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SVAZEK 14 (1969) APLIKACE MATEMATIKY ClsLo ¢

ON THE DECOMPOSITION OF A POSITIVE REAL FUNCTION INTO
POSITIVE REAL SUMMANDS

JIRf GREGOR

(Received November 7, 1967)

We shall deal with functions of one complex variable z, £ etc. supposing that these
functions have some of the following properties:

A) the function f is analytic in the open right half-plane (hereafter, ORHP);

B) Re f(z) > 0 for Rez > 0;

C) f takes real values only on the real positive half-axis, i.e. f (z) is real for z real
and positive;

D) fis a rational function.

A function with properties A, B will be called positive, the set of positive functions
will be denoted by £. A function satisfying A, B, C will be called positive real; £ will
stand for the set of positive real functions. A function with properties A, B, C, D
will be called Brune function, the set of Brune functions will be denoted by 4.

Let us start with a theorem the proof of which could be given using the well-known
theorem of Herglotz and modifying slightly the proof of Nevanlinna’s formula (see

e.g. [1], p. 118).

Theorem 1. Let f be a complex function finite in the ORHP and let

+

1+ jtz
+ jt

(1) f(Z)=J'ﬂ+ﬂZ+J do(t) for Rez >0, j2=—1,

-
-0 <

where B and u are real, p = 0 and o is a non-decreasing function of bounded
variation. Then f e P. Conversely: if f e P then there exist real numbers p = 0, f§
and a non-decreasing function o of bounded variation such that (1) holds in ORHP.

The analogous theorem in the class £ of positive real functions reads as follows:
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Theorem 2. Let f be a complex function finite in the ORHP and let
+ o0 d t
(2) f(z) = pz + [ﬁ ——T-(-)‘ for Rez >0,")
o 2+t
where p = 0 and t is a non-decreasing function with its even partz) equal to zero

almost everywhere and
+
dz(t
[t
cw 1+t

Then fe R. Conversely: if fe R then there exists a real nonnegative number u
and a function © with the mentioned properties so that (2) holds in the ORHP.

Proof. Let 7 have the supposed properties. The function

t
dz(9
e 1+ 9
does not decrease; o is a function of bounded variation because lim a(t) exists and
is finite. The even part of ¢ is constant almost everywhere: 17

Oy

o(t) + o(—t) = f e T
t t . + oo
[ [ e [
.1+ 92 b 1+ 92 o 1+ 92

Furthermore, if A > 0 then

r ¢ do(t) =j:zdo(t) —-thda(—r) :f:td[o(t) +o(—i] = 0

—A

and we get

|J|+wtda(t)=0.

-0

h Hereafter, I_[l * % means the “‘valeur principal”, i.e

+ o 4
[ﬁ p(t) de(s) = lim f o(t) de(1) .
A~ 4

- o0

2) The even part of the function ¢ means the function

Ev 9(z) = Llp(2) + o(—2)1.
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Suppose now that (2) holds. It means:

0 =+ i O o -
. Iﬁm [1 + 12 4tz —t ]da(t) — ozt Ij‘li‘” 121];

z + jt

f do(t)

and we can omit the symbol of “valeur principal’” in the last integral. We have got
exactly the formula (1) for § = 0; hence, according to Theorem 1 it follows fe.
Suppose now Im z = 0. We can write

f() = nz + | J ! dr—(t) z+ Ijl w—jr(__]?
=HZ+|f|_:;%(’3.t=f(?)

and therefore f € Z; the first part of our statement has been proved.
Suppose f € #, that is (a fortiori) f € 2. According to Theorem 1 it means

1) = i + ne +f°° LI g0,
z +jt

-

Moreover, f(Z) = 7(7) for Re z > 0. After short calculations we get

B = j Z)d (1)

for all z with Re z > 0, and e.g. for z = 1 we have = 0. Let us define a functlon T
as follows ‘

J‘r (1 + 9)do(9) for t>0
() =9 .,
—f (1 + 9%)do(9) for t<0

It is evidently odd and non-decreasing. We have supposed o to be of bounded

variation, hence
U I
are finite. Furthermore, do(r) = de(1)/(1 + tz) so that we can write

f(z) = uz + I+m (1 + jtz) do( dr(t)

e+ + )
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At the same time
(g (1t da(r)
ez i)+ Jo \z+jt 148

and [4, [tde(£)]/(1 + *) = O for every A > 0. Hence,

f(z) = pz + lim JA dr().

