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SVATEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

A REMARK ON ENERGETIC STABILITY OF FEEDBACK SYSTEMS 

VÁCLAV DOLEŽAL 

(Received March 3, 1968) 

0. In the paper [1], J. KUDREWICZ has introduced a new concept of stability — the 
so called energetic stability of a dynamical system. His idea is this: Assume that all 
signals and responses of a system belong to a set E, defined as the set of all functions x 
on [0, oo) such that 

/ l CT Y / 2 

v(x) = lim - | x ( t ) | 2 d t < c o 
T->00 0 

(i.e., x(t) is locally square-integrable and a proper limit exists.) Let the signal s and 
the corresponding response r of a system be related by r = Gs, where G is an operator 
mapping E into itself; then the system is called energetically stable, if v(Gs) = 0 for 
any s e E with v(s) = 0. 

In the present paper the concept of energetic stability is extended by dropping 
the assumption on local square-integrability, and three theorems on stability of feed­
back systems are given. 

1. First, let us carry out some preliminary considerations. 

Let Q be a fixed set of numbers such that sup Q = oo; if Te Q, define [T] = 
= ( - o o , T] n Q. 

Further, let g be a nonempty linear set, and let F be the family of all mappings 
from Q into g. With ordinary operations of addition and multiplication by a constant 
F is a linear set. 

Moreover, let F and F* be nonempty linear subsets of F such that F* is a Banach 
space and F* c F c F. 

For every T e Q let us have a linear mappings ST from F into itself which satisfies 
the following conditions: 

(i) STlST2 = STl for any T, ^ T2, Tu T2 e Q. 
(ii) Let x, y e F and T e Q; then x(t) = y(t) on [T] iff STx = STy. 

345 



(iii) Let xeF; then x e F iff Srx e F* for all TeQ. 
(iv) If x e F*, then ||S rx|| = |]x|| for any TeQ. 
(v) If x e F and a constant A > 0 exists such that \STx\ = A for all TeQ, then 

x e F* and ||x|| = A. 

We will also use the notation Srx = xT = (x) r . Examples of particular sets F, F* 
and corresponding mappings ST obeying the requirements (i) through (v) may be 
found in [2] . 

Next, let a(t) be a fixed nonnegative function defined on Q such that oc(t) -» 0 

as t -> oo. 

Let 

(1) Fa = {x : x e F and lim sup oc(T) IIXJI < oo} ; 
T->oo 

for x e Fa put 

(2) [x] = lim sup a(T) | | x r | . 
T-*°o 

(Here, lim sup (p(T) signifies lim (sup <p(*))-) 
T-+00 T-+oo TeiQ-[T] 

TeQ 

It is clear that F* _ Fa _ F (witness (iv)); moreover, we have the obvious pro­
position: 

Lemma 1. The set Fa is a linear space, and [ . ] is a seminorm on Fa. 

Furthermore, let 

(3) Fa0 = {x : x e Fa and [x] = 0} . 

Then, obviously, F* c Fa0 c Fa, and we have 

Lemma 2. The set Fa0 is a linear space. 

R e m a r k 1. It can be readily verified that the quotient space Fa/Fa0 becomes 
a linear normed space, if we define the sum and the multiple as usual and set, for 
KeFa/Fa0, IIKU = [x ] , x e K . 

Next, introduce the following concepts of continuity. 

Let A be an operator mapping F into itself; A will be called F-continuous at a point 
x e F, if for every s > 0 a S > 0 exists such that, for any xeF with x — x e Fa and 
[x — x] < d, we have Ax — Ax e Fa and [Ax — Ax] < s. The operator A will be 
called F-continuous, if it is F-continuous at every point xeF. 

Moreover, the operator A will be called F0-continuous at x e F, if y e F, x ~ y e 
e Fa0 implies that Ax - Ay e Fa0. 

Then we have 
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Lemma 3. If an operator A is E-continuous, then it is E0-continuous at every 
point x e F. 

