
Aplikace matematiky

Ivan Hlaváček; Miroslav Hlaváček
On the existence and uniqueness of solution and some variational principles in
linear theories of elasticity with couple-stresses. II. Mindlin’s elasticity with
microstructure and the first strain-gradient theory

Aplikace matematiky, Vol. 14 (1969), No. 5, 411–427

Persistent URL: http://dml.cz/dmlcz/103249

Terms of use:
© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103249
http://dml.cz


SVAZEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON THE EXISTENCE AND UNIQUENESS OF SOLUTION 

AND SOME VARIATIONAL PRINCIPLES IN LINEAR THEORIES 

OF ELASTICITY WITH COUPLE-STRESSES 

IVAN HLAVACEK, MIROSLAV HLAVACEK 

(Received April 22, 1968) 

II. MINDLIN'S ELASTICITY WITH MICROSTRUCTURE AND THE FIRST 
STRAIN-GRADIENT THEORY 

INTRODUCTION 

The purpose of the present paper is to define the weak (generalized) solution of the 
boundary-value problems in some non-classical theories of elastostatics, to prove 
the existence and uniqueness of the weak solution and to formulate the principles 
of minimum potential energy and minimum complementary energy. We follow 
the method used in [1] for the case of Cosserat continuum. 

In this paper we deal (A) with the MINDLIN'S linear theory of elasticity with 
microstructure (see [2]) and (B) with the first strain-gradient theory. We restrict 
ourselves to the statical case and to the bounded bodies in three-dimensional space 
only. 

As for [1], Section 1 of [ l ] represents the mathematical background for our 
present investigation, too. We shall not repeat it, but refer directly to its theorems 
and formulas, using the notation (1.1.1). (1.1.2) etc. 

A. MINDLIN 'S THEORY OF ELASTICITY WITH MICROSTRUCTURE 

1. BASIC EQUATIONS 

The linear case of Mindlin's elasticity theory with microstructure (see [2]) with 
homogeneous microdeformation coincides (as it was shown by R. A. TOUPIN 
in [3]) with the theory of linear oriented bodies with three directors. 
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The following basic equations are established in [2]. The equations of statical 
equilibrium are 

(1.1) Tijj + rJtjtt + Xj = 09 

(1.2) iiijki + ajk + <Pjk = 0 , i,j9 k = 1, 2, 3 

where TtJ = Tji denotes the classical stress tensor, oij means the relative stress tensor 
and fiijk the couple-stress tensor. Xt and <Pjk denote the body force vector and the 
body double-force tensor per unit volume, respectively. 

The geometrical equations take the form 

(L 3 ) £u = uaj) - K w u + uJ,i) > yu = uj,i - <Pu > 
xijk = 9jfc,i 

where ut denotes the displacement vector and (ptj the tensor of the microdeformation. 
The comma stands for the partial differentiation as usual, the round brackets denote 
the symmetrization. 

We suppose that the elastic energy per unit volume s& depends on eij9 yij9 xijk 

as follows 

(1.4) st(eij9 yij9 xijk) = %CijklEijSkl + %bijklytjykl + iaijklmnxijkxlmn + 

+ d ijkimy ijXklm + fijklmXijk£lm + 9ijkiyijSkl 

where 

(1.5) cijki = cklij = cjikl, bijkl = bklij, aijklmn = almnijk, 

Jijklm Jijkml J gijkl 9ijlk 

and cijkl, biJkh atjklmm dijklm9 fijklm, gijkl are bounded and measurable functions 
in Q = Q (J F. Then the constitutive equations become 

(1.6) Tpq = ds/jdepq = cpqijeij + gtipqytj + fijkPq
xijk > 

opq = ds4\dym = gpqifu + biJpqyu + dpqiJkxiJk, 

jipqr = dstfjdxpqr = fPqrij&ij + dijpqryij + apqrijkxijk. 

Observe that for (p(ij) = 0, <P(ij) = 0 we obtain Cosserat continuum. 
Let Q be a bounded region with Lipschitz boundary F1) and F = FM U Fr UN 

a disjoint decomposition of F. Fu and Fr are either open in F or empty and N has 
the surface measure zero. Let uh cptj e W^1}(.Q), Th Mu e L2(Fr). We shall consider 
the following boundary conditions 

(1.7) ui = ui9 (Pij = (ptj on ru9 

*) See Section 1 in [1] for the definitions of a Lipschitz boundary, WO)(£>), L2(E) etc. 
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(1.8 Ti=Ti = nJ(zJi + aji), Mij = MtJ = nkfikij on Fr . 

