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SVAZEK 14 (1969) APLIKACE MATEMATIKY &isLo 5

ON THE EXISTENCE AND UNIQUENESS OF SOLUTION
AND SOME VARIATIONAL PRINCIPLES IN LINEAR THEORIES
OF ELASTICITY WITH COUPLE-STRESSES

IvaN HLAVACEK, MIROSLAV HLAVACEK

(Received April 22, 1968)

II. MINDLIN’S ELASTICITY WITH MICROSTRUCTURE AND THE FIRST
STRAIN-GRADIENT THEORY

INTRODUCTION

The purpose of the present paper is to define the weak (generalized) solution of the
boundary-value problems in some non-classical theories of elastostatics, to prove
the existence and uniqueness of the weak solution and to formulate the principles
of minimum potential energy and minimum complementary energy. We follow
the method used in [1] for the case of Cosserat continuum.

In this paper we deal (A) with the MINDLIN's linear theory of elasticity with
microstructure (see [2]) and (B) with the first strain-gradient theory. We restrict
ourselves to the statical case and to the bounded bodies in three-dimensional space
only.

As for [1], Section 1 of [1] represents the mathematical background for our
present investigation, too. We shall not repeat it, but refer directly to its theorems
and formulas, using the notation (I.1.1). (L.1.2) etc.

A. MINDLIN'S THEORY OF ELASTICITY WITH MICROSTRUCTURE

1. BASIC EQUATIONS
The linear case of Mindlin’s elasticity theory with microstructure (see [2]) with

homogeneous microdeformation coincides (as it was shown by R. A. TouPIN
in [3]) with the theory of linear oriented bodies with three directors.
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The following basic equations are established in [2]. The equations of statical
equilibrium are

(1.1) T+ 0+ X; =0,
(1.2) Hijki + 0+ P =0, i, j,k=1,23
where 7;; = 1;; denotes the classical stress tensor, ¢;; means the relative stress tensor
and p;; the couple-stress tensor. X; and @, denote the body force vector and the
body double-force tensor per unit volume, respectively.

The geometrical equations take the form
(13) ey =gy = Huiy + Ui, v =up— 0,

Kijk = Pjk,i

where u; denotes the displacement vector and ¢,; the tensor of the microdeformation.
The comma stands for the partial differentiation as usual, the round brackets denote
the symmetrization.

We suppose that the elastic energy per unit volume .o/ depends on &;;, 7;j, ;i
as follows

=1 1
(1.4) A e Vij %) = Fim€isea + I0iaia + 3 kimaki i imm +

+ dijktm)’ij”kzm + fijkzm%ijkb‘:m + GijkiVijEra

where
(1.5) Cijkt = Ck1ij = Cjikt» biju = briij s Qijkimn = A imnijk >
fijkzm =fijkmz s Gijit = Giju
and C¢ijuis bijirs dijkimm dijkimo fijeimr i are bounded and measurable functions
in @ = Q U I. Then the constitutive equations become
(1.6) 1,4 = 0|06y = CpgiEij + GijpaVij + Fijupaisic »
pa = 0[07pg = Gpais€ij + Dispa¥ij + dpgijitisic

Upar = 6&4/5%”, = foarij€ij + Qijpar¥ij + Qpgrijiijn -

g

Observe that for ¢, = 0, @(;;y = 0 we obtain Cosserat continuum.

Let Q be a bounded region with Lipschitz boundary F‘) andI' =T, Ul UN
a disjoint decomposition of I'. I', and I'y are either open in I' or empty and N has
the surface measure zero. Let ii;, @;; € WiV(Q), T;, M,; € L,(I';). We shall consider
the following boundary conditions

(1.7) i, =u;, @;=¢; on I,,
1y See Section 1 in [1] for the definitions of a Lipschitz boundary, ng)(.Q), L,(I') etc.
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(18 Ti'—' T;-Enj(fj,'“}‘o'ji), Mij=MijEnkukij on FT'

Here n; denotes the unit outward normal to I'.

Now we shall derive the principle of virtual work. Let X;, @, € L,(2). We say
that the array of tensors {t;;, 0, u;;;} represents a statically admissible stress field,
if ;5 04, pipe € WED(Q), (1.1), (1.2) are satisfied in Q in the sense of L,(€2) and the
boundary conditions (1.8) are met in the sense of L,(I'y). We say that the array
{u, o}, us, @€ W(Q) forms a geometrically admissible deformation field,
if (1.7) is met in the sense of traces.