The p r o o f is obvious. 
If the input-output behavior of a dynamical system 21 is described by an operator 

A : F -> F and A is F-continuous, then 21 will be called energetically stable. 

The physical interpretation of these concepts is straightforward. If x e Fa, then the 
value [x] may be interpreted as an average power of the quantity x in the time-span 
inf Q, sup Q = co. The energetic stability means then that the average power of the 
difference Ax — Ax of responses can be made arbitrarily small by taking signals x, x 
with a sufficiently small average power of x — x. 

Let us make the following observation: If, in particular, we set Q = [0, co), 
5 = ( - c o , co), 

F = L2 = {x : x e F, x measurable, \x(t)\2 dt < co for any 0 < T < co} , 
Jo 

F* = L2 = \x : x e F, x measurable, \x(t)\2 dt < co 

( S T X ) (t) = x(t) for 0 g t g T, (STx) (t) = 0 for t > T a n d a(t) = t " 1 / 2 for t ^ 1, 
then Fa =3 F, where F is the set considered in [ l ] . Especially, 

Гjo1 W l 
o lim | i í . = i 

Then the concept of energetic stability defined in [1] coincides with our energetic 
stability scorresponding to F0-continuity of the transfer operator A at x = 9. 

Turning now to the results concerning the energetic stability of feedback systems, 
let us make the following comment: The analysis of the feedback system reduces in 
essence to an analytis of a functional equation; to be more specific, the existence, 
uniqueness and certain properties of a solution imply the existence of the, over-all 
transfer operator and the input-output stability, respectively. (For more detail see 
[2]). In the general case, the equation in question has the form 

(4) x = A(u, x) ; 

here, A is an operator mapping F x F into F which is specified by the system con­
sidered, u is a signal at the input and x is the sought quantity determining the system 
response. 

If, for every u e F, a uniquely determined x e F exists such that (4) is satisfied, 
then (4) defines an operator Q from F into itself by x = Qu; we will say that (4) 
has the resolvent operator Q. 

An operator B : F -> F is called unanticipative, if STB = STBST for any T e Q. 

Theorem 1. Let A be an operator mapping F x F into F, and let the following 

conditions be satisfied: 

347 



1. {A(u, V)}T = {A(u, vT)}T for any T e Q and u, v e F. 
2. A number X < 1 and integer m ^ 1 exist such that 

(5) flS,^* - ^y2)\\ ^ A|ST(y i - y2)\\ 

for all u, yl9 y2 e F and T e Q, where Au = A(u, .). 
3. The operator Amv is E-continuous for every v e F. Then the equation (4) has 

the resolvent operator Q and Q is E-continuous. 

Proof . Since the first part of the proof is analogous to that of Theorem 2 in [2], 
we will indicate only the main ideas. First, referring to lemma 3 in [2], the equation 
(4) has a resolvent operator, if, for every T e Q the equation 

(6) xT = STAux
T 

has a unique solution x7 in F*. However, condition (5) shows that, for every T e Q, 
the equation 

(7) e = sTi':e 

has a unique solution £T in F*. From condition 1. it follows easily that Am is an un-
anticipative operator, and consequently, £T is also a unique solution of (6). 

Moreover, as in the proof of Lemma 3 in [2] we can show that xT = STx, where x 
is the solution of (4). 

Thus, let us choose a u e F and s > 0; further, let u e F be such that u — u e Fa, 
let Qu = x = Aux, Qu = x = Aax and let T e Q. Then we have by (7), (5) and the 
fact that x7 = STx, xT = STx, 

||xT - xT|| S \\ST(AmxT - AmxT)\\ + \ST(Ar
u
nxT - AmxT)\\ ^ 

ST ~T \II . II O ( 7m T 7mT\\\ й ЦSт(xт - xт)\\ + | |S т(Aй

mx т - Amx7 

l . Є . 

(8) ||Sr(* - x ) | g (1 - l)-l\\ST(A?x - A » | . 