A~o _Az—f-jt,

which was to be proved.
Let us note that
+oo
m jtde(t) _ 0

e

holds in the ORHP. Multiplying the numerator and the denominator of the formula
(2) by (z — jt) we can write equivalently

(2a) o) == (u 2 j ) ‘“(‘)_> .

0o 22+ 12

We shall use the following

Lemma. Let a real number k, 0 < k < 4n, be given. For any real t and any com-
plex z £ 0 satisfying [arg z| < k, the following inequality holds

1
22 + 2

1
= |23 sin2k

Proof. Let be 0 < k < in. If ¢ = arg z, then cos 2¢ = 0 and therefore

lzz + t2|2 - |Q2ezj¢ + t2|2 = 0* + 20%2 cos 2 + * = o*,

hence

|22 + | " e |z%| sin 2k '
Now, let be in < k < 4=n. The function
m(t) = 1t* + 20%t* cos 2k + ¢*

assumes its extremal values at the points t, = 0, ¢, , = +¢ /(—cos 2k), t,, t, being
the points of local (and absolute) minima. Therefore,

m(t) = m(t,) = ¢* cos® 2k — 2¢* cos? 2k + ¢* = o*sin? 2k
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for every t. But cos 2¢ = cos 2k for 0 < ¢ =< k < 17 whence we get
|22 + 2|* = m(t) = ¢* sin® 2k ,
which completes the proof.

Now, the meaning of the constant y in (2) or (2a) can be specified:

Theorem 3. Let there be given a real k with 0 < k < in, and let 9 denote the set
of complex numbers z satisfying the condition |arg z| < k. Then

1) _

lim =~ =pu
z=0 Z
ze9

holds for any function f € A.
Proof. The function f can be written (see (2) or (2a)) as follows:
0 (1 + ) do(t)
Z)=z(p+ 2 — ) =z + 2 B
R O e R G B

where o is a non-decreasing function of bounded variation and

J‘““ 1+ do()

022+t2

is finite for any z in the ORHP. Let us estimate the integrand using the Lemma:
We have

1+ 2| _zz—l 1+ |z)?
22 4+ 13 22+ 2|7 |z*sin2k
and therefore
2 2
1+ <M=1+ m__
z2 4+ 12 q? sin 2k

for every t and for any z € 9, |z| = q > 1. Hence, from lim |(1 + £?)/(z* + 1*)| = 0
there follows e

© 2
I=tim | 27" do(r)=o.
z=wo J o z2 + 2
zeD

The last step of the proof is now obvious.

The proof of the following theorem is an easy modification of the proof of Stieltjes-
Perron’s formula (see [1], p. 155—7).
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Theorem 4. Let

. 1+ jtz
z) = z do
sy = e [ S 4o

where B, u are real, © = 0 and o is a non-decreasing function of bounded variation
(i-e. f € P). Then for any real t and any real c the following equality holds

3t + 0) + =(t — 0)] — Hx(c + 0) + t(c — 0)] leiT+ %fRef(x + jy)dy

with
«(t) = J ;(1 + 92) do(9).

In particular:

Theorem 4a. Let
dr(t)
e 2+t

f@—m+m

where pu 2 0 and let the function t satisfy the conditions of Theorem 2 (i.e. f € &).
Then for any real t and any real c the following equality holds

Ue(t +0) + 7t = O] = x(c + 0) + (¢ ~ O] = lim ﬂ Re f(x + jy) dy.