Here nt denotes the unit outward normal to F. 

Now we shall derive the p r i n c i p l e of v i r t u a l work. Let Xi9 $jk e L2(Q). We say 
that the array of tensors {TI7, <rl7, jniJk} represents a statically admissible stress field, 
if TU, oXj, \iijk e W{

2\Q), (1.1), (1.2) are satisfied in Q in the sense of L2(Q) and the 
boundary conditions (1.8) are met in the sense of L2(FT). We say that the array 
{uh <Pjk}i uh (pjk^W^fa) forms a geometrically admissible deformation field, 
if (1.7) is met in the sense of traces. 

Let {TI7, Gtj, fiiJk} and {ut, cpJk} be a statically admissible stress field and a geo­
metrically admissible deformation field, respectively. Then 

l(Tij,i + Gij.i + XJ) UJ + (Ptjk.i + °jk + $jk) Vjk] dX • 

Integrating by parts we obtain 

(1.9) [T0.£ I7 + crijyij + fiijkXiJk] dX = (XiUi + QJk<pJk) dX + 
J n J n 

+ (TiUi + MJk(pJk) d F + [ (Ty + (Tij) Uj + i U l 7 ^ i f c ] w* d F . 
J rT J ru 

Equation (1.9) which holds for any two admissible fields will be called the p r i n c i p l e 
of v i r t u a l work. 

Let us suppose that the form (1.4) is positive definite, i.e. there exists a number 
c > 0 such that for all X e Q there holds 

3 

(1-10) s/(eij9 ytj, xiJk) > c X ( 4 + y2U + «ii») • 
i,j,k=l 

The matrix of the system (1.6) is symmetrical and it represents at the same time the 
matrix of the quadratic form (1.4). By virtue of (1.10), the absolute value of the 
determinant of this matrix is greater than a certain number c' > 0 for each X e Q. 
Hence the inverse matrix exists and is symmetrical as well. We can solve (1.6) with 
respect to etj9 yu, xiJk: 

(LU) StJ = QijpqTpq + tpqijGpq + S
pqrijfipqr , 

Jij ~ UjpqXpq + Ppqij^pq + ' ijpqr^pqr ' 

Xijk ^ SijkpqTpq + f'pqijk0'pq + °ijkpqrfipqr 

where 

Qijpq - Qpqij ~ Qjipq ' Ppqij ~ PiJV* > °ijkpqr Upqrijk > 

& nnr i i ~* nar i i J * i IJPЧ. 
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Qiipv tpqip s
Pqrij> Ppqip rijPqr> °ijkPqr a r e again bounded and measurable in Q. Using 

(1.6) and (1.11) we can express the elastic energy in terms of stresses 

(1.12) 2s/(eip yip xijk) = 2^(xip aip fiijk) = qijklXifkl + VukPipki + 
+ 2rijklmoij}.iklm + 2sijklmnijkxlm + 2tijkl(jijTkl . 

2. THE EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION 

OF THE BOUNDARY-VALUE PROBLEMS 

Let us choose the quantities introduced previously in [ l ] as follows: m = 12, 
xs = 1, s = 1, 2, ..., 12. Let us denote 

U = {u l 5 u2, u3, <pil9 (p22, <?33> <Pl2, <Pl3, </>23̂  <?21> <?3H <^32/ = {"», <Pjk} 

and analogically 

» = fa, ^jk) • 

Let W be defined as the space of all u = {«., ^ . J , u., <p̂  e W(
2
l)(Q) with the norm 

3 

I t 2 Y-1 /I 12 1 1 2 \ 

W | W = _L Ir'ka^H.Q) + |<P/./|wvi>(w • 
V is the subspace of all elements u = {u/? ^ } e JV which satisfy the homogeneous 
boundary conditions (1.7) (i.e. for ut = 0, <pf7 = 0) in the sense of traces. The bilinear 
form A(v, u) on W x W is defined by 

(2.1) A(v, u) = [cijkl eu(v) ekl(u) + bijkl ytj(v) yu(u) + aijklmn xijk(v) xltJu) + 
J .a 