(Here we have used the facts that S7x
T = STxT = STx, STAux

T = STA
mSTx = 

= STA,mx, and similarly for xT.) 
Next, since Amx is F-continuous by 3., there exists a 5 > 0 such that for \u — u\ < 

< 5 we have q = Imx - Amx e Fa and [qj < (1 - X) s, i.e. lim sup a(T) \\STq\\ < 

< (1 - X) s. Thus, (8) yields lor any T e Q, T~>0° 

sup a(T) | S T ( x - x)|| g (1 - Xy1 sup a(T) \\STq\\ , 
TeQ ~ [r] TeD ~ M 

and consequently, 

[ x - x ] ^ ( l - A ) - 1 [ q ] < £ . 
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Thus, Qu — QueF* and [Qu — Qu\ < s, i.e. Q is E-continuous; the theorem is 
proved. 

Consider now a quasilinear case of equation (4); here, we have the proposition 

Theorem 2. Let Ai and C be operators mapping F into itself, let C be linear, 
unanticipative with I — C being one-to-one from F onto F and (I — C)" 1 being 
unanticipative; furthermore, let A map F x F -> F and satisfy condition 1. in 
Theorem 1. If 

1. C maps F* -> F* and (I — C)" 1 is bounded on F*, 

2. a constant d > 0 exists such that 

(9) \\ST(A(u, Vl) - A(u, v2))\\ = d\\ST(Vl - v2)|| 

for every u, vx, v2e F and T e Q, 

3. ||(I - C) _ 1 | | d < 1, 
4. A! is E-continuous and A(u, v) is E-continuous in u for every v e F, 

then the equation (4) with A(u, v) = Axu + Cv + A(u, v) has a resolvent operator 
Q and Q is E-continuous. 

Proof. Referring again to Lemma 3 in [2], consider the equation 

(10) xT = STA(u, xT) = 

= ST{Axu + CxT + A(u, xT)} . 

Due to the assumptions concerning the unanticipativity of C and (I — C ) _ 1 it follows 
that (10) is equivalent to 

(11) xT = STRux
T 

with 

(12) Rux
T = (I - C)" 1 {Axu + A(u, xT)} . 

Then condition (9) with 3. show that (11) has a unique solution xT in F*, and con­
sequently, (4) has a unique solution in F. Hence (4) has a resolvent operator Q, and 
xT = STx, x — Qu. 

Next, let ue F and s > 0; if u e F is such that u — u e Fa and Qw = x = A(u, ic), 
then it follows as in the proof of Theorem 1 that, for a T e Q, 

(13) \\ST(x - x)\\ g (1 - d)'1 \\ST(RaxT - KMxr)|| 

with d = |(I - C ) " 1 ! d. However, by (12), 

(14) \\ST(R&xT - RuxT)\\ g / i l S T ^ i u - A±u)\\ + 

+ /i|]5r{A(w, xT) — A(u, xT)}|| , 
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where jn = ||(I — C)"1)]. In view of condition 1 in Theorem 1 we have 

STA(u, xT) = STA(u, x) and STA(u, xT) — STA(u, x) . 

By assumption on F-continuity of At and A there exists a O* > 0 such that, for 
[w — u\ < S, we have Axu — Axu e Fa, A(u, x) — A(u, x) e Fa and fAiG — Axu\ < 
< i ( l - d)jLL~1e, \A(u,x) — A(u, x)J < i(l — d)jLi~1£. Thus, multiplying (13) 
by a(T) and using (14), we conclude by passing to the lim sup on both sides that 
[Jc — x\ < e. Hence Qu — Qu e Fa and \_Qu — Qu\ < e, i.e. Q is E-continuous. 
This concludes the proof. 

In practice the operator A has frequently the form A{u, v) = u + CNv, where C 
is linear. Here, we have the proposition (see also [3]). 

