Aplikace matematiky

Vaclav Dolezal
A remark on energetic stability of feedback systems

Aplikace matematiky, Vol. 14 (1969), No. 5, 345-354

Persistent URL: http://dml.cz/dmlcz/103245

Terms of use:

© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103245
http://dml.cz

SVAZEK 14 (1969) APLIKACE MATEMATIKY &isLo s

A REMARK ON ENERGETIC STABILITY OF FEEDBACK SYSTEMS

VAcLAV DOLEZAL
(Received March 3, 1968)

0. In the paper [1], J. KUDREWICZ has introduced a new concept of stability — the
so called energetic stability of a dynamical system. His idea is this: Assume that all
signals and responses of a system belong to a set E, defined as the set of all functions x

on [0, o) such that
, | 1/2
v(x) = lim <~f ’\(t)'l dt) <
T—w T 0

(i.e., x(t) is locally square-integrable and a proper limit exists.) Let the signal s and
the corresponding response r of a system be related by » = Gs, where G is an operator
mapping E into itself; then the system is called energetically stable, if v(Gs) = 0 for
any s € E with v(s) = 0.

In the present paper the concept of energetic stability is extended by dropping
the assumption on local square-integrability, and three theorems on stability of feed-
back systems are given.

1. First, let us carry out some preliminary considerations.

Let Q be a fixed set of numbers such that sup Q = oco; if Te Q, define [T] =
= (=00, T]n Q.

Further, let § be a nonempty linear set, and let F be the family of all mappings
from Q into §. With ordinary operations of addition and multiplication by a constant
Fis a linear set.

Moreover, let F and F* be nonempty linear subsets of F such that F* is a Banach
space and F* < F c F.

For every T € Q let us have a linear mappings Sy from F into itself which satisfies
the following conditions:

(i) Sy,Sr, = Sy, forany Ty < T,, Ty, T, € Q.
(ii) Let x, ye F and T € Q; then x(¢t) = y(¢) on [T]iff Syx = Syy.
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(iii) Let x € F; then x € F iff S;x € F* for all T e Q.

(iv) If x € F*, then ||Syx|| < x| for any T e 2.

(v) If xe F and a constant 4 > 0 exists such that “STx" < A for all Te Q, then
x € F* and “x“ < A

We will also use the notation Syx = xg = (x);. Examples of particular sets F, F*
and corresponding mappings Sy obeying the requirements (i) through (v) may be
found in [2].

Next, let «(t) be a fixed nonnegative function defined on Q such that «(t) » 0
ast — oo.

Let

(1) F*={x:xeF and limsup o(T) [x;| < oo} :
T

for x € F* put

(2 [x] = lim sup o(T) [x] .
T-
(Here, lim sup ¢(T) signifies lim (sup  ¢(7)).)
T— o ;:Qoo w€Q—[T]

It is clear that F* = F* = F (witness (iv)); moreover, we have the obvious pro-
position:
Lemma 1. The set F* is a linear space, and [[]} is a seminorm on F*.
Furthermore, let
(3) F*° = {x:xeF*and [x] = 0}.

Then, obviously, F* < F*® < F* and we have

Lemma 2. The set F*° is a linear space.

Remark 1. It can be readily verified that the quotient space F*[F** becomes
a linear normed space, if we define the sum and the multiple as usual and set, for
X e F[F*°, XH = [x], xe X.

Next, introduce the following concepts of continuity.

Let A be an operator mapping F into itself; 4 will be called E-continuous at a point
x e F, if for every ¢ > 0 a § > 0 exists such that, for any X € F with X — x € F* and
[¥ — x] < 6, we have AX — Ax € F* and [AX — Ax] < e The operator 4 will be
called E-continuous, if it is E-continuous at every point x € F.

Moreover, the operator A will be called Ey-continuous at xe F, if ye F, x — y €
€ F*° implies that Ax — Ay e F*°.

Then we have
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Lemma 3. If an operator A is E-continuous, then it is Ey-continuous at every
point x € F.

The proof is obvious.

If the input-output behavior of a dynamical system 2 is described by an operator
A : F — F and A is E-continuous, then 2 will be called energetically stable.