+ diJklm{yu(v) xklm(u) + ytJ(u) xklm(v)} + fiJklm{xiJk(v) elm(u) + 

+ x,Jk(u) elm(v)} + giJki{yij(v) %(«) + yu(u) eh,(v)}] dX 

where (1.5) holds and 

£u(v) = va,j)' T-X") = py.* ~ ^ y ' xyfc(p) = ^ . . > 

ey(«) = « ( f J ) , ?*/«) = «./,. - <Py , Xl7*(») = <pJk,, • 

According to (1.5), we have A(v, u) = A(u, v), 

(2.2) f 2j/(«y(«), y,7(») , *y»(«)) d"^ = 4«> *) • 
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Further, let us define for v = {vh \j/jk} e W the functionals 

(2.3) f(v) = f {X,vt + <PJkxl,Jk) dX , 
J n 

g(v) = I (Ttvt + Mjk^jk) dF . 
JTT 

We define the weak solution of the boundary-value problem as follows: 

Let u = {uh (pjk} G W be such that the given data uh cpjk on FM may be obtained 

by means of the embedding of W2

1)(Q) into L2(ru). We say that ue W is the weak 

solution of the boundary-value problem, ifu — ue V and for each v = {vh \\/jk} e V 

there holds 

A(v, u) = f(v) + g(v) 

where A(v, u),f(v), g(v) are defined by (2.1), (2.3). 

Similarly to the case of Cosserat bodies (see [1]), we could easily find the con­

nection between (2.4) and the principle of "virtual" deformations. In fact, if u — 

= {uh <pjk} is a geometrically admissible deformation field and {T 0(M), crfj-(n), fiijk(u)} 

a statically admissible stress field, then writing the principle of virtual work first for 

these quantities, second for a "varied" field u + v, v e V and {T I 7(H), otj(u), fiijk(u)}, 

after subtracting we obtain (2.4). Next, interpreting v = Su = {Suh S(pjk}, (2.4) may 

be called the principle of virtual deformation. On the other hand if u e W is a weak 

solution then T^(W), ^^(U), fiijk(u) need not belong to W2^
1\Q). 

Let the operators Ntv9 I = V 2, ..., 45 be 

(2.5) Nгv = Øi,i , N2v = 0(1,2) , N3v = 0(1,3) 

N4v = 02,2 , N5v = 0(2,1) , N6v = 0(3,1) 

N7v = Ø з . з , N8v = 0(2,3) , N9v = 0(3,2) 

N10v = Ø i A ~ ^ l l , Nlxv = 02,1 ~ ^ 1 2 , N12v = 03,1 ~ ^ 1 3 

N13v = Фnл , Nыv = ^ 2 2 , 1 N15v = Фззл 

N16v = Фl2,l , N17v = ФlЗ,l • N18v = Ф23Л 

N19v = ФllЛ > N20v = Фзi,i . N21v = Ф32,1 

N22v = 01,2 ~ Ф21 , N23v = 02,2 ~ ^ 2 2 , N24v = 03,2 - ^ 2 3 

N25v = ^11,2 , N26v = Ф22,2 N21v = ^33,2 

N2Bv = ^ 1 2 . 2 , N29v = ФlЗ,2 N30v = ^23,2 

N31v = ^ 2 1 , 2 , N32v = Фзi,2 . N33v = Фз2,2 

N34v = Øi,з ~ Фзi , N35v = 02,3 ~ Фз2, N36v = Øз.з ~ ^ 3 3 

N31v = ^ l l . З N38v = ^ 2 2 , 3 Î \ N39v = ^ 3 3 , 3 
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ЛUгjV = ^ 1 2 , 3 > N4ÍV = ^ 1 3 , 3 - # 4 2 » = 1^23,3 

N43V = ^ 2 1 , 3 > N44« = ^ З l . З > N45v = łl>32,3 

have 
3 

E 
i,j,k = 

(40 
1 

v) + yЦv) + 4*00) = -ïiNivf 
1 = 1 

and (2.2), (1.10) imply the inequality (1.1.4). According to Theorem 1.1.1 the operators 
Ntv form a coercive system on W, because the matrix (1.1.3) contains three diagonal 
matrices £tE (E being the unit matrix of the 12-th order) so that its rank is 12 for 
each ( e C 3 , ( + 0. 