Theorem 3. Let C and N be unancticipative operators mapping F into itself, and 
let C be linear', furthermore, let a number X exist such that the following conditions 
are met: 

1. I — XC is one-to-one from F onto F, (I — AC)"1 is unanticipative and E-con­
tinuous. 

2. The operator (I — XC)~l C is bounded on F*. 
3. There exists a number pi > 0 such that 

(15) | |ST{N*1 ~ N*2 - ^ 1 ~ *2)}| | = l*iST(Xl ~ *2)|| 

for every T e Q and xl9 x2 e F. 
4. ||(/ - XC)'1 C|| n < 1 . 

Then the equation x = u + CNx has a resolvent operator Q and Q is E-continuous. 

Proof. Referring to Lemma 3 in [2], consider the equation 

(16) xT = ST(u + CNxr) 

on F*. Clearly, (16) can be written as 

(17) ST(I - XC) xT = STu + SrC(N - X) xT. 

Since (I — AC) - 1 is unanticipative by 1., it follows that ((ST(l — AC))""1 = 
= S r(I - AC) - 1 ; hence, (17) is equivalent to 

(18) xT = RxT 

with 

(19) Ry = S r(I - XC)-1 u + ST(I - XC)'1 C(N ~~ X) y . 

However, JR is a contraction on F*; actually, by (19), 3., 

\\Ryi - Ry2\\ = \\ST(I - ^ C ) ' 1 C\\ . \\ST{Nyi - Ny2 - X(yx - y2)}|| g 

^ ||(I - XC)'1 C\\ ii. \\ST(yi - y2)\\ = q\\ST(yi - y2)\\ = q\\yi - y2\\ , 
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and q < 1 by 4. Thus, (16) has a unique solution xT for every T e Q and, by Lemma 3 
in [2], x r = Srx with x e F being a unique solution of 

(20) x = u + CNx . 

Consequently, (20) has a resolvent operator Q. 

Next, let e > 0 and choose u e F such that u — u e F*; if x = Qu, then, for a l e O , 
it follows by the above inequality that 

(21) | |x r - x7] - ||Sr(x - x)|| g (1 - 4 ) - 1 | |Sr(I - icy1 (u - u)|| . 

Since (I — XC)~X is E-continuous by 1., there exists a O" > 0 such that [u — u] < O* 
implies that (I - XC)'1 (u - u) e F* and [(I - AC)"1 (u - u)] < (1 - g) £. Then, 
as before, we conclude by (21) that [x — x] = [gu — Qu] < £, i.e. Q is E-continu­
ous. Hence, the proof. 

Concluding the paper, observe the following facts. For being able to apply Theo­
rems 1 to 3 to realistic systems, it is desirable to establish as sharp bounds as possible 
for constants X, d and fi appearing in inequality (5), (9) and (15), respectively. For this 
purpose it is convenient to realize that the following trivial proposition is true: 

Lemma 4. Let A be an unanticipative operator mapping F into itself, and let 
X > 0. Then 

(22) ||Sr(AX! — Ax2)|| ^ 2||S r(xi — x2)|| 

for every T e Q and xl9 x2 e F, iff for any y1, y2 e F with y1 — y2 e F* we have 
Ayx — Av2 e F* and 

C23) \Ayx - Ay2\\ ^ X\yx - y2\\ . 

Proof. Let (22) hold and let xl9 x2 e F be such that xx — x2 e F*. Then by (iv) 
we have | |S r(x! — x2)|| ^ \\x1 — x2|| for any T e Q, and consequently, by (v), AXi — 
— Ax2eF* and ||Abe! — Ax2|| ^ X\\xi — x2||. 

Conversely, let (23) hold and choose xl9 x2eF and TeQ. Putting ^i = SrXi, 
y2 = Srx2, we have yx — y2 e F* by (iii), and consequently, due to the assumption 
made, Ayx ~ Ay2eF* and \Ay1 — Ay2 

— -4y2)|| ^ I Ay 1 — Ay21|, it follows that 
The equality STAST = 5 r A concludes the proof. 