The physical interpretation of these concepts is straightforward. If x € F*, then the
value [ x] may be interpreted as an average power of the quantity x in the time-span
inf Q, sup Q =o0. The energetic stability means then that the average power of the
difference AX — Ax of responses can be made arbitrarily small by taking signals X, x
with a sufficiently small average power of X — x.

Let us make the following observation: If, in particular, we set Q = [0, c0),
F = (-0, ©),

F=L,={x:xeF, x measurable,j. |x(t)|2 dt < oo forany0 < 7 < o},

=L

N

{x x € F, x measurable j |x(t)|2 dt < oo}

(Srx) (f) = x(t) for 0 < t < T, (Sgx) (t) = 0 for t > Tand oft) = 1"/ for t > 1,
then F* > E, where E is the set considered in [1]. Especially,

%0 . 1 (7 2 12
xeF?° <« lim (= |x(t)[ dt) =0.
TJ,

T—oo

Then the concept of energetic stability defined in [1] coincides with our energetic
stability scorresponding to E,-continuity of the transfer operator A at x = 0.

Turning now to the results concerning the energetic stability of feedback systems,
let us make the following comment: The analysis of the feedback system reduces in
essence to an analytis of a functional equation; to be more specific, the existence,
uniqueness and certain properties of a solution imply the existence of the, over-all
transfer operator and the input-output stability, respectively. (For more detail see
[2]). In the general case, the equation in question has the form

(4) x = A(u, x) ;

here, A4 is an operator mapping F x F into F which is specified by the system con-
sidered, u is a signal at the input and x is the sought quantity determining the system
response.

If, for every u € F, a uniquely determined x € F exists such that (4) is satisfied,
then (4) defines an operator Q from F into itself by x = Qu; we will say that (4)
has the resolvent operator Q.

An operator B : F — F is called unanticipative, if S;B = S;:BSy for any T € Q.

Theorem 1. Let A be an operator mapping F x F into F, and let the following
conditions be satisfied:
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1. {A(u, v)}r = {A(u, v7)}r for any Te Q and u,veF.
2. Anumber A < 1 and integer m = 1 exist such that

©) |Sr(Aiys — Alya)| = 2] Se(ys = y))]

forallu, y,, y,e Fand T € Q, where 4, = A(u, .).
3. The operator A"v is E-continuous for every ve F. Then the equation (4) has
the resolvent operator Q and Q is E-continuous.

Proof. Since the first part of the proof is analogous to that of Theorem 2 in [2],
we will indicate only the main ideas. First, referring to lemma 3 in [2], the equation
(4) has a resolvent operator, if, for every T € Q the equation

(6) T = SpAx"

has a unique solution x" in F*. However, condition (5) shows that, for every T € Q,
the equation

(7) ér = ST"Z:I" :

has a unique solution £" in F*. From condition 1. it follows easily that /T’" is an un-
anticipative operator, and consequently, &7 is also a unique solutlon of (6).
Moreover, as in the proof of Lemma 3 in [2] we can show that xT = S;x, where x
is the solution of (4).
Thus, let us choose a u € F and ¢ > 0; further, let & € F be such that i — u e F*,
let Qu = x = A,x, Qii = X = A;% and let T e Q. Then we have by (7), (5) and the
fact that x" = S,x, 7 = §;%,

[ 57 5 IS — Apa)] + s — A7) <
S ASHET x|+ [, — AT

(8) 8% — %) = (1 = A7 So(Af'x — A7'x)]| .

(Here we have used the facts that S;x” = Spx; = Spx, Spdy'x" = S;A]Sx =
= S;A™x, and similarly for %)

Next, since A™x is E-continuous by 3., there exists a & > 0 such that for [# — u] <
< & we have g = Ai'x — Ax e F* and [q] < (1 = 2)e, ie. hm sup o T) [[Sra| <
< (1 = A)e. Thus, (8) yields for any 7 € Q,

sup «T) HST(x - x)” <=7t sup oc(T) ”51(1“

TeR—[1]
and consequently,

[F=x]=1=-2)"[q] <e.
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Thus, Qif — Que F* and [Qd — Qu] <&, i.e. Q is E-continuous; the theorem is
proved.
Consider now a quasilinear case of equation (4); here, we have the proposition