Corollary. Let f € % and let f be analytic in the closed right half-plane including
the point co. Then the function t from Theorem 4 and 4a is absolutely continuous
and has derivatives of all orders. Moreover, if f € %, then all these derivatives are
rational functions.

Now the following theorem concerning the decomposition of a positive real
function can be proved:

Theorem 5. Let fe 2 and lim (f(z)/z) = 0 (i.e. there exists a function t with

properties as in Theorem 2 and satisfying
©di(r)

* z) =2z et

) se =2 [ S,

Here, D has the same meaning as in Theorem 3). For any real nonnegative bounded
Sunction r (0 < r(t) £ M for any t > 0) the function g

3) o(z) = 2z (* r(t) di(?)

M), 22+ ¢
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satisfies the following conditions: g€ X, f — g € R. Conversely, let f, g, he X,
f=g+h, limf(z)/z = 0. Then there exists a nonnegative bounded function r
so that (*) and (3) holds.

Proof. Let us prove the first statement. We have supposed that
0= r_(t) <1.

Denoting
7,(t) = XI/I.J“ r(9) dz(9)

one obtains evidently

r_dfl_(’)_ijwrﬁdi@

ol 4+12 M), 141

where the latter integral is finite because [¢ (1 + #*) ™" dr(t) is finite. The function 1,
is non-decreasing and, according to Theorem 2, g € Z. In a similar manner

(i) = j 0 (1 - r%—)) dx(9)

h(z) = 2szir—2—(t—)—€%.

Ozz+t2

gives

We have t; + 1, = 1 almost everywhere and, therefore, h = f — g, which completes
the proof of our first statement.

Suppose now f, g, h € #,f = g + hand lim (f(z)[z) = 0. The last condition means
lim ((g9(z) + h(z))/z) = 0. But lim(g(z)/z) = 41 Z 0 and lim (h(z)[z) = u, 2 0,
therefore, py = u, = 0. According to Theorem 2 there exist two functions 7, and 7,

such that
g(z) = ZZJ‘ _(_21_1_-1_([)_ h(z) = 22J‘ Ml_
z° +

o 2’ 022+t2

Since Re f(x + jy) = Re g(x + jy) + Re h(x + jy) for any x > 0 and the functions
f» g, h satisfy the conditions of Theorem 4a we get T = 7, + 7, the bar being used to
denote the arithmetic mean of the one-side limits at the point ¢ (i e. #(t) = 3[«(¢ + 0) +
+ 7(t — 0)]). The functions 7, 7,, 7, are non-decreasing and without loss of generality
we may assume thet they are nonnegative and 7,(0) = 7,(0) = 0. Let & denote the
set of ¢ such that #(f) = O for t € &. Then, obviously, 7,(f) = 0 for t € &. Therefore,
the measure induced by 7, is absolutely continuous with respect to the measure
induced by 7. According to Radon-Nikodym Theorem there exists exactly one
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function r (considering all the equivalent functions as equal to each other) for which
the following holds

()20 and %) = J;r(S) dx(9) .

In a similar manner there exists one nonnegative function ¢ so that

() = J' " o(9) dx(9)

0
holds. But

#(0) + 5(1) = j (19) + o(9)) 4(9) = (1)

and therefore r(f) + o(f) = 1 almost everywhere. The functions r and ¢ are non-
negative, hence r(t) =< 1 which completes the proof.

Note that Theorem 5 could be generalized. Replacing the assumption f, g, he #
by the more general f, g, h € 2, using the representation of f from Theorem 1 and
considering the equation

jp 1 [T+ iz
=B~ 2 ) do(t
Q(Z) M MJ‘_OO z + jt () ()

instead of (3) we can prove this more general theorem quite similarly as above.
Details can be omitted here.