Furthermore, we have 

Š. -Iflyi ~ y2||. Since by (iv) | |S r(^yi -
Sr(ASrxx - ASTx2)\ ^ A||Sr(xi - x2)||. 

Lemma 5. Let A be an operator mapping F into itself. 

a) If A satisfies condition (22), then A is E-continuous. 
b) If A is linear and unanticipative, maps F* into itself and is bounded on F*, 

then A is E-continuous. 
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The p r o o f is obvious and follows from Lemma 4. 
Finally, let us present a simple example. 

- * - > 

N ^ 

Fig, 1 

Consider the feedback system portrayed in Fig. 1., where C signifies a linear time-
invariant system and N a pure memoryless gain. Let these systems be governed by 
equations 

(24) 

(25) 

Cy = ay + k(t — т) y(т) dт , 
Jo 

u = Nv = f(v) , 

where a is a real constant n x n matrix, k(t) is a real n x n matrix function defined 
on [0, oo) and / is an ^-vector-valued function of an rc-vector argument. Let the 
signals and responses be interpreted as elements of L 2 and L 2 . Furthermore, assume 
that the following conditions are satisfied: 

(i) There exists a number X and p, > 0 such that 

(26) |/(Či) - f(Q ~ K^t - É-)| = H\ti - Í2 

for any £l9 £2
 E E"- (Here, |^| = ( ]T £2)l/2, £t being the components of the vector $.) 

;= i 

(ii) The integral K(p) = J^ k(t)e~pt dt converges for Re p > —e, s > 0, and 
K(p) has rational functions of p as its elements. 

(iii) det (I — Xa — XK(p)) + 0 in the half-plane Re p > — e. 

Our task is to find a condition guaranteeing the energetic stability of the system. 
The feedback system under consideration is governed by the equations 

(27) y = x = C(u + W) , V = Nx , 

where u, y is the input signal and the output response, respectively. Thus, we have 

(28) x = u + CNx 

with u = Cu. 
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Referring to Theorem 3, consider the operators C, (I — XC) and (I — XC)~~l C. 
First, the condition (iii) implies that the matrix I — Xa is nonsingular, since K(p) ~» 0 
as p -> co, p real. Consequently, the operator I — XC is one-to-one from L2 onto L2, 
and because (I — XC)~l is also a Volterra-type operator (I — XC)~~l is unanticipa-
tive. 

Next, we are going to show that I — XC is one-to-one from L2 onto L2 and that 
both I - XC and (I - XC)~~l are bounded. 

Let L2 signify the set of all ^-vector valued functions f such that f f ^ Jx(t)f(t) dt < 
< co (here, f' denotes the transposition.) The condition (ii) implies that the matrix 
function K(ico) is continuous and |K(iOj)| bounded on (—00,00); (here, | M | = 
= ( X ^?/c)1/2> ^f/c being the elements of the matrix M); moreover, \k(t)\ g Re~~Et 

Í./C 

with some constants K > 0, 0 < e' < e. Letfe L2; defining f(t) = 0 for t < 0, we 
h a v e f e L 2 , and consequently, the Fourier-Plancherel transform/ of f also belongs 
to L'2. (See [4], p. 282). Defining k(t) = 0 for t < 0, we clearly have kc e L2 and 
K(ico) c e L'2 for any constant vector c. However, in view of the boundedness of 
K(ico) we obtain K(ico)fe L2; hence, by the theorem on convolution (see [4], p. 283), 

k(t - т)f(т) dт = k(t - т)f(т) dт EĽ2 . 
0 J 0 

Consequently, by (24), C and also I — XC map L 2 into itself. 
Moreover, l e t f e L 2 and let u = j " 0 k(t — T)f(T) dT. Then the Parseval's equality 

yields 

II 112 

II-ІГ = 
• 

* o o -< 

ӣxu dt = — 
0 2 л ; 