Theorem 2. Let A, and C be operators mapping F into itself, let C be linear,
unanticipative with I — C being one-to-one from F onto F and (I — C)_1 being
unanticipative; furthermore, let A map F x F — F and satisfy condition 1. in
Theorem 1. If

1. C maps F* — F* and (I — C)™ "' is bounded on F*,
2. a constant d > 0 exists such that '

©) “ST(’Z(“’ vy) = /T(“’ Uz))” = dHST(”l - ”2)H

for every u, v, v, € F and T € Q,

-0 td<t,

4. A, is E-continuous and }f(u, v) is E-continuous in u for every ve F,
then the equation (4) with A(u, v) = Ayu + Cv + A(u, v) has a resolvent operator
Q and Q is E-continuous.

Proof. Referring again to Lemma 3 in [2], consider the equation
(10) x" = SA(u, x") =
= Sp{du + Cx" + Au, x")} .

Due to the assumptions concerning the unanticipativity of C and (I — C)~ " it follows
that (10) is equivalent to

(11) xT = S;RxT
with
(12) Rx" = (I — )" {Au + Au, x")}.

Then condition (9) with 3. show that (11) has a unique solution x” in F*, and con-
sequently, (4) has a unique solution in F. Hence (4) has a resolvent operator Q, and
xT = S;x, x = Qu.

Next, let u € F and & > 0; if 4 € F is such that # — u € F* and Qi = X = A(u, %),
then it follows as in the proof of Theorem 1 that, fora T € Q,

(13) ”ST(’z - x)“ = (1 - 3)—1 ”ST(R,;xT - RuxT)“
with d = ||(I — C)™'| d. However, by (12),
(14) IS2(Raxr — Rpxr)| < u|So(dsii — Ayu)| +

+ uHST{Z(ﬁ, xr) — A(u, x7)}| .
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where u = ||[(I = C)™*|. In view of condition 1 in Theorem 1 we have
SrA(d, x;) = SpA(d, x) and  SpA(u, x1) = SA(u, x) .

By assumption on E-continuity of A, and A there exists a § > 0 such that, for
[# — u] < o, we have Ayii — Ayu e F* A(d, x) — A(u, x) e F* and [Aii — Au] <
<31 —d)yu e, [A(#, x) — A(u, x)] < (1 — d) p~'e. Thus, multiplying (13)
by «(T) and using (14), we conclude by passing to the lim sup on both sides that
[¥ — x] <& Hence Qif — Que F* and [Qd — Qu] <e, i.e. Q is E-continuous.
This concludes the proof.

In practice the operator 4 has frequently the form A(u, v) = u + CNv, where C
is linear. Here, we have the proposition (see also [3]).

Theorem 3. Let C and N be unancticipative operators mapping F into itself, and
let C be linear; furthermore, let a number A exist such that the following conditions
are met:

1. I — AC is one-to-one from F onto F, (I — AC)™' is unanticipative and E-con-
tinuous.

2. The operator (I — AC)™* C is bounded on F*.

3. There exists a number u > 0 such that

(15) “S',v{le — Nxy — Ax; — xz)}” < ﬂ”ST(x, - xz)"

for every Te Q and x,, x, € F.
4. Ju-1c)y'clu<t.
Then the equation x = u + CNx has a resolvent operator Q and Q is E-continuous.

Proof. Referring to Lemma 3 in [2], consider the equation
(16) x" = Sy(u + CNx")
on F*. Clearly, (16) can be written as
(17) Sp(I = AC) x" = Squ + S;C(N — ) x".

Since (I — AC)™' is unanticipative by 1., it follows that ((Sy{I — 4C))"! =
= Sy(I — AC)™!; hence, (17) is equivalent to

(18) x" = Rx"

with

(19) Ry =Sy(I = 2C) tu + S(I — AC)" C(N — A) y.

However, R is a contraction on F*; actually, by (19), 3.,

|Ry: = Ry < [[S2(1 = 20)7* €[ [Sr{Nys — Ny, — Ay, = y2)}| =
S |a=r0)7tclu. [Se(vi = y2)| = q|S2(ys = ¥2)| £ ays — ¥2|,
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and g < 1 by 4. Thus, (16) has a unique solution x” for every T € Q and, by Lemma 3
in [2] xT = S;x with x € F being a unique solution of

(20) X =u+ CNx.

Consequently, (20) has a resolvent operator Q.

Next, let ¢ > 0and choose ii € F such thati — e F*;if ¥ = Qu, then,fora T € Q,
it follows by the above inequality that

@) F =T = s -] = (0 =)t St - A0)7 @ — W)

Since (I — AC) ™' is E-continuous by 1., there exists a > 0 such that [d — u] < ¢
implies that (I — AC)™' (i — u)e F* and [(I — 2C)™*' (@ — u)] < (1 — q) & Then,
as before, we conclude by (21) that [£ — x] = [Qd — Qu] < ¢, i.e. Q is E-continu-
ous. Hence, the proof.

Concluding the paper, observe the following facts. For being able to apply Theo-
rems 1 to 3 to realistic systems, it is desirable to establish as sharp bounds as possible
for constants 4, d and u appearing in inequality (5), (9) and (15), respectively. For this
purpose it is convenient to realize that the following trivial proposition is true:

Lemmad. Let A be an unanticipative operator mapping F into itself, and let
A > 0. Then

(22) [Sx(Ax, = Axo)| < A[Salx) = xo)]

for every T e Q and x,, x, € F, iff for any y;,y, € F with y, — y, € F* we have
Ay, — Ay, e F* and

(23) l4yy = 4ys] < 2yy = »a| -

Proof. Let (22) hold and let x,, x, € F be such that x, — x, € F*. Then by (iv)
we have | Sy(x; — x,)| £ |x; — x,| for any T € @, and consequently, by (v), Ax, —
— Ax, e F*and |Ax; — Ax,| < A%, — x;].

Conversely, let (23) hold and choose x;, X, € F and T € Q. Putting y, = S7x,,
y2 = Srx,, we have y, — y, € F* by (iii), and consequently, due to the assumption
made, Ay, — Ay, € F* and ||Ay, — Ay,| < Ay, — y,]. Since by (iv) |Sr(4y, —
— Ay,)| < |Ay1 — Ay,|, itfollows that || Sy(ASrx; — ASrx,)| £ A Si{x; — x)|.
The equality S;A4S; = S;A concludes the proof.

Furthermore, we have

Lemma 5. Let A be an operator mapping F into itself.

a) If A satisfies condition (22), then A is E-continuous.
b) If A is linear and unanticipative, maps F* into itself and is bounded on F¥*,
then A is E-continuous.
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The proof is obvious and follows from Lemma 4.
Finally, let us present a simple example.

c
U (yur¥ ) AN
4 x
/\l]
N
Fig. 1.

Consider the feedback system portrayed in Fig. 1., where C signifies a linear time-
invariant system and N a pure memoryless gain. Let these systems be governed by
equations

(24) z=Cy = ay +th(t — 1) ¥(r) dr,

(25) u = Nv = f(v),

where a is a real constant n x n matrix, k(t) is a real n x n matrix function defined
on [0, ) and f is an n-vector-valued function of an n-vector argument. Let the
signals and responses be interpreted as elements of L, and L,. Furthermore, assume
that the following conditions are satisfied:

(i) There exists a number A and p > 0 such that
(26) 7€) = £(&) = A&y — &)| < mfe, = &)

for any &, &, € E. (Here, |&] = () &])"/2, &, being the components of the vector ¢.)
i=1

(ii) The integral K(p) = [¢ k(f) e **dt converges for Rep > —e, & > 0, and
K(p) has rational functions of p as its elements.

(iii) det (I — Aa — AK(p)) = 0 in the half-plane Re p > —e.

Our task is to find a condition guaranteeing the energetic stability of the system.

The feedback system under consideration is governed by the equations

(27) y=x=Cu+Y¥), ¥=Nx,
where u, y is the input signal and the output response, respectively. Thus, we have

(28) x =@ + CNx

with & = Cu.
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Referring to Theorem 3, consider the operators C, (I — AC) and (I — AC)™' C.
First, the condition (iii) implies that the matrix I — Aa is nonsingular, since K(p) — 0
as p —» o, p real. Consequently, the operator I — AC is one-to-one from L, onto L,,
and because (I — AC)™" is also a Volterra-type operator (I — AC)~" is unanticipa-
tive.

Next, we are going to show that I — AC is one-to-one from L, onto L, and that
both I — 2C and (I — AC)™! are bounded.

Let L, signify the set of all n-vector valued functions f such that {2 7(r) f(r) dt <
< oo (here, f* denotes the transposition.) The condition (i) implies that the matrix
function K(iw) is continuous and IK(ia))’ bounded on (—oo, 0); (here, |M| =
= (Y, Mj)"2, My, being the elements of the matrix M); moreover, |[k(f)] < Re™*"

ik

with some constants R > 0, 0 < &' < . Let f e L,; defining f(f) = 0 for t < 0, we
have f e L,, and consequently, the Fourier-Plancherel transform f of f also belongs
to L,. (See [4], p. 282). Defining k() = 0 for ¢ < 0, we clearly have kce L, and
K(iw) c e L, for any constant vector ¢. However, in view of the boundedness of
K(iw) we obtain K(iw) f € L,; hence, by the theorem on convolution (see [4], p. 283),

o t
J Kt — ©) f(c) de = J Ki - 1) f(x)dre L.
- 0
Consequently, by (24), C and also I — AC map L, into itself.
Moreover, let fe L, and let u = [{ k(t — 1) f(7) dr. Then the Parseval’s equality
yields

e 2 :J i'udt = —1‘[ a'ddo = ;—J J'K(iw)' K(iw) f do <
0 )~

because 'K(iw)l < R. Hence, C and I — AC are bounded operators on L,.

Next, put G(p) = (I — Aa — AK(p))~! for Re p > —e&. Then conditions (i) and (ii)
show that the matrix H(p) = G(p) — (I — Aa)~" has rational functions as its elements
and that H(p) — 0as p— co. Consequently, H(p) is the Laplace transform of a matrix
function h(z) such that |h(f)] < R'e™", 0 < & < &.

On the other hand, if feL,, then g = (I — AC)™" fe L,; however, repeating
the above argument we conclude that G(iw) fe L,. Thus, necessarily g € L,, i.e.
(I — 2C)™! maps L, into itself. The boundedness follows as before.

Summarizing our considerations we see that conditions 1. and 2. in Theorem 3 are
satisfied. (Witness Lemma 5 for E-continuity of (I — AC)™" and C.) It is a matter
of standard routine to verify that (i) implies (15).

Finally, if M is an n X n matrix let A(M) signify the square-root of the largest
eigenvalue of the matrix M'M. Denote Z(p) = (I — ia — AK(p))™' (a + K(p))
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and let ze L,, u = (I — AC)~! Cz; using the above results and Parseval’s equality,
we can write

Hu”z =-[ Tudt = Lf J a'ado = lj ) 5‘?‘(@) Z(iv) 2 dw =
o 2n 2n

-0 -

0

gl, sup AZ(Z(iw))J 2'2dw = sup AZ(Z(I'U)))”Z“Z-

T we( —o0,0) — we(—x,x)

Hence,

[(r = 2c) ' ¢| £ sup A(Z(iw)),
(=w,0)
and the sought condition reads by 4. in Theorem 3,

(29) p sup  A{(I — ia — JK(iw)) (a + K(iw))} < 1.
we(— 00 ,00)
Thus, under (29) the resolvent operator Q for (28) is E-continuous in the variable

@t = Cu, and consequently, QC is E-continuous; hence the equality y = QCu shows
that the considered system is energetically stable.
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Souhrn

POZNAMKA K ENERGETICKE STABILITE ZPETNOVAZEBNICH
SYSTEMU

VAcLAV DOLEZAL
V ¢ldnku jesestrojeno abstraktni schéma energetické stability dynamickych systémt,
kterd byla zavedena J. Kudrewiczem v prdci [1]. Jsou dokdzdny t¥i véty o energetické

stabilité¢ zpétnovazebnich systému.
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