By a suitable choice of the function r in Theorem 5 the function g in the first part
of this theorem can be given in a more concrete form:

Theorem 6. Let f€ # and lim (f(z)[z) = O where @ has the same meaning as
ed

in Theorem 3. Let ¢ € # and let ¢ be analyticinthe closed right half-planeincluding
the point 0. Then the function r(t) = Re ¢(jt) satisfies the conditions of Theorem 5
and for the function g in (3) there holds: g € # and

(1) Mg(z) = /() Bv o(2) —z ki}il(sjk(z) + (=1 )L "; . Sk 5 /jf)

where Ev ¢(z) means the even part of ¢, B; are the q,-tuple poles of the function ¢,
j=1,2,...,p and the functions B;(z), C;(2) do not depend on f, M > max Re o(jt) =
= M*.

@ f—gex
(3) If, moreover, f € B, then (1) and (2) holds with g,.f—geA.
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Proof. A finite max Re ¢(jt) = M* does exist. According to Theorem 5

+ o .
g(z)=—£[ﬁ ~]§e——(e—(lt—)dr(t)e% forany M = M*
M ) _, z+jt
and f — g € #. The third statement will be obvious if we prove the formula (1) above.
Let us denote

Ev ¢(¢) -

2% 2) = z + ¢

The function ¢ being a rational function, the only poles of Ev ¢(z) are +8;, i =
=1,2,..., p. We can write

7) = _i(i S By(z) Clk(z)
4) ?(¢, z) L+ e +k§1 l:(é T ) + @ - ﬁl)"] +

[ ZuC), Ca) “ [ By | Cul2)
2 [ ey Rl [ v i st

for any z with Re z > 0. Consider the positively oriented circles |€ + Bil =g,
|¢ — Bi| = &, respectively, with sufficiently small ¢;, and, similarly, the circle
|z + ¢| = &. Multiplying (4) by (¢ + B;)*"" and (& — B;)*~" respectively and in-
tegrating along the mentioned circles we get

k=1

~

(5) Bulz) = i

-].AK

(&, 2) (& + B)tde,

1 "
Cul) = -

- di(é, z)(lj — ,Bi)"‘ldf, i=1,2,...,p;k=12,..,q;;
2nj J k-

A) = —21—] (¢, 2) d¢ = Bv o(2) ,
JK

where obviously the functions 4, By, Cj; depend only on the function ¢. Let us

consider now the formula
e do(f)
z) = —7
s =1

The following differentiation of the integral for any z in the ORHP can be easily
justified:

_ k—1f(k_1)(z)= +w_d@_ k=
e |ﬁ_w(z+ﬁ)k,z L2
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Particularly, for z = — g, there is Re (=3 > 0 and therefore

: ) )
e e

Furthermore

I = dr(1) _ i dr(r) _
lﬁ-m(ﬁ + jt)* =Y Iﬁ-w( B: — jt)*

_ X dz(7) -
[l s =

But Mg(z) = 1[IX3 &(jt, z) du(t), hence
Ma() = 1 By o(2) + 5, 5 (Bu) 1 + Cal) 1)

which completes the proof.

The following particular case is worth to be mentioned:

Corollary: Let f € # and lim (f(z)[z) = 0. Let ¢ € # and let all the poles B; of the
function ¢ be simple. Then Theorem 6 holds and

i z
Mo(2) = 1) B o) + 3, “L ﬁﬁ)
where k; = res ¢(z).
z=pi
The corollary follows evidently from Theorem 6 (note that res ¢(z) = — res o(— 7))
z=pi i

Choosing in particular ¢(z) = af(a + z), a > 0, we get the theorem formulated
in [1] p. 158 for functions f € 2. Such a choice of the function ¢ is closely related
to the so called Richard’s Theorem, which has been widely used in the theory of linear
passive electrical one-port synthesis. From this point of view we can consider
Theorem 6 as a generalization of Richard’s Theorem. The mentioned choice of the
function ¢ has, in fact, been used by PONDELICEK when investigating some special
problems of linear passive one-port synthesis. Theorem 3 includes a special case of
Theorem of WOLFF, the proof of which (using another way) can be found in [5].

Let us state two more remarks concerning the last two theorems.