Ä 2 Г æ 

~ 2тг J _ m 

/• 00 -j /* 00 

ňxúdco - — fKK(icoyK(ico)fdco ^ 
J - 00 2 K J ~ OD 

/•OO /*00 

/fd ( U = R'2 /ydí = F | | / | | 2 , 
J -00 J o 

because |K(iW)| _̂  ^ . Hence, C and I — XC are bounded operators on L 2 . 
Next, put G(p) = (I — Xa — AK(p)) - 1 for Re p > — s. Then conditions (i) and (ii) 

show that the matrix H(p) = G(p) — (I — /Uz)~x has rational functions as its elements 
and that H(p) -> 0 as p ~> 00. Consequently, H(p) is the Laplace transform of a matrix 
function ft(f) such that |/i(t)| ^ jR'e""8'f, 0 < e' < s. 

On the other hand, if feL2, then g = (I — XC)~~l fe L 2 ; however, repeating 
the above argument we conclude that G(ico)feL2. Thus, necessarily g e L 2, i.e. 
(I — 2 C ) " 1 maps L 2 into itself. The boundedness follows as before. 

Summarizing our considerations we see that conditions 1. and 2. in Theorem 3 are 
satisfied. (Witness Lemma 5 for E-continuity of (I — XC)"1 and C.) It is a matter 
of standard routine to verify that (i) implies (15). 

Finally, if M is an n x n matrix let A(M) signify the square-root of the largest 
eigenvalue of the matrix MXM. Denote Z(p) = (I — Xa — XK(p))~x (a + K(p)) 
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and let z e L2, u = (I — 2C) * Cz; using the above results and Parseval's equality, 

we can write 

fx I f 0 0 — 1 f00 -
| |ii12 = tTw dt = — iTudco = —- z v 2s(ia)) Z(icO) z dcO _ 

Jo 2^J-«, ^ T Z J ^ 
f°° -sup A2(2(icD)) z v z d c D = sup A2(2(ia))) | |z | | 2 . 

— 00 , 00 ) J — 00 a)e( ~ °° »°°) 

< ! 
2,71 o>e( — oo , oc ) 

Hence, 

| | (/ - A C ) " 1 C|| = sup A(Z(iw)), 
( — o o , oo ) 

and the sought condition reads by 4. in Theorem 3, 

(29) n sup A{(I - Xa - XK(ico)) (a + K(ico))} < 1 . 
o>e( — oo , o o ) 

Thus, under (29) the resolvent operator Q for (28) is E-continuous in the variable 

u = Cu, and consequently, QC is E-continuous; hence the equality y = QCu shows 

that the considered system is energetically stable. 

References 

[1] Kudrewicz J.: Устoйчивoсть нелинейныx систем с oбpaтнoй связю, Aвтoмaтикa и теле-
меxaникa, вoл. 25 (1964), 1145—1155. 

[2] Doležal V.: On gеnеral nonlinеar and quaѕilinеar unantiсipativе fееdbaсk ѕyѕtеmѕ, Apl., 
matеm., 14 (1969), 220-240. 

[3] Sandberg I. W.: Somе rеѕultѕ on thе thеory of phyѕiсal ѕyѕtеmѕ govеrnеd by nonlinеar funс-
tional еquationѕ, Bеll Syѕtеm Tесh. Journal, Vol. 44 (1965), pp. 871—898. 

[4] Sauer R., Szabo L: Mаthеmаtiѕсhе Hilfѕmittеl dеѕ Ingеniеurѕ, Ѕpringеr Vеrl. 1967. 

S o u h r n 

POZNÁMKA K ENERGETICKÉ STABILITĚ ZPĚTNOVAZEBNÍCH 
SYSTÉMŮ 

VÁCLAV DOLEŽAL 

V Článkuje sestrojeno abstraktní schéma energetické stability dynamických systémů, 
která byla zavedena J. Kudrewiczem v práci [1]. Jsou dokázány tři věty o energetické 
stabilitě zpětnovazebních systémů. 
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