Let {t;;, 04, iy} and {u;, ¢;} be a statically admissible stress field and a geo-
metrically admissible deformation field, respectively. Then

0 =f [(Tij,i + Gij,i + X_]) u; + (Auijk,i + O jk + (pjk) (pjk] dXx .
Q
Integrating by parts we obtain
(19) J [Tijaij + O'ijy;j + l"’ijk%ijk] dx =f (Xiu,- + ¢jk¢jk\) dXx +
Q Q2

"‘J (T + Myugy) dr +J [(ti; + 04) #; + pip@y] i dl
I'r T'u

Equation (1.9) which holds for any two admissible fields will be called the principle
of virtual work.

Let us suppose that the form (1.4) is positive definite, i.e. there exists a number
¢ > 0 such that for all X € Q there holds

3
(1.10) (1, Vip %ige) Z € ; 1(e,?j + 95+ 1k -
L, ] K=

The matrix of the system (1.6) is symmetrical and it represents at the same time the
matrix of the quadratic form (1.4). By virtue of (1.10), the absolute value of the
determinant of this matrix is greater than a certain number ¢’ > 0 for each X € Q.
Hence the inverse matrix exists and is symmetrical as well. We can solve (1.6) with
respect to &;;, Vij Xijk'

(1'11) €ij = Qijpgpq + tpqijo'pq + Sparijlpar >
Vij = tijpgTpq T Ppaij%pa T Tiiparbpar »
Xijk = Sijkpgpa t TpgijOpq + Oijkparttpar
where
Qijpg = 9pqij = Qjipa> Ppaij = Pijpa> Oijkpar = Oparijic >

Sparij = Sparji > lijpa = lijap -
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Qijpg> paij> Sparijs Ppaijs Tijpar Oijkpgr 4T¢ again bounded and measurable in Q. Using
(1.6) and (1.11) we can express the elastic energy in terms of stresses

(1-]2) 24%(8:‘,', Vijo %ijk) = 249(1,7, Tij, llijl\) = qijTijTkt + Pijki0ijOn +

+ 27 kim0 i jam + 28 ikt Tim + 213110 Th -

2. THE EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION
OF THE BOUNDARY-VALUE PROBLEMS

Let us choose the quantities introduced previously in [1] as follows: m = 12,
%, =1,s=1,2,...,12. Let us denote

— Y f
u = f”x, Uz, Uzs P15 @225 P335 Pr2s Pi3s P23 P2t Pars P2y = Ui <ij}

and analogically
v={v;, ¥} .

Let W be defined as the space of all u = {u,, ¢}, u, ¢; € Wi”(Q) with the norm
> 2
2
Jufsy = 2 I(I“flwwm +ulianm) -
iJj=
V is the subspace of all elements # = {u;, ¢} € W which satisfy the homogeneous

boundary conditions (1.7) (i.e. for #; = 0, §;; = 0) in the sense of traces. The bilinear
form A(v, u) on W x W is defined by

(2.1) A(v, u) ——*J [C,’jkl 6,',-(0) ekl(”) + bijkl Vij(v) 3’k1(") + Qijkimn %ijk(v) Xtmn(”) +
Q

+ dijiam{7i/(0) 2aam(#) + Vi) %m(®)} + fijiam{ii(0) €1(20) +
+ (1) e(0)} + Gipalri(v) i) + 9;(u) e (v)}] dX

where (1.5) holds and

81’1‘(”) = Ug,jy» yii(v) =0;; = Yy, %ijk(v) = Yiis

eij(u) = U j)» yij(”) =Upi — @y, ”ijk(”) = Qi -
According to (1.5), we have A(v, u) = A(u, v),

(22) f 20/(e ) 700 4ip(8) 4X = Alw ).
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Further, let us define for v = {v;, /;;} € W the functionals

(23) f(v) = L(X i+ Puy) dX

o) = j (Toos + M) dT .
I'r

We define the weak solution of the boundary-value problem as follows:

Let u = {ﬁi, (ﬁjk} € W be such that the given data iu;, ; on I', may be obtained
by means of the embedding of W;"(Q) into L,(I',). We say that ue W is the weak
solution of the boundary-value problem, if u — ue V and for eachv = {v, Yz} € V
there holds

Alv,w) = f(v) + ¢(v)

where A(v, u), f(v), g(v) are defined by (2.1), (2.3).