For v e 0 there holds 

(2.6) etj(v) = yu(v) = xijk(v) = 0 

almost everywhere in Q. 

Hence (2.1) defines a bilinear form \y, u] on W\0 x W\0 and all the suppositions 
of Theorem 1.1.2 are satisfied. Consequently, the necessary and sufficient condition 
for the existence of a weak solution is 

(2.7) Pe0> => f(P) + g(p) = 0, 

where according to (2.6) and (1.3) 

0 = {v = {vh \I/Jk} eV,vk = ak + bkjXj, i//jk = bkj) , 

ak = const. , bkj = — bjk = const. 

The solution is determined except for an element p e 0. The inequality (1.1.7) 
yields the continuous dependence of the solution upon the given data: uh q>jk, Tt, Mjk. 

We are not going a detailed analysis of boundary-value problems, but we restrict 
ourselves to two important cases only: 

1. Let FM be empty, i.e. T = TT UN. Then the condition (2.7) is equivalent to the 
system of equilibrium conditions 

Í 
where 

Xt dX + f Tt dF = 0 , 
L> JT 

(eijkXjXk + <Pt) dX + I (eijkXjTk + Mt) dF = 0 
} JT 

&i = £ijk^jk , Mt = eiJkMJk . 

2. Let FM contain a non-empty set open in F. Then 0 = {0}, (2.7) is satisfied 
and there exists one and only one weak solution ueW. 
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Using Theorem 1.1.3 it is possible to formulate the boundary-value problems 
so that their solutions are unique even in case F = Fr. We could easily prove that 
for linear independent functionals pt(v) introduced in Theorem 1.1.3, the following 
systems may be taken: 

(2.8) (a) v;dM, єijkxkVjáM 
J м J м 

(b) í vt áM , 
J м 

(c) I v.áX, 
J.Q* 

OГ 

фJk áM or 

StjkVkj á x 

Here M = .Q* or F*, where ;Q* c Q denotes an arbitrary set of a positive volume 
measure and F* cz Q a non-empty sum of a finite number of Lipschitz surfaces. (See 
[1] Section 3 for the definition of Lipschitz surface). Particularly, it is possible 
to choose Q* = 0, F* c F. 

3. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY AND THE PRINCIPLE 
OF MINIMUM COMPLEMENTARY ENERGY 

Let us define A(v, u), f(v) and g(v) by (2.1) and (2.3) and suppose (2.7). Then 
Theorem I.L2 holds and using the results of Section LI we can formulate the pr in­
ciple of m i n i m u m p o t e n t i a l energy as follows: 

The quadratic functional 3?(u) defined for u = [uh cpjk} e W by 

-*(«) = f Msu(«l ytJH *M) - (xiui + *^*)]dX -

-í( 
J ГT 

(TiUi + Mjk<pJk)dr 

attains the minimum on the set 

if and only if 

и V, 

и = ů + p 

where u is the weak solution, p e £P. 

When using subspaces Vp with pt(v) chosen for example as in (2.8), then the 
functional £?(u) attains the minimum on the set 

u®Vv, 
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if and only if 
u = u , 

where u is the unique weak solution in u © Vp. 
Applying the same procedure as in [1], Section 4, we derive the p r i n c i p l e of 

m i n i m u m c o m p l e m e n t a r y energy . 
Let 3T be defined as the Banach space of the stress fields T 

T = {xip oip iiijk} , xip oip fiijk e L2(Q) 

with the norm 
3 3 

rl-r = L (\Tij\L2(Q) + |°"i/|L2(«)) + Z |*uo**k2(o) • 
--J—1 i,j,k=l 

We could easily verify that the bilinear form 

(3.2) (T\ T") = [qijkf'ifkl + PijklO'ifkl + aijklmnV'ijkVimn + 
J Q 

+ rijklm(Gij^klm + (Jijliklm) + 5 ijklnij1 ijkTIm + ^ijkTlm) + 

+ t m i K t Z , + ffJjTi,)] dX , T, T" e 3T 

defines a scalar product in 5" and the norm 

| r | , = (r, r)1'2 

is equivalent to \T\#-. We denote by J^7 the Hilbert space of the stress fields T e ZT 
with the scalar product (3.2). Let J f t cz j f denote the subset of such stress fields 
T e 3^ to which « = {ub (pjk) e V exists such that using (1.3) equations (1.6) hold 
(i.e. T = T(u)). Furthermore, let J-f 2 ^ & denote the subset of such stress fields T 
that for each v = {vh xl/jk} e V, 

lTij su(v) + au yu(v) + Vijk Xijk(v)] dX = 0 
JQ 

holds. It is easy to prove that Jf± and J f 2
 a r e orthogonal. Next let us consider an 

arbitrary stress field Te J f satisfying the equations of equilibrium (1.1), (1.2) and 
the statical boundary conditions on FT in the weak sense, i.e. let for each 
» = {vi9 ^jk) e V 