1) Theorem 6 can be proved without the assumption lim (fz)/z) = 0 modifying
slightly the statement (1). Denoting lim (f(z)/z) = p Theorem 6 can be applied to the
function

F(2) = /(2) = uz.
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All the statements remain true except formula (1), which becomes
P 4 " f(k_l)(—ﬁ~)
Mg(z) = (f(2) — pz) Ev o(2) ',Zl kZl(B,-k(Z) + (1) Cu(2)) ‘@__1)‘,‘" +
J= = - .

+ WX (B(2) = Cule) B + X (B(2) + Cl2)].

2) Neither is the assumption lim (f(z)/z) = 0 essential in Theorem 5.
Now we can easily verify

Theorem 7. Let f, g, h € &, lim (f(z)[z) = 0 and let f, g, h be analytic functions
“ed

in the closed right half-plane including the point oo, f = g + h. Then a function
@ € B, analytic in the closed right half-plane including the point oo exists such
that

2z [ Re o(ji) du(t) o
z) = = — Y/ where M = max Re ¢t

9() M L 22 412 ‘ o(J1)
and

f(z):ZszM.

0 z? + 2
Proof. According to Theorem 5 there exists a function » such that
o) = 22 [T _ o, [ 450
M), 22+t o 22 + 12

Corollary of Theorem 4 says that the functions v and 7, are continuous and have
continuous and rational derivatives. Therefore, r(f) = t{(¢)[<'(t) = 0 is a rational
function. But r is bounded and hence continuous for ¢t = 0. Let us consider its even
continuation (for ¢ < 0) and the function

o(z) = ﬂlﬁiw%‘

The assumptions of Theorem 2 are evidently satisfied, therefore ¢ € Z. Moreover,
¢ is a rational function (i.e. ¢ € %) analytic in the closed right half-plane including
the point co. Using now Theorem 4a in this special case we get for every ¢

t T T
nJ‘ r(1) dt = lim j Re o(x + jy)dy = J Re ¢(jy)dy .
to x>0+ to to

The integrands are continuous and nonnegative, therefore nr(f) = Re @(jt). This
is, in fact, the statement under discussion.
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Theorem 7 and the well-known properties of Brune functions (see [4]) give a corol-
lary which is important in the synthesis of linear passive lumped electrical one-ports:

Corollary: Letfe B and let f = fo + g + h be any decomposition of the function
f into summands fo, g, h € 8.

Then the summands fy, g, h have the following structure:

Z o 2k;z
Z)=pz+y —5——
folz) = » igl 2% + w?
where z; = jw, are all the pure imaginary poles of the function f, k; are the residues
of f at these points, u = lim f(z)[z;

z=
zeD

9(z) = }—\I/I_ [f(z) Ev o(z) 'J;pl ki(Bjk + (—=1)kCjy) f‘t—k_%@] ,

where @ € & is a certain function analytic in the closed right half-plane including
the point co; the others have the same meaning as in Theorem 6

W) = 1) — 1ol2) — o() e 3.

Special cases of Theorem 7 and its corollary (special choices of the function ¢)
are widely used in the linear passive lumped one-port synthesis. We can therefore
consider the corollary of Theorem 7 as the basis of a general theory of series — parallel
one-port synthesis and further investigations may give solutions of many unsolved
problems. Obviously, this cannot be included here.
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Vytah

O ROZKLADU REALNE POSITIVNI FUNKCE V SOUCET REALNE
POSITIVNICH FUNKCI

JIRT GREGOR

Analytické funkce jedné proménné, které maji kladnou redlnou &dst v pravé polo-
rovin& a které nabyvaji redlnych hodnot na kladné redlné poloose, se nazyvaji redlng
positivnf funkce. V ¢ldnku jsou formulovdny nutné a postaéujici podminky pro to, aby
dand PR funkce byla souttem dvou PR funkci (Véta 5). Véta 7 charakterisuje struk-
turu s&itanct ve vztahu f = f, + g + h, kde f je dand PR funkce, f,, g, h jsou PR
funkce a f, obsahuje v§echny ryze imagindrni pdly funkce f.
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