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SVAZEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

VARIATIONAL PRINCIPLES FOR PARABOLIC EQUATIONS 

IVAN HLAVACEK 

(Received January 19, 1968) 

1. While the variational principles are well-known and applied since a long time in 
the boundary value problems for elliptic and in mixed problems for hyperbolic 
partial differential equations, in the problems, described by parabolic equations, 
their relation to variational principles were quite different. The effort to find a func­
tional, the Euler's equation of which would be e.g. 

(1.1) * « ^ 
v ' dt dx2 

was failing. G. ADLER [1] even proved, that such functional of the form 

(1.2) J(u) = f F (x, t9 u, — , — ) dx dt 
JD \ dx dt) 

with F analytical in some domain R of the five-dimensional Euclidean space, where D 
is a subdomain of R, does not exist. 

Nevertheless, P. ROSEN [2], M. A. BIOT [3], [4], [5], R. A. SCHAPERY [6] and 

M. E. GURTIN [7] suggested some new sorts of variational principles in the theory of 
heat conduction, to which the equation (1.1) (or its operational transcription) 
represents the corresponding Euler's equation. Rosen imposed certain restrictions 
on the variations of dujdt, Biot used the operational calculus, Schapery and Gurtin 
used the convolutions with respect to time. The convolution functionals are the 
nearest to the functional (1-2), but they differ from (1.2) by involving products of 
"asynchronic" quantities of convolution type, e.g. 

u(tx - t) u(t), — (t) u(tl - t ) . 
dt 

In the following sections we attempt to give a systematic survey of those principles, 
to complete and extend them onto a further kind of boundary conditions. Our 
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approach will be purely mathematical, without use of any physical concept or law, 
so that the results are applicable to all analogous problems of mathematical physics. 
The physical interpretation, however, will be explained on the example of heat 
conduction only, in order to show the proper situation of the principles mentioned 
above [2], [3], [4], [5], [6], [7] in the complete group of variational principles. 

We can divide the principles into two kinds. Let us call the principles of the first 
kind primary principles, because they characterize the original problem, expressed 
by means of the unknown function u(X, t). The principles of the second kind will be 
referred to as secondary principles, as they characterize the same physical problem, 
but expressed by means of another unknown functions. In the theory of heat conduc­
tion the primary principles are those "for temperature" and secondary principles are 
those "for entropy displacement" or "heat flux" respectively and furthermore the 
generalized principles "for temperature, entropy displacement, heat forces a.s.o.". 

All the variational principles for parabolic equations may be applied to complex 
fields of mathematical physics, as e.g. to coupled thermoelasticity and thermo-
viscoelasticity. Some of the above-mentioned principles have been already established 
there by BIOT [3], [4], [5], SCHAPERY [6], HERRMANN [8], BEN-AMOZ [9] and 

others. 

For the sake of clearness and simplicity, we shall not introduce here the assump­
tions providing the existence, uniqueness and the necessary regularity of the solution 
to the original problem (compare e.g. [15], [16]). Let us suppose, that such solution 
exists, which enables us to carry out all the steps and transformations required in 
the course of the following explanation. 

2. Primary variational principles. Let us consider a bounded region Q of the N-
dimensional Euclidean space with a Cartesian coordinates frame X s (x-, ..., xN). 
Let the boundary F of the region Q consists of four mutually disjoint parts FM, rh, rv 

and Fo,1) the latest of which has the zero (N — l)-dimensional measure, i.e. 

r = ru u rh u rv u r0. 

Let the problem be given as follows: 
to find such function u(X, t), which satisfies the equation 

(2.1) u = (K^,^ +f for X e Q , t > 0 , 

the initial condition 

(2.2) u(X, 0) = u0(X) for X e Q 

*) Each of ru,rh,rv is either vacuous or has a positive (IV— l)-dimensional Hausdorfs 
measure. 
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and the boundary conditions 

(2.3a) u = F for X e Tu, f > 0 , 

(2.3b) Kiiniu,j = F for X e r „ , f > 0 , 

(2.3c) A« + *:,•,».(«,,. = F for XeTv, t>0. 

Here we use the notation 

8u du 
u = u,j = ~~, ] = 1,2,..., ІV 

dt dxj 

and summation over repeated subscripts i,j = 1,..., N. K;y(X) = Kjt(X) are pre­
scribed functions for X e Q = Q u F, A(X) =t a > 0 for X e Fv, f(X, t) is given for 
X e Q, t ^ 0 and P(X, t) for X e F ~ F0, * > 0. n,- denote the components of unit 
outward normal to F. In heat conduction theory, u(X, t) denotes the temperature 
distribution, f the internal sources of heat, the boundary condition (2.3b) prescribes 
the heat flux and (2.3c) the interchange of heat with the surrounding medium. The 
body, occupying the closed region Q, is non-homogeneous in general, if the functions 
Kij and A vary with the spatial coordinates. For simplicity, however, the specific heat 
is supposed to be constant. 

In the following we shall use the concept of convolution of two functions. Therefore, 
let us recall its definition: assume that functions f(X, t) and g(X, t) are continuous 
in t e <0, co) for each fixed X e M. Then by the convolution f * g of these two 
functions we understand the function, defined through the relation 

[/ * g\ (X, () = íf(X, t - т) g(X, т) dт 

for X e M, t e <0, oo). 

Convolution has the following properties (see e.g. [13]): 

f*g = g*f, 

f*(g*h) = (f*g)*h=f*g*h, 
Pi 

jt(f*g)=f*g +f(X,0)g(X,t) 

There exists a group of primary variational principles related to the problem 
(2.i) — (2.3c), namely convolution principles, their Laplace transforms, operational 
principles and principles with special variations. Moreover, each of those four types 
has two alternatives: integral and differential.2) Next we shall deal with all the eight 
types, starting with convolution principles. 

2) Let us remark, that the terminology of those principles has not yet stabilized, so that our 
notation and classification is to be regarded as a suggestion only. 
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a-integral convolution principle. Let JT be a set of functions u(X, t), which satisfy 
the boundary condition (2.3a) and for which the functional 

(2.4) £F t(u) -= {u * u + K(j * u,i * u,j — 2 * f * u — 2u0 * u} dX — 
J Q 

— 2 * P * u dF + ( A * u * u — 2 * P * u ) d F . 
J rh J TU 

may be defined. 

Then 

(2.5) <5 J%(u) = 0 

holds on Jf for every t > 0, if and only if u satisfies the equation (2.1), initial 
condition (2.2) and the boundary conditions (2.3b), (2.3c). 

Proof. Integrating by parts, using the properties of convolution and the symmetry 
of KtJ = Kji, we derive 

id &t(u) = {u - (Ktj * u,i),j - 1 *f - u0} * 8u + 
J Q 

p p 
+ [K^- * u9irij — 1 * P] * <Su dF + [Kij * u^nj — 1 * P + A * u] * Su dF . 

J Th J Tv 

On the base of some lemmas, which are analogous to the fundamental lemmas of 
the calculus of variations (see Lemma 2.1 and 2.2 in [10]), (2.5) yields 

(2.6) u - u0 = (Ku * u,i),j + 1 *f for X e Q , t > 0 , 

(2.7) Ktj*u,inj = 1 * P for X e rh, * > 0 , 

(2.8) A*u + Kij*u,inj = 1 * P for X e Tv, t>0. 

Differentiating (2.6) with respect to t, (2.1) can be obtained for t > 0. Similarly, 
from (2.7) and (2.8) the conditions (2.3b) and (2.3c) follow respectively. As u(X, t) 
is continuous in t, the limit transition t -> 0 + in (2.6) yields the initial condition (2.2). 

R e m a r k 2.1. The a-principle was suggested by Schapery [6] and Gurtin [7] 
for the boundary conditions (2.3a) and (2.3b) in the theory of heat conduction. 

R e m a r k 2.2. If we restrict the definition of the problem (2.1) —(2.3c) onto a finite 
interval 0 S. t ^ tl < oo, then a-principle may be modified as follows: 

5 *,£u) = 0 
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holds on Jf, if and only if u is a solution to the problem. The proof goes through like 
previously. 

Next we are going to show, that to every integral convolution principle (a-type) 
an equivalent "differential" principle exists, which we shall denote by /?, In fact, there 
is 

Lemma 2.1. Let v he a vector-function, each component of which vt(X, t) is 
continuous in t e <0, oo) for every fixed X e Q. Let ^t(y) he such functional, that its 
variation takes the form 

ðJ,(v) ZFi(v)*5vidX+ f ^fi(v,X)*8vidr, 
n i = 1 Jr i = 1 

where Fi9ft are such functions, for which 3 ^t(y) can he defined and 

1 Pi 

-F((v(X,t),X,t) or - f ( v ( X , t ) , X , t ) 
dt ct 

respectively are continuous in t e <0, oo) for each fixed X e Q or X e F. Let 

3 Jt(v) = 0 

holds for every t > 0. Then also 

. ( ^ ) ) - o 

holds for every t > 0 and the latter equality is true, if and only if 

(a) — F,(v(X, t),X9t) = Q for XeQ, t > 0 ; F*(v)|,=0 = 0 on Q9 

(b) - - f , (v(X , t ) ,X , t ) = 0 for XeF, t > 0 ; f(v)|, = 0 = 0 on F. 
ct 

Proof. We may write 

S (~ S,(v)) = 1 5 Jt(v) = f {ZF^v) * Svt + ZF,.(v)|,=0 . 5vt(t)} dX + 
\at J at JQ t i 

+ f (I/ .W * s»i + ZLW|.=o • sVl(t)} dr 
JE * l 

for every t > 0. 

Let us denote by Q)(M, (0, t)) and @(M) the linear manifolds of functions with 
compact support in M x (0, t) and M respectively (here M represents Q or F), 
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having continuous derivatives of all orders. Let i be an arbitrary subscript. Then 
choosing suitable functions 

Svi e 2(Q, (0, t)), 8vi(t) e 3f(Q) , Svt e Q)(T, (0, t)), 5vt(t) e 2>(t), 

and Svj = 0 for j #= i, the assertions (a) and (b) follow gradually (compare e.g. the 

proof of lemma 2A in [10]). 

Now lemma 2.1 yields 

^-differential convolution principle. Let us define 

(2.9) &\{u) = {ú * u + KijU,i * u,j — 2/ * u — 2u0u + u(X, 0) u) áX 

- 2P * u dF + (Au * u - 2P * w) dF , 

J Th J Tv 
/Or every t > 0 and u e JT. Then 

(2.10) (5 &\(u) = 0 

h0/ds On JT/Or every t > 0 3), if and only if u satisfies the equation (2A), the initial 
condition (2.2) arî ? the boundary conditions (2.3b), (2.3c). 

Proof. Substituting v = vx = u(X, t) in Lemma 2.1, then Fi(u) = 0 is expressed 
by (2.6), fi(u, X) = 0 by (2.7) and (2.8). The remainder of the proof follows im­
mediately from the Lemma 2.L 

R e m a r k 2.3. The ^-principle was suggested by Schapery [6] in the theory of 
heat conduction for / = u0 = 0 on the subset Jf0 of functions from Jf, satisfying 
also the initial condition (2.2) and for F = Th u FM. 

It is well known, that the Laplace transform 

Лoo 

û{X, p) = e-ptu{X, t) át 

is often used to the solution of the problem. Then the product fg corresponds with 
the convolution / * g and u0\p with the function u0(X) independent of t. We may 
establish 

J^fa-Laplace transform of integral principle. Let ££c%° be a set of all functions 
u(X, p), X G Q, p > 0, which satisfy the transformed boundary condition 

JS?(2.3a) u = P for X e FM, p > 0 , 

3) Restricting the definition of the problem onto a finite interval t e <(0, tx X t = tx may be 
inserted in all the convolutions. (See also Remark 2.2). 
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and for which the functional 

S£^p(u) = \ u2 + - Kuu,ii4,j u0u fui dX -
JQI P P P ) 

_ f Ipudr + [ (~u2 -~Pu)dr 
JrhP Jrv\P P J 

may be defined for each real p > 0. Then 

bSe&p(u) = 0 

on S£X for each p > 0, if and only if u satisfies the transformed equations 

S£(2.€) - [f + (Kijbjlt] = u - ^ for XeQ, p>0, 
P P 

J^(2.3b) KiAjrii _ £ for X 6 F,,, p > 0 , 

JS?(2.3c) v4u + .KyW-yWi = P for X e Fy, p > 0 . 

The proof follows from the relation 

\bS£^p(u) =[ \u^~ (Ktju,^ -l-^\sudX + 
JQI P P P) 

+ [ (£it u9inj - -) 5u dF + f & u,jni + - u + -) 3u dF = 0 . 
JrA-P -V JTA1> P PJ 

Remark 2.4. Let p = p0 be an arbitrary positive number and the matrix Ku 

symmetric and positive definite in Q, i.e. let such p > 0 exists, that 

KiS(X) Uj _ tfrfi 

holds for every real vector (£l9 £2,..., {N) and every XeQ. Denote by W2
l)(Q) the 

Sobolev space of square-integrable functions (in the Lebesgue's sense), which have 
square-integrable generalized first derivatives. Assume that such function u(X) G 
G W^\Q) exists, that 

u(X) = P(X,Po) 

on ru in the sense of traces. Furthermore, let Ktj be bounded and measurable functions 
o f l e S f o r each i,j,f(X, p0) and u0(X) square-integrable on Q. Denote by S£$£(p0) 
the set of functions, resulting from the set S£tf by fixing the parameter p = p0 in 
each u(X, p) G S£tf. 

Then S£& po(u) attains its absolute minimum on S£X(p0), if and only if <5J^J%0(u) = 
= 0 on S£X(p0). 

284 



The proof of this assertion is based on the inequality 

f (K t j — u,iU,j + u2 ) dK + I — u2 dF _ C I (u,iUH + u2) dK 
JQ\ Po J JrvPo JQ 

and a similar approach may be used, as in [14] (Sections 2 and 3), where the principle 
of minimum potential energy for a general boundary-value problem of linear elasticity 
is proved. 

The counterpart of the differential convolution principle is 

jSfjS-Laplace transform of differential principle. Let us define the functional 

&*'M [рй2 + Kifu,iu,j — 2fu — 2и0й} dX 

+ f (Au2 - 2Pu) dF , 
J rv 

2Pû dF + 
гh 

for u e J£jf and real p > 0. 

Then 
d££^p(u) = 0 

on ifjf for every real p > 0, if and only if u satisfies the transformed equation 
J2?(2.6) and the transformed boundary conditions <£?(2.3b), ^f(2.3c). 

Proof. It suffices to write 

<£<F'p(u) = pS£2Fp(u) 

and to use the proof of 5£a-principle. 

Remark 2.5. The assertion of Remark 2.4, that the stationary value of <£!FPQ(u) 
is a minimum value, remains in validity also for ££^principle. 

Next we are coming to the operational principles, which correspond closely with 
the Laplace transforms of convolution principles. 

Jte-integral operational principle. Let p + 0 be a fixed real parameter. Define 

0§^pt(u) = iu2 + —- u9iu9j fu - 2u0ui dK -
h i P P ) 

- f - P u d F + f (-u2 - - P u W , 
J r h P )rv\P P J 

for every u e Jf and t > 0. Then 

8^^pt(u) = 0 
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on X* for every t > 0, if and only if u satisfies the equation 

(2.11) u-u0 = - [ (K f / u , , ) , j + f ] 
P 

and the boundary conditions (2.3b), (2.3c), for t > 0. 

The p r o o f runs just like that for J^a-principle. 

If we interpret the parameter p in (2.11) as the differential operator and \\p as the 
integral operator, i.e. if 

, - i . 1-fodt. 
St p Jo 

then from (2.11) both the equation (2.1) and the initial condition (2.2) follow. Hence 
J'a-principle is equivalent to the original problem in the sense mentioned above. 

Remark 2.6. J'a-principle was suggested by Biot [3] in the theory of heat 
conduction for f = 0, F = Fu u F,,. 

R e m a r k 2.7. Again, the functional @!FPQtQ(u) attains its minimum on Jf(f0) for 
any fixed p = p0 > 0, t = t0 > 0, if and only if 5@l!FPQtQ(u) = 0, provided the same 
assumptions as in Remark 2.4 are valid. Here Jf (t0) is the set, which results from the 
set of functions u e JT by fixing t = t0. 

J*/? — d i f f e ren t i a l o p e r a t i o n a l p r i n c i p l e . Let p + 0 be a fixed real para­
meter. Define 

@!{Fpt(u) = {pu2 + Kiju9iu9j — 2fu — 2pu0u] dX — 
J Q 

2Pu dF + j (Au2 - 2Pu) dF . 4) 
Jrh J rv