(3-3) O.j e-Xr) + ^w y«Xr) + ft* xijk(v)1 <ix = 

JQ 

= f (*,*, + <Pjklfrjk) dX + f ( fy , + MM dF 
J.Q JET 

hold. Denote T = {T^, uip ftiJk} = T(u), i.e. T is related to the weak solution u 
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through (1.3), (1.6). If we write 

then 

U = U + W 

f = T(u) + T(w) , T(w) e Wx . 

As T meets (3.3), J - Te Jf2 and we have 

| T - T(«)|^ = | T - T j i + | T ( 
" ) ! * • 

Consequently, \T — T(u)\%> attains the minimum on the set of all Te ffl which 
meet (3.3), if and only if T = T. The same assertion is true for the functional 

£(r) = i{|r - T(nfx - |r(«)|̂ } = i(T r) - (r, T(«)). 

Hence the p r i n c i p l e of m i n i m u m c o m p l e m e n t a r y energy follows: 
The quadratic functional 

Sŕ(T) [У(т l 7, aф џijk) - {тu єu(u) + au yu(u) + џijk кUк(u) \ dX 

where s4 is defined by (1.12) and 

su(u) = u{iJ) , yu(u) = UJJ - cpu , xijk(u) = cpjj , 

attains the minimum on the set of T e 3~ which satisfy (3.3), if and only if 

If moreover the weak solution u is such that T(u) is a statically admissible stress 
field, then using the principle of virtual work as in Section 1.4, we are able to establish 
an alternative form of the principle: 

The quadratic functional 

>(T) = f 4 i f , <-y, nm) dX - f (Tiui + Mjkcpjk) dT 
J-Q JEM 

where s4 is defined by (1.12) and 

F£ = n{(xu + ay) , Mjk = ndxUfc , 

attains the minimum on the set of statically admissible stress fields, if and only if 

\T-f\r = 0. 
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B. NON-SIMPLE BODIES: THE FIRST STRAIN-GRADIENT THEORY 

The elastic energy stf of non-simple bodies depends on the derivatives of the 
displacement vector up to the rc-th order, n > 1. In case that n — 2, we speak of the 
first strain-gradient theory. For the detailed analysis of this case see [5] where three 
equivalent alternatives are discussed. For our purpose we choose one of them only, 
which is investigated more thoroughly in [4]. However, analogous results could 
be obtained also for the other alternatives. 

4. THE BASIQ EQUATIONS 

The following basic equations are mostly presented in [4], We assume that the 
elastic energy per unite volume has the form 

(4.1) sf(eu; sijtk) where eu = u(iJ) . 

The statical equations of equilibrium are 

(4-2) xiUt - tiUkJk +Xj = 0, i,j, k = 1,2,3. 

Here T-U = Tjh fiijk denotes the stress tensor and the couple-stress tensor, respectively. 
Xj is the body force vector per unit volume. 

We suppose that for anisotropic bodies (4.1) has the form 

(43) s/(eu, xUk) - ikijklSijSkl + imijklmnxijkxlmn 4- niJklmsuxklm 

where 

kUkl ~ kkUj — kjikl , mUklmn = Mimnijk , nijklm ~ njiklm 9 xijk == 8jk,i 

and kijkl, mijklmn, niJklm are bounded and measurable functions in Q — Q U F. 
Then the constitutive equations become 

(4-4) *ij === ds/jdeu - kijpqepq + n
Umrx

pqr, 

\iUk ~ dsfjdxUk ~ n
Pqijk

8pq + mijkpqrXpqr • 

Moreover, we suppose that the form (4.3) is positive definite, i.e. there exists such 
a number c > 0 that for all X e Q there holds 

(4.5) *t(etj,xiJk)>c I (4 + >4)-
i,j,k=l 

By virtue of (4.5) we can solve (4.4) with respect to eu, xijk. Similarly to Section 1, 
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substituting these inverted equations into (4.3) we obtain the elastic energy ^(x{j, fiijk) 
expressed by stresses. 