Similarly to the case of Cosserat bodies (see [1]), we could easily find the con-
nection between (2.4) and the principle of “virtual” deformations. In fact, if # =
= {u;, ;} is a geometrically admissible deformation field and {t;;(u), o, (), p;;(u)}
a statically admissible stress field, then writing the principle of virtual work first for
these quantities, second for a “varied” field # + v, ve V and {t,;(u), o), p; ()},
after subtracting we obtain (2.4). Next, interpreting v = du = {du;, 5¢;}, (2.4) may
be called the principle of virtual deformation. On the other hand if w € W is a weak
solution then t;,(u), o;;(#), y1; () need not belong to W§(Q).

Let the operators Ny, [ = 1,2, ..., 45 be

(2.5) Ny =v;, Nyv = 01,2)> Niv = v 3
Ny =v,,, Nsv = Ui2,1) » Negv = V3,1
Ny =wv;;, Ngv =053, Nov = v3,)
Niov = vy 4 - Yy, Nyjv=0,, — Y2, N12U=U3,1 — Y13
Nyv =Y., Niav = Y221 Nysv = 33,
Nigv = VY121, Nio=¥Yy3,1, Nigv = Y231
Nigv = VY31, Naov = Y3115 Noywo =3z,
Nyv=v;, — Va1, Nyp= U220 — Va2, Ny =03, — Va3
Nysv =Yy, Nag0 = Y335 Na7v = Y33,
Naogv = VY20, Nagv = Y35 N3gv = Y235
N3v = Vs, Nav = Y315, N33v = Y3,
N3uo =013 —¥31, Nisv =103 — V32, Nyo= U3,3 — VYa3
N30 =Yq,3 N3gv = VY223, Nigv = Y333
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Nyov = ‘/’12,3 s Nyv = l//13,3 5 Ny,v = l//23,3
Nyzv = ‘/’21,3a Nygv = l//31,3 s Nysv = lP3z,3-

We have
45

i (eizj(v) + V%j(v) + %fjk(v)) = Z(va)z

1 =1

s

and (2.2), (1.10) imply the inequality (I.1.4). According to Theorem I.1.1 the operators
N v form a coercive system on W, because the matrix (I.1.3) contains three diagonal
matrices &E (E being the unit matrix of the 12-th order) so that its rank is 12 for
each (€ C;, & + 0.

For v e & there holds

(2:6) ei(v) = 7ij(v) = xiu(v) = 0

almost everywhere in Q.

Hence (2.1) defines a bilinear form [v, #] on W/2 x W/|# and all the suppositions
of Theorem 1.1.2 are satisfied. Consequently, the necessary and sufficient condition
for the existence of a weak solution is

(2.7) pe? = f(p)+4(p) =0,
where according to (2.6) and (1.3)
P={v={v,¥p}eV v =a,+ byx;, Y = by},
a, = const., b,; = —by = const.

J

The solution is determined except for an element p e P. The inequality (1.1.7)
yields the continuous dependence of the solution upon the given data: ii;, §p, T}, Mjk.

We are not going a detailed analysis of boundary-value problems, but we restrict
ourselves to two important cases only:

1. Let I', be empty, i.e. I' = I'y U N. Then the condition (2.7) is equivalent to the
system of equilibrium conditions

indx +jid1"=0,
2 r

J‘ (eijux; X + @) dX + J‘ (eijx,; Ty + M)dI =0
Q r

where
b, = eijk(pjk , M; = Sijijk'

2. Let I', contain a non-empty set open in I'. Then 2 = {0}, (2.7) is satisfied
and there exists one and only one weak solution u € W.
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Using Theorem 1.1.3 it is possible to formulate the boundary-value problems
so that their solutions are unique even in case I' = I'y. We could easily prove that
for linear independent functionals p(v) introduced in Theorem I.1.3, the following
systems may be taken:

(2.8) (a) v; dM | epxv; dM or
Jum Jm

.
(b) v; dM , Y dM or
Jum Jnm

~

() v;dX , &by, ; dX .

Jo* o Q*

Here M = Q* or I'*, where Q* < Q denotes an arbitrary set of a positive volume
measure and I'* = @ a non-empty sum of a finite number of Lipschitz surfaces. (See
[1] Section 3 for the definition of Lipschitz surface). Particularly, it is possible
to choose Q* = Q, I'* < I.

3. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY AND THE PRINCIPLE
OF MINIMUM COMPLEMENTARY ENERGY

Let us define A(v, #), f(v) and g(v) by (2.1) and (2.3) and suppose (2.7). Then
Theorem 1.1.2 holds and using the results of Section I.1 we can formulate the prin-
ciple of minimum potential energy as follows:

The quadratic functional %(u) defined for u = {u;, ¢} € W by
20 = [ [/ v 7se) = O+ o)) 0
2
—J\ (Tw; + M) dr
r'r

attains the minimum on the set
uepv,
if and only if
u=1u-+p

where i is the weak solution, p € 2.
When using subspaces ¥V, with p,(v) chosen for example as in (2.8), then the
functional £(u) attains the minimum on the set

i v,,
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if and only if
u=u,

where i is the unique weak solution in &t ® V.

Applying the same procedure as in [1], Section 4, we derive the principle of
minimum complementary energy.

Let 7 be defined as the Banach space of the stress fields T

T = {‘fij, Oijs uijk} s Tijy Oijs Kijk € Lz(Q)
with the norm

3 3
|73 = Zl(|fij[12_z(9> + Joy]iy@) + Zk I‘Mﬂ(liz(ﬂ)‘
L= 1,J,k=
We could easily verify that the bilinear form
(3~2) (T', T”) = j [qijleIijTZl + pijklalija;(,l + aijklmmu’ijk:ulllmn +
e
+ rijklm(o-lijl’l;c’lm + a;'/jﬂl,clm) + Sijklm(ﬂ,ijkrll'm + .u/iljk‘[;m) +
+ tyuloitn + ol ]dX, T, T'eT
defines a scalar product in J and the norm
lTl” = (1, T)V?

is equivalent to lT ] o We denote by s# the Hilbert space of the stress fields T'e 7
with the scalar product (3.2). Let #;, = # denote the subset of such stress fields
Te s to which # = {u;, ¢;;} € V exists such that using (1.3) equations (1.6) hold
(i.e. T = T(u)). Furthermore, let #, < # denote the subset of such stress fields T
that for each v = {v;, ¥} € V,

J [zij 2i(0) + 03 i(0) + piju i0(v)] dX = 0
Q
holds. It is easy to prove that s, and s, are orthogonal. Next let us consider an
arbitrary stress field T e # satisfying the equations of equilibrium (1.1), (1.2) and
the statical boundary conditions on I'y in the weak sense, i.e. let for each
= {Ui, l//jk} eV
(3.3) f [vij €0(v) + 055 7i1(0) + pope xipl(0)] dX =

)

- j (X, + D) dX + j (Tws + Myhy) dr

Q I'r

hold. Denote T = {1y, 6, ft;5} = T(@), i.e. T is related to the weak solution &
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through (1.3), (1.6). If we write

u=ua+w
then
T = T@@) + T(w), T(w)e,.

As T meets (3.3), T — Te #, and we have
T T@ = |7~ T3 + |70

Consequently, 1T - T(ﬁ)i} attains the minimum on the set of all Te # which
meet (3.3), if and only if 7 = 7. The sam® assertion is true for the functional

AT) = {|T - TG)|% — |T@)%) = YT, T) — (T, T(a)).

Hence the principle of minimum complementary energy follows:
The quadratic functional

(T) = j [ (cijs 01js tip) — {Tij (@) + 045 9i(7) + pi xi(@)}] dX
0

where o is defined by (1.12) and
ei(@) =ty Vif(@) = U0 = @yys #ip(@) = Py
attains the minimum on the set of T € 7 which satisfy (3.3), if and only if
|T - 7|, =0.
If moreover the weak solution & is such that T(#) is a statically admissible stress

field, then using the principle of virtual work as in Section 1.4, we are able to establish
an alternative form of the principle:

The quadratic functional
L(T) = J A, 045 wiji) AX —f (Tii; + My@j) dr
Q Tu
where o is defined by (1.12) and
T, = ”i(Tu + O'ij) » My = nipp,
attains the minimum on the set of statically admissible stress fields, if and only if
|- T|, =0.
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B. NON-SIMPLE BODIES: THE FIRST STRAIN-GRADIENT THEORY

The elastic energy &/ of non-simple bodies depends on the derivatives of the
displacement vector up to the n-th order, n > 1. In case that n = 2, we speak of the
first strain-gradient theory. For the detailed analysis of this case see [5] where three
equivalent alternatives are discussed. For our purpose we choose one of them only,
which is investigated more thoroughly in [4]. However, analogous results could
be obtained also for the other alternatives.

