = tdO(ř) - tda(-t) = í d[<т(l) + <x(- l ) ] = 0 
J ~A Jo J A Jo 

and we get 
/• + 00 

| | ř d«т(ř) = 0 . 
J — oo 

*) Hereafter, l j l i ^ means the "valeur principal,', i.e. 

ę(t) áт(ť) - lim 
L-oO J -

(p(t)dт(ï). 

) The even part of the function cp means the function 

Ev(p(z)^±[(p(z)+ <p(-z)]. 
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Suppose now that (2) holds. It means: 

, + 0° dtp) /(-) = „z + |ff" -------- +j\[{Xtdo(t) = 
J -oo Z + j t" J -uo 

= AÍZ + 
[1 + Ѓ + jtz - t 2] 

z + j ř 
do(i) = џz + \\\ 

Z + Jt 

and we can omit the symbol of "valeur principal" in the last integral. We have got 
exactly the formula (1) for ft = 0; hence, according to Theorem 1 it follows: fe 0. 
Suppose now Im z = 0. We can write 

/(-) = pz + Г ^ = ,z + i ľ Г ^ ) = 
-oo Z + jt J +oo Z - jt 

_ P + l|Г*ßL-дłî 
J -oo z - j ř 

and therefore fe 0l\ the first part of our statement has been proved. 
Suppose fe 01, that is (a fortiori) fe 0. According to Theorem 1 it means 

00 1 + jtz f(z) = j(3 + nz + i 
z + jt 

do(t) 

Moreover, f(z) = f(z) for Re z > 0. After short calculations we get 

J - „ < 2 + 22 ' 
for all z with Re z > 0, and e.g. for z = 1 we have fi = 0. Let us define a function T 
as follows 

Ф) = 

ľ (1 + S2) d<т(3) for . > 0 

- ( * ( ! + ð2)dö(Ә) for í < 0. 

It is evidently odd and non-decreasing. We have supposed a to be of bounded 
variation, hence 

ГШ- and ГЩ 
l o l + t 2 J - » l + t 2 

are finite. Furthermore, do(t) = dt(t)j(l + t2) so that we can write 

(1 + jtz) dx(t) 
f(z) = џz + 

(z+jt)(í + i2) 
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At the samé time 

00 (1 + jtz) dx(t) 

(z+jt)(í + t2) í + _ІL_]d т( ř) 
Z + jt 1 + t2 

and jiA [f di(t)]/(l + t2) = 0 for every A > 0. Hence, 

|« dr(t) 
f(z) = /Lz + lim 

-A
 z + 7 ř 

which was to be proved. 
Let us note that 

I jt dr(t) 
z 2 + í 2 

holds in the ORHP. Multiplying the numerator and the denominator of the formula 
(2) by (z — jt) we can write equivalently 

(2a) 

We shall use the following 

f(z) = zíц + 2 Г dт(í) 

Lemma. Let a real number k, 0 < k < \%9 be given. For any real t and any com­

plex z + 0 satisfying larg z\ _ k, the following inequality holds 

I 
< 

1 

|z2 | sin 2k 

Proof. Let be 0 < k = \n. If <p = arg z, then cos 2<p = 0 and therefore 

jz2 + t2\2 = |ö
2e2 j> + í2 |2 = <?4 + 2ø2í2 cos 2p + í4 ^ ø 4 , 

hence 

<i< 
|z2 + t2\ Q2 \z2\ sin2k 

Now, let be \n < k < \n. The function 

m(t) == t4 + 2D2t2 cos 2k + O4 

assumes its extremal values at the points t0 = 0, t12 = ±Q V ( ~ c o s 2k), tu t2 being 
the points of local (and absolute) minima. Therefore, 

m (t) = m(tt) = D4 cos2 2k - 2O4 cos2 2k + £4 = O4 sin2 2k 
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for every t. But cos 2q> ^ cos 2k for 0 ±_ cp ^ k < _-7r whence we get 

|z 2 + t2|2 ^ m(t) ^ O4 sin2 2k , 

which completes the proof. 

Now, the meaning of the constant \i in (2) or (2a) can be specified: 

Theorem 3. Let there be given a real k with 0 < k < _TI, and let <3 denote the set 

of complex numbers z satisfying the condition |arg z\ _̂  k. Then 

lim&) = „ 
z->oo Z 
ze0 

holds for any function f e M. 