Further, we assume that Q is a bounded region with Lipschitz boundary F 
which consists of a finite numbers of smooth2) surfaces Sa. Let bp be intersections 
of two adjoined smooth surfaces and B = \Jbfi. Let F = FM \J Fr IJ B \J N be 

a disjoint decomposition of F, Fu and Fr being either open in F or empty, B and N 
are sets of zero surface measure. Suppose that B has a finite one-dimensional measure. 

Let Pj, Rj e L2(FT), Uj e W?\Q), Qs e L2(B). We consider the following boundary 
conditions: 

(4.6) Pj = Pj = nk\xkj - (fxijk + fiuju^k - //0.fen,nf)>f] on FT , 

R, = R = MijfcWiW* on Fr, 

(4 .7 ) tiy = Uj, CO,- = Uj,ini = -f/,,«z = w j o n f « > 

(4.8) g , = Qj = <fiijkniSk} on B 

where 

5ic = £klmhnm •> 

< > denotes the difference of limits from both sides of bp and lj represents the unit 
tangent vector to bp . n( denotes the outward normal to F, which is uniquely defined 
on F — B — N . coj is the normal component of the displacement gradient. Moreover, 
we suppose that Xt e L2(Q). 

We say that the couple {T^-, fiiJk} where Ttj e W^\Q), ftijk e W2
2)(Q) is a statically 

admissible stress field, if (4.2) are satisfied in the sense of L2(Q) and boundary 
conditions (4.6), (4.8) hold in the sense of L2(F r) and L2(B). We say that u is a geo­
metrically admissible displacement field, if ute W^2)(Q) and the boundary condi­
tions (4.7) are satisfied in the sense of traces. Let {xtj, jiijk} and u be a statically 
admissible stress field and a geometrically admissible displacement field, respectively. 
Then using (4.2), (4.6)-(4.8), we derive 

(*,,., ~ VW.ik + Xj) Uj dX + f [(Pj ~ Pj) UJ + (Rj - Rj) OJj] dF + 
J Q J TT 

f [("; - «,) PJ + (®, - *>,) * J <*r + f (5, - G,) «, dS = 0. 
JTM J B 

Then following the procedure in [4], but going in the opposite direction, using 

2) We say that Sa is a smooth surface, if it may be described by means of a continuous function 
fa(X), X E Oa, continuously differentiable in the interior of Oa, where Oa is a closed two-di­
mensional region. 
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Stokes theorem and integrating by parts we obtain the relation 

(4.9) f {xifii} + nmxiJk) dX = f Xtu, dX + 

J Q J Q 

+ J (Pfii + K^dF + J (FiUi + Rico^dr + j QiU.dB 
J ru J rT J B 

which holds for arbitrary admissible fields and may be called the p r i n c i p l e of 
virtual work. 

5. THE EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION 

OF THE BOUNDARY-VALUE PROBLEMS 

Let us choose the quantities introduced in Section LI as follows: m = 3, xs = 2, 
s = 1, 2, 3. Denote u = {uu u2, u3}, v = {vu v2, v3}. Let Wbe defined as the space 
of u = {ul5 w2, u3}, ut e W2

2)(Q), with the norm 

3 
I 12 __ V " I 12 
\U\W — ZJ \Ui W2(2) 

i = l 
( ß ) 

where 

|«i|ira<-)(0) -» "í dX + É «IJ* d X 

Jn JaM=i 

V is the subspace of all v e W which satisfy the homogeneous boundary conditions 
(4.7) (i.e. for Uj = 0, o5j = 0) in the sense of traces3) 

Let the bilinear form A(v, u) on W x W be defined by 

(5.1) A(v, u) = [kiJkl et/v) ekl(u) + mijklmn xijk(v) xlmn(u) + 
J Q 

+ nijunfajv) xklm(u) + £I7(J*) «fc,m(r)}] dK 

where 

£ij(v) = vdJ)' Ô'fcW = '̂fc.-W ' 

£ u ( w ) = ud,j) > Kijk(u) = £jfc,i(") . 