4. THE BASIG EQUATIONS

The following basic equations are mostly presented in [4]. We assume that the
elastic energy per unite volume has the form

(4.1) (e 650) where &; = ug

)
The statical equations of equilibrium are
(4.2) Tiji — Mg + X; =0, i,j,k=1,23.

Here t;; = 1;;, u;j denotes the stress tensor and the couple-stress tensor, respectively.
X ; is the body force vector per unit volume.
We suppose that for anisotropic bodies (4.1) has the form

— 1l .
(4“3) J‘/("31'1'» "-’ijk) = Ykt + Mk ik ime T P iikim€i i Kim
where
kijkl = kklij = kjikl > Mijkimn = Mimpije > Pijim = Wjikim > Xijk = Ejk,i

and Kijr, M;jxpmm Mijrm are bounded and measurable functions in Q=0QUTr.
Then the constitutive equations become

(4‘4) Tij = 8.2?/(38” = KijpgEpa T Mijpar¥par »
,uijk = aﬂ/a%”k = npqijkepq + l'nijk,,q,%pq, .

Moreover, we suppose that the form (4.3) is positive definite, i.e. there exists such
a number ¢ > 0 that for all X € Q there holds

' 3
(4.5) oA (&1, iji) Z ¢ g 1("5?1 + Hi) -
k=

s

By virtue of (4.5) we can solve (4.4) with respect to &;j, %, Similarly to Section 1,
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substituting these inverted equations into (4.3) we obtain the elastic energy 7(t;;, i)
expressed by stresses.

Further, we assume that Q is a bounded region with Lipschitz boundary I’
which consists of a finite numbers of smooth?) surfaces S,. Let b, be intersections
of two adjoined smooth surfaces and B = (Uby. Let I' =T, JI't+ UBUN be

]

a disjoint decomposition of I', I', and I'; being either open in I" or empty, B and N
are sets of zero surface measure. Suppose that B hasa finite one-dimensional measure.

Let P;, R; € Ly(I'y), ii; € W5?(Q), O; € L,(B). We consider the following boundary
conditions:

(4.6) P; = P; = m[u; — (mip + pjmme — ppnm) ;] on I'p,
R, =R = punm, on Ip,

(4.7) iy =u;, ®;=i;n=u;n=w; on TI,,

(4-8) Qj = Q; = sy on B

where

Sk = Exmb My

{ > denotes the difference of limits from both sides of b, and ¢, represents the unit
tangent vector to b, . n; denotes the outward normal to I', which is uniquely defined
onI" = B = N .w;is the normal component of the displacement gradient. Moreover,
we suppose that X; € L,(Q).

We say that the couple {t,;, 1;;} where t,; € WiD(Q), p;j € WiP(Q) is a statically
admissible stress field, if (4.2) are satisfied in the sense of L,(Q) and boundary
conditions (4.6), (4.8) hold in the sense of L,(I'y) and L,(B). We say that u is a geo-
metrically admissible displacement field, if u; € W*)(Q) and the boundary condi-
tions (4.7) are satisfied in the sense of traces. Let {t;;, u;;} and u be a statically
admissible stress field and a geometrically admissible displacement field, respectively.
Then using (4.2), (4.6)—(4.8), we derive

J (‘fij,i — Mijk,ix + Xj) u; dX +J [(l_’j — Pj) u; + (R; — Rj) w;]dr +
2 r'r
+j [ — u) P; + (@; — w)) R dT + j (0, — Q) u;dB = 0.
Tu B

Then following the procedure in [4], but going in the opposite direction, using

2) We say that S, is a smooth surface, if it may be described by means of a continuous function

£{X), X € 0,, continuously differentiable in the interior of O,, where 0, is a closed two-di-
mensional region.
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Stokes theorem and integrating by parts we obtain the relation

(4.9) f (tij8ij + Mipoi) dX = J Xu;dX +
Q

Q2

+f (Pii; + Ra@y) dT +f (Pas + Reo) ar + | Quu,an
Iu I'r

« B

which holds for arbitrary admissible fields and may be called the principle of
virtual work.