Proof. The function f can be written (see (2) or (2a)) as follows: 

f{z) = zL + l[a M*) \ _ Иjľнэт 
where o- is a non-decreasing function of bounded variation and 

Í: 
1 + V 

2<Ч0 

is finite for any z in the ORHP. Let us estimate the integrand using the Lemma: 

We have 

i + 1 2 i 
s i + 

1 + | z | 2 

Iz|2sin2fc 

and therefore 

i + í2 

= M = 1 + 
1 + q2 

q2 sin 2k 

for every t and for any z e &, \z\ ^ q > 1. Hence, from lim |(1 + t2)j(z2 + t2)\ = 0 
there follows z-+oo 

zє9 

Ґ 0 0 1 .4- f 2 

/ = = l i m 777**)-o. 
z-юo J 0 Z + ř 

The last step of the proof is now obvious. 

The proof of the following theorem is an easy modification of the proof of Stieltjes-
Perron's formula (see [1], p. 155 — 7). 

433 



Theorem 4. Let 

1 + jtz 

z +jt 
f(z) = jß + џz + <кo 

where p, \i are real, li _ 0 and o is a non-decreasing function of bounded variation 
(i.e.fe 0). Then for any real t and any real c the following equality holds 

i[r(t + 0) + x(t - 0)] - I [T(C + 0) + T(C - 0)] = lim - | Re/(x + jy) dy 
x-*0+ 71 J c 

T(t)= P ( l + $2)da($). 

with 

In particular: 

Theorem 4a. Let 

f(z) = [IZ + I I - ^ 
J -oo z + j 7' 

where \x _• 0 and Zc£ the function T satisfy the conditions of Theorem 2 ( i . e . / e ^ ) . 
Then for any real t and any real c the following equality holds 

i\x(t + 0) + x(t - 0)] - 1[T(C + 0) + T(C - 0)] = lim - f Re / (x + jy) dy . 
x-+0+ 71 ] c 

Corollary. Letfe 0 and letf be analytic in the closed right half-plane including 
the point oo. Then the function T from Theorem 4 and 4a is absolutely continuous 
and has derivatives of all orders. Moreover, if f e 01, then all these derivatives are 
rational functions. 

Now the following theorem concerning the decomposition of a positive real 
function can be proved: 

Theorems. Let fe0 and lim (f(z)\z) = 0 (i.e. there exists a function % with 
Z~* 00 
ze® 

properties as in Theorem 2 and satisfying 

(*) / ( - ) = 2z 

dт(í) 

o z2 + Ѓ 

Here, S) has the same meaning as in Theorem 3). For any real nonnegative bounded 

function r (0 ^ r(t) ^ M for any t > 0) the function g 

(3) 9(Z)=* r ^ < o 
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satisfies the following conditions: g e 01, f — g e M. Conversely, let f, g, he 01, 
f =- g + h, l im/(z)/z = 0. Then there exists a nonnegative bounded function r 

so that (*) and (3) holds. 

Proof. Let us prove the first statement. We have supposed that 

o <r(í) < j 
" M ' 

Denoting 

one obtains evidently 

Ф = ±-ľr(9)dЩ 
MJo 

•(г)dт(0 
Jo 1 + t2 м j 0 1 + t 

where the latter integral is finite because j£ (1 + t2) i dx(t) is finite. The function xx 

is non-decreasing and, according to Theorem 2, g e 02. In a similar manner 

*>-£(' fw> 
gives 

dт2(í) 

ÍOO 

z2 + t2 

We have TX + T2 = T almost everywhere and, therefore, h = / — g, which completes 
the proof of our first statement. 

Suppose now/, g,he 01, f = g + h and lim (f(z)\z) = 0. The last condition means 
lim ((g(z) + h(z))\z) = 0. But lim (g(z)jz) = /*! ^ 0 and lim (h(Z)/z) = /*2 = 0 , 
therefore, /£! = ^ 2 = 0. According to Theorem 2 there exist two functions xx and T2 

such that 

r dT.(o , , , _ . r d-a(Q Ч ' ) - - Г # ^ . ад-».Г 
Since Re/(x + jy) = Re g(x + j'y) + Re h(x + jy) for any x > 0 and the functions 
/, g, h satisfy the conditions of Theorem 4a we get f = f t + f 2 the bar being used to 
denote the arithmetic mean of the one-side limits at the point t (i e. f (t) = ^ ( i * + 0) + 
+ x(t — 0)]). The functions f, fl5 f2 are non-decreasing and without loss of generality 
we may assume thet they are nonnegative and f x(0) = f2(0) = 0. Let $ denote the 
set of t such that f(t) = 0 for t e S. Then, obviously, xx(t) = 0 for t e $. Therefore, 
the measure induced by f t is absolutely continuous with respect to the measure 
induced by f. According to Radon-Nikodym Theorem there exists exactly one 
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function r (considering all the equivalent functions as equal to each other) for which 
the following holds 

r(í) ^ 0 and xi(ř) = Г r(3) dx(9) 

In a similar manner there exists one nonnegative function g so that 

?2(t) = 

holds. But 

ø(9) df (9) 

.(0 + h(t) = Г(K«) + в(Щ) dЏ) = ï(ř) 

and therefore r(t) + o(t) = 1 almost everywhere. The functions r and £ are non-
negative, hence r(t) = 1 which completes the proof. 