3) Note that uif t e W2
X\Q) so that they may be embedded into_L2(FM) and the space W(

2
2)(__) 

may be embedded into the space C(i_) of functions continuous on Q = Q \J F. For v e V, 

dv 
— = 0 
an 

holds on FM in the sense of L2(FM). Moreover, v = 0 on FM in the sense of continuous functions. 
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Obviously 

A(v, u) = A(u, v) , A(u, u) = 2 ^(ЄІJІU), xijk(u)) áX 

Q 

Further, let us define for v e W the functionals 

(5.2) /(„)= {xiUldX, 

2>, dfi 
B 

(5.3) g(t>) = f (Pfvf + .Rf^(i>)) dF + 

where 
a).(u) = i;. t-fi- . 

According to Section LI, we define the weak solution of the boundary-value 
problem as follows: 

Let u = {u1? u2, u3} e rV represent the given data on FM through embedding 
of W?\Q) into C(Q) and of Wi1}(-^) into L2(F„)3). We say that u = {ux, u2, u3} 
is the weak solution of the boundary-value problem, if u — u e V and for each 
v — {vt, v2, v3} e V there holds 

A(v, u) = f(v) + g(v) 

where A(v, u), f(v), g(v) are defined by (5.1) —(5.3). 
Similarly to Section 2 we could show that if u is the geometrically admissible 

displacement field such that the corresponding t^(w), ,ujki(u) form a statically admis­
sible field, then (5.4) is valid. 

Choosing Ntv, I = 1, 2 , . . . , 36 in the form 

(5-5) Nl-9^ = ViitJ) , Nio-36» = V(iJ)k 

we obtain 
36 3 

L 0 V ) 2 = E («&») +*W-))-

According to the supposition of positive definiteness of the quadratic form (4.3), 
equation (1.1.4) is satisfied and Theorem 1.1.1 yields coerciveness of the system (5.5). 
Indeed, let us form the matrix N/s^: now |a| = 2 and Nts£ takes the quadratic form 

Nut = Yfluififo ' 
ij 

Let us choose three triplets of Ntv which correspond in (5.5) to (vltll, vilt2)1, v(i>3)i), 
(*ri,2)2> ^2,22* ̂ (3.2)2) ar1d (^(1,3)3' (̂2,3)3? ^3,33)- The corresponding three determin­
ants of the matrix Nls£, equal to Jff, \^\ and K i If f 4= 0, f e C3, at least one of them 
does not vanish and therefore, the rank of Njs£ is 3 = m. For » e ^ there holds 

ey(c) = ^ ( t ? ) = 0 
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almost everywhere in Q and therefore 

&> = [v = {vu v2 v3} e V, vk = ak + bkjXj, ak = const., bkj = -b / / t - const.} . 

Theorem 1.1.2 yields: The necessary and sufficient condition for the existence 

of a weak solution is 

(5.6) peP? => f(p) + g(p) = 0 . 

The solution is determined except for p e 0*. The inequality (1.1.7) implies the 

continuous dependence of the solution on uh Ph Rt, Q{. 

Let us investigate at least two important boundary-value problems: 

(l) Let FM be empty. Then (5.6) is equivalent to the following system of equilibrium 
conditions 

XІ áX + í PІ áГ + j QІ áB = 0 , 
Jл JT J B 

ľ Xuxл dX + ľ (Puxл + Ruxл) dГ + | ß [ ; 

JżO JT JB 
iXn d B = 0 , 

J D JT J B 

where 

A-fb,- = i(A|fcj - Ajb.) . 

(2) Let Tu contain a non-empty set open in F. Then 0* = {0} and (5.6) is satisfied. 
There exists one and only one weak solution. 

On the basis of Theorem 1.1.3, it is possible to formulate the boundary-value 
problems so that the solution will be unique even in case (l). We could easily prove 
that for the linear independent functionals ply) introduced in Theorem 1.1.3, for 
example systems (a) or (c) of (2.8) may be taken. 

6. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY 
AND THE PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY 

Using the results of Section 1.1 and defining A(v,u), f(v), g(v) by (5.1) —(5.3), 
we establish the p r i n c i p l e of m i n i m u m p o t e n t i a l e n e r g y in the following 
form: 

The quadratic functional 5£(u) defined for u = [uly u2, u3} e W by 

(6.1) S£(u) = [ [^(eij(u), xljk(u)) - Xtut-] dX -

\Ptut + RiuiJnl] dF -
Гт 

QiЩdB 
B 
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attains the minimum on the set 
u® V, 

if and only if 
u = u + p , 

where u is the weak solution, p e 0*. 
The formulation of the principle with subspaces Vp is obvious. Similarly to Section 3, 

we could derive the p r i n c i p l e of m i n i m u m c o m p l e m e n t a r y energy. We 
restrict ourselves only to presenting the principle: 

The quadratic functional 

(6.2) £(T) = J [J(xip niJk) - {TI7 e^u) + fiijk xiJk(u)}] dX 
J D 

attains the minimum on the set of T e 3T which satisfy the equations of equilibrium 
(4.2) and the statical boundary conditions (4.6), (4.8) in the weak sense, i.e. for 
each v = {v1, v2, v3] e V there holds 

(6.3) í [ r y etJ(v) + nm xijk(v)-\ dX = í Xp, dX 
JiQ J D 

i (Pivi + £ivMtt/) dF + j Qivi dB . 
JET JB 

+ 

+ 

The minimum of the functional is realized just for T = T(u) where u is the weak 
solution. 

Here ZT is the Banach space of the stress fields T 

T = {cip Vuk} , T V = xji e L2(Q), fiiJk G L2(Q) 

with the norm 
3 3 

\T\r = L |Tij|L2(*-) + Z |MykL2(fl)» 
- , . 7 = 1 i,j,k=l 

stf(xiJ, /j,iJk) is the elastic energy per unit volume expressed by stresses. Further, 

£iJ(u) = u(iJ), xijk(u) = uUtk)i 

and Pi, jRf, g . are given boundary values. 

If moreover the weak solution u is such that T(u) is a statically admissible stress 
field, we can state the following alternative of the principle: 

The quadratic functional 

$e{T) = f j?(Ty, fim) dX - I ( P ^ + Hi5lfInI) dF 
JiQ JEM 

where Pi, Rt are defined by (4.6) attains the minimum on the set of statically admis-
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sible stress fields, if and only if 

\T- T(A)\r = 0. 

R e m a r k 1. For both cases investigated in the present paper, i.e. for Mindlin's 
elasticity with microstructure and for the first strain-gradient theory, it is possible 
to estimate errors of approximate solution based on the principle of minimum 
potential energy and the principle of minimum complementary energy, following 
the procedure in [1], 

R e m a r k 2. The c o u p l e - s t r e s s e l a s t i c i t y wi th c o n s t r a i n e d r o t a t i o n s 
is a particular case of the first strain-gradient theory, if we assume that the elastic 
energy per unit volume has the form 

<^\eijl £i[j,k]) 9 

i.e. stf does not depend on £uj,fc) (see [3]). However, if we take etj and Siy^ f ° r Ntv, 
then all the third-order determinants of the matrix Nls£, vanish identically and there­
fore its rank is lower then 3 = m for each £ e C3. Hence, such a choice of Ntv fails 
to be coercive. Unfortunately we have not found any other suitable coercive system. 
Thus the approach used in the previous sections seems to be hardly applicable 
to the couple-stress elasticity with constrained rotations. 
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Výtah 

EXISTENCE A JEDNOZNAČNOST ŘEŠENÍ A NĚKTERÉ VARIAČNÍ 

PRINCIPY V LINEÁRNÍCH TEORIÍCH PRUŽNOSTI S MOMENTOVÝMI 

NAPĚTÍMI 

IVAN HLAVÁČEK, MIROSLAV HLAVÁČEK 

Část 2: MINDLINOVA TEORIE PRUŽNOSTI S MIKROSTRUKTUROU A TEORIE 
PRUŽNOSTI S PRVNÍM GRADIENTEM DEFORMACE 

V druhé části jsou vyšetřovány Mindlinova teorie mikrostruktury a teorie pružnosti 
uvažující vliv gradientu deformace. Pro statický případ je formulováno zobecněné 
řešení okrajových úloh pro omezená, anisotropní, nehomogenní tělesa, jsou do­
kázány existence, jednoznačnost a spojitá závislost zobecněného řešení na daných 
zatíženích. Jsou uvedeny princip minima potenciální energie a minima doplňkové 
energie. 
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