5. THE EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION
OF THE BOUNDARY-VALUE PROBLEMS

Let us choose the quantities introduced in Section I.1 as follows: m = 3, %, = 2,
s =1,2,3. Denote u = {uy, up, uz}, v = {vy, v, v3}. Let W be defined as the space
of w = {uy, uy, uy}, u; € W3?(Q), with the norm

3
[”lf" = ,le“ilvz"zm(ﬂ)
=
where

3
2 2 2
I e =J u?dX + Y uidX. \
(2]

Q k=1

V is the subspace of all » € W which satisfy the homogeneous boundary conditions
(4.7) (i.e. for ii; = 0, @; = 0) in the sense of traces®)
Let the bilinear form A(v, u) on W x W be defined by

(5'1) A(v, ”) =f [kijkl Sij(”) €kz(") + Mijkimn %ijk(”) %lmn(u) +
Q
+ 1 peam{€31(0) () + €11(88) %i1n(v)}] AX
where
Eu(”) = Ui,y » i) = €jei(v) 5
e1j(u) = Ug,y s Hipu) = e u) -

3) Note that u i1 € W(zl)(.Q) so that they may be embedded into _LZ(F ) and the space W(zz)(.Q)
may be embedded into the space C(2) of functions continuouson Q= Q () I'. Forv € ¥,

=0
on

holds on I, in the sense of L,(I7). Moreover, v = 0 on I', in the sense of continuous functions.
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Obviously
Alo, u) = Aw,v), Alw,u) =2 J A(ess{u), 1)) X .
o)
Further, let us define for v € W the functionals

(5.2) £(v) = f Xy dX ,

(5:3) 4(v) =f (Puvs + Rionv) T + '[ Qu0; dB

where
wiv) = vy n, .

According to Section I.1, we define the weak solution of the boundary-value
problem as follows:

Let @ = {ii,, il,, i3} € W represent the given data on I, through embedding
of Wi»(Q) into C(Q) and of W{"(Q) into L,(I',)*). We say that u = {u,, u,, us}
is the weak solution of the boundary-value problem, if u — u eV and for each
v = {vy, v,, 03} € V there holds

Ao, w) = f(2) + 9(v)

where A(v, u), f(v), g(v) are defined by (5.1)—(5.3).

Similarly to Section 2 we could show that if # is the geometrically admissible
displacement field such that the corresponding 7;;(#), u;,(#) form a statically admis-
sible field, then (5.4) is valid.

Choosing N, I = 1,2, ..., 36 in the form

(5.5) Ni_ov =104, Nio-360 = Ui ju

we obtain
36

SN = % 0 + ).

=1

According to the supposition of positive definiteness of the quadratic form (4.3),
equation (I.1.4) is satisfied and Theorem I.1.1 yields coerciveness of the system (5.5).
Indeed, let us form the matrix N &: now |a| = 2 and N takes the quadratic form

N = Z"uijfifj .
iJ

Let us choose three triplets of N,v which correspond in (5.5) to (v 11, 01,215 V(1,3)1)s
(vc1,2)25 V2,225 V(3.2)2) and (04 ,3y3, U(2,3)35 U3,33)- The corresponding three determin-
ants of the matrix N & equal to 3£¢, 1S and 3£5. If & + 0, & € C3, at least one of them
does not vanish and therefore, the rank of N is 3 = m. For v € 2 there holds

ey(v) = wyu(v) = 0
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almost everywhere in Q and therefore
P ={v={v,0,0} eV, v, =a, + byx; a,=const., b, = —by = const.} .

Theorem 1.1.2 yields: The necessary and sufficient condition for the existence
of a weak solution is

(5.6) pe? = f(p)+4g(p)=0.

The solution is determined except for pe P. The inequality (1.1.7) implies the
continuous dependence of the solution on i;, P;, R;, Q,.

Let us investigate at least two important boundary-value problems:

(1) Let I', be empty. Then (5.6) is equivalent to the following system of equilibrium
conditions

fX,.dX+‘[Pidl" +'[Q,.d3=0,
r B

Q2
Q2 r B

where
Apbjy = %(A,.bj - Ajbi) :

(2) Let I, contain a non-empty set open in I'. Then 2 = {0} and (5.6) is satisfied.
There exists one and only one weak solution.