Note that Theorem 5 could be generalized. Replacing the assumption f, g, h e 0t 

by the more general/, g, he 0, using the representation of / from Theorem 1 and 
considering the equation 

M M J _ æ z + jt 

instead of (3) we can prove this more general theorem quite similarly as above. 
Details can be omitted here. 

By a suitable choice of the function r in Theorem 5 the function g in the first part 
of this theorem can be given in a more concrete form: 

Theorem 6. Let f e 8% and lim (f(z)jz) = 0 where 3f has the same meaning as 
z-*co 
ze2) 

in Theorem 3. Let (pe0l and let cp be analytic in the closed right half-plane including 
the point oo. Then the function r(t) = Re (p(jt) satisfies the conditions of Theorem 5 
and for the function g in (3) there holds: g e 0t and 

(1) Mg(z) = / ( z ) Ev cp(z) - £ £ (Bjk(z) + ( - ! ) * C ^ z ) / * " ^ " ^ 
1=t fc=i (k — 1)! 

where Ev (p(z) means the even part of <p, pj are the qftuple poles of the function cp, 
j = 1,2,..., p and the functions Bjk(z), Cjk(z) do not depend onf,M = max Re cp(jt) = 
= M * . 

(2)f-gem 

(3) / / , moreover, f e 0!, then (1) and (2) holds with g,f— g e J*. 
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Proof. A finite max Re <p(jt) = M* does exist. According to Theorem 5 

g(z)^ — \[\ ° ° R e ^ ) d T ( 0 e ^ forany M ^ M* 
M J -co z +jt 

and f — g eM. The third statement will be obvious if we prove the formula (l) above. 

Let us denote 

<KM = ̂ ) . " 
Z + £ 

The function cp being a rational function, the only poles of Ev cp(z) are ±p(, i = 
= 1,2,.. . , p . We can write 

, ft [ B2k(z) C2k(z) I ft r Bpt(Z) Cpfc(z) 1 

--iLtf + fcr" (z-m '" A he+/y (e-/g*J 
for any z with Re z > 0. Consider the positively oriented circles |£ + j8f| = ef, 
|£ — /J.| = g.? respectively, with sufficiently small eh and, similarly, the circle 
\z + £| = e0. Multiplying (4) by (£ + jt?,)*"1 and (£ - / J , ) * - 1 respectively and in­
tegrating along the mentioned circles we get 

(5) Bik(z) = -±-[ *((,z)(t+ /!?-* tf, 
2xj JK+ 

Cik(z) = -~-[ ^ z ) ^ - ^ ) * - 1 ^ , t=l,29...,p;k = l,29...9qi; 

-4(z) = — f <!>(£, z)d£ = Ev<p(z), 

27CIJK 

where obviously the functions ^4, Bjfe, Ci& depend only on the function cp. Let us 
consider now the formula 

/wнíГ^ 
J -oo Z + 

dt(Q 

j< 

The following differentiation of the integral for any z in the ORHP can be easily 
justified: 

.(z+jtr 
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Particularly, for z = _ £ t h e r e j s R e { _ ^ > Q a n d t h e r e f o r e 

-*".-- f " _!_) -f^X-ßò, lУ-i 
--(-Ä+jO* (fc-i)! l ; • 

Furthermore 

• ) _ 

;0* 
/„_|f|+" __!____(_!)-iff _____ 

J-_0*.+jO* v " J 1 - ( - / » . -

But Af^(z) = ijl—__ *(/*, z)dT(f), hence 

Mfl(z) = j(z) Ev «»(-) + £ 2 W ) Its + ^ ( z ) I*}) 

which completes the proof. 

The following particular case is worth to be mentioned: 

Corollary: Let fe 01 and lim (f(z)\z) = 0. Let cp e _? and let all the poles pt of the 
function (p be simple. Then Theorem 6 holds and 

Mg(z)=f(z)Evcp(z) + i ^f^-
i = i z 2 - pt 

where kt = res cp(z). 
Z = fii 

The corollary follows evidently from Theorem 6 (note that res cp(z) = — res cp(—z)). 
z = Pi z=~pi 

Choosing in particular cp(z) = aj(a + z), a > 0, we get the theorem formulated 
in [1] p. 158 for functions fe 0>. Such a choice of the function cp is closely related 
to the so called Richard's Theorem, which has been widely used in the theory of linear 
passive electrical one-port synthesis. From this point of view we can consider 
Theorem 6 as a generalization of Richard's Theorem. The mentioned choice of the 
function cp has, in fact, been used by PONDELICEK when investigating some special 
problems of linear passive one-port synthesis. Theorem 3 includes a special case of 
Theorem of WOLFF, the proof of which (using another way) can be found in [5], 

Let us state two more remarks concerning the last two theorems. 

1) Theorem 6 can be proved without the assumption lim (fz)\z) = 0 modifying 
slightly the statement ( l) . Denoting lim (f(z)jz) = // Theorem 6 can be applied to the 
function 

F ( z ) - / ( z ) - A _ . 
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All the statements remain true except formula (1), which becomes 

Mg(z) = (f(z) - »z) Ev cp(z) - f f (Bjk(z) + (-1)* C , t ( z ) ) ^ t ^ + 
j = i u = i (k — l j ! 

+ A* [ I ( M - ) - C;i(z) /?,- + I (Bj2(z) + C,2(z)] . 
.7 = 1 1 = 1 

2) Neither is the assumption lim (f(z)\z) = 0 essential in Theorem 5, 

Now we can easily verify 

Theorem?. Let f, a, he &, lim (f(z)\z) = 0 and let f, g, h be analytic functions 
z-»oo 
ze0 

in Jhe closed right half-plane including the point oo, f = a + h. Then a function 
cp e &, analytic in the closed right half-plane including the point oo exists such 
that 

, N 2z f00 Re ©(/*) dr(r) f w ^ " , . , 
a(z) = — zv-±—w 9 where M ^ max Re cpht) 

M J 0 z2 +' t2 . 

and 

dz(t) f(z) = 2z 
o z2 + í2 

Proof . According to Theorem 5 there exists a function r such that 

= ? i r KOM) = 2z Г jËEißL 
* W M j 0 z2 + í2 J 0 z2 + ř2 

Corollary of Theorem 4 says that the functions T and TX are continuous and have 
continuous and rational derivatives. Therefore, r(i) = t\(i)\t'(i) ^ 0 is a rational 
function. But r is bounded and hence continuous for t g: 0. Let us consider its even 
continuation (for t < 0) and the function 

(p(z) = 71 ---• . 

J - c o - + ; < 

The assumptions of Theorem 2 are evidently satisfied, therefore cpe0t. Moreover, 
q> is a rational function (i.e. q> e 38) analytic in the closed right half-plane including 
the point oo. Using now Theorem 4a in this special case we get for every t 

% r(i) dt = lim Re cp(x + jy) dy = Re q>(jy) dy . 
J to *-*°+Jto J to 

The integrands are continuous and nonnegative, therefore nr(i) = Re (p(jt). This 
is, in fact, the statement under discussion. 
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Theorem 7 and the well-known properties of Brune functions (see [4]) give a corol­
lary which is important in the synthesis of linear passive lumped electrical one-ports: 

Corollary: Letfe M and letf = f0 + g + h he any decomposition of the function 
f into summands f0, g, h e &. 

Then the summands f0, g, h have the following structure: 

n 2k -z 
f0(z) = ixz + X 

i z 2 + ш 2 

where zt = jcot are all the pure imaginary poles of the function f, kt are the residues 

of f at these points, \i = limf(z)/z; 
z-+co 
ze® 

g(z) = -j[/(-•)Evtfz)-i £(Bjk + (-iycy^tM], 
M \_ j=i fc=i (k - 1)! J 

where cp e ^ is a certain function analytic in the closed right half-plane including 

the point oo; the others have the same meaning as in Theorem 6 

h(z)=f(z)-f0(z)-g(z)e@. 

Special cases of Theorem 7 and its corollary (special choices of the function cp) 
are widely used in the linear passive lumped one-port synthesis. We can therefore 
consider the corollary of Theorem 7 as the basis of a general theory of series — parallel 
one-port synthesis and further investigations may give solutions of many unsolved 
problems. Obviously, this cannot be included here. 
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Výtah 

O ROZKLADU REÁLNĚ POSITIVNÍ FUNKCE V SOUČET REÁLNĚ 
POSITIVNÍCH FUNKCÍ 

JIŘÍ GREGOR 

Analytické funkce jedné proměnné, které mají kladnou reálnou část v pravé polo­
rovině a které nabývají reálných hodnot na kladné reálné poloose, se nazývají reálně 
positivní funkce. V článku jsou formulovány nutné a postačující podmínky pro to, aby 
daná PR funkce byla součtem dvou PR funkcí (Věta 5). Věta 7 charakterisuje struk­
turu sčítanců ve vztahu f = f0 + g + h, kde f je daná PR funkce, f 0 , a, h jsou PR 
funkce af0 obsahuje všechny ryze imaginární póly funkce f 
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