On the basis of Theorem I.1.3, it is possible to formulate the boundary-value
problems so that the solution will be unique even in case (1). We could easily prove
that for the linear independent functionals p(v) introduced in Theorem I.1.3, for
example systems (a) or (c) of (2.8) may be taken.

6. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY
AND THE PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY

Using the results of Section 1.1 and defining A(v, u), f(v), g(v) by (5.1)—(5.3),
we establish the principle of minimum potential energy in the following

form:
The quadratic functional ¥(u) defined for u = {uy, u,, us} € W by

(6.1) Z(w) = f Lot o) — X 0~

B

- f [P, + Ry ni] I — f O, dB
I'r
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attains the minimum on the set
. uev,
if and only if

where @ is the weak solution, p € 2.

The formulation of the principle with subspaces ¥, is obvious. Similarly to Section 3,
we could derive the principle of minimum complementary energy. We
restrict ourselves only to presenting the principle:

The quadratic functional

(62) #(1) = L[&; (oo i) = {7 €(@) + pije (@)} ] dX

attains the minimum on the set of T €  which satisfy the equations of equilibrium
(4.2) and the statical boundary conditions (4.6), (4.8) in the weak sense, i.e. for
each v = {vy, v,, v3} € V there holds

(6.3) L}[rii ei(v) + pije ip(v)] dX = J‘ X0, dX +

2

+j (Pv; + R, n;)dI’ +j Qw;dB.
I'r

B

The minimum of the functional is realized just for T = T(ﬁ) where i is the weak
solution.
Here 7 is the Banach space of the stress fields T

T = {Tij, .uijk} y T = T5€ Lz(Q), Hiji € Lz(Q)
with the norm

3 3
1715 = 2 lrufiae + 2 [ilZacar -
i,j,k=1

i,j=1
(1, wijx) is the elastic energy per unit volume expressed by stresses. Further,
egi(#) = gy 2in(@) = A

and P;, R;, Q; are given boundary values.

If moreover the weak solution i is such that T(#) is a statically admissible stress
field, we can state the following alternative of the principle:

The quadratic functional

#(T) = J 'Q;(Tij’ pije) X — f (Piii; + Rii;ny) dl
Q2 Tu
where P;, R; are defined by (4.6) attains the minimum on the set of statically admis-
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sible stress fields, if and only if
|T - T(#)|, =0.

Remark 1. For both cases investigated in the present paper, i.e. for Mindlin’s
elasticity with microstructure and for the first strain-gradient theory, it is possible
to estimate errors of approximate solution based on the principle of minimum
potential energy and the principle of minimum complementary energy, following
the procedure in [1].

Remark 2. The couple-stress elasticity with constrained rotations
is a particular case of the first strain-gradient theory, if we assume that the elastic
energy per unit volume has the form

e eijn) »

i.e. o does not depend on ¢, 4 (see [3]). However, if we take &;; and &;; 1y for Nyv,
then all the third-order determinants of the matrix N, ¢ vanish identically and there-
fore its rank is lower then 3 = m for each ¢ e Cy. Hence, such a choice of N v fails
to be coercive. Unfortunately we have not found any other suitable coercive system.
Thus the approach used in the previous sections seems to be hardly applicable
to the couple-stress elasticity with constrained rotations.
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Vytah

EXISTENCE A JEDNOZNACNOST RESENI A NEKTERE VARIACNI
PRINCIPY V LINEARNICH TEORIICH PRUZNOSTI S MOMENTOVYMI
NAPETIMI

IVAN HLAVACEK, MIROSLAV HLAVACEK

Céast 2: MINDLINOVA TEORIE PRUZNOSTI S MIKROSTRUKTUROU A TEORIE
‘PRUZNOSTI S PRVNIM GRADIENTEM DEFORMACE

V druhé &ésti jsou vySetfovany Mindlinova teorie mikrostruktury a teorie pruZnosti
uvaZzujici vliv gradientu deformace. Pro staticky pfipad je formulovdno zobecnéné
feSeni okrajovych tloh pro omezend, anisotropni, nehomogenni télesa, jsou do-
kdzdny existence, jednoznacnost a spojitd zdvislost zobecnéného feseni na danych
zatiZenich. Jsou uvedeny princip minima potencidlni energie a minima doplitkové
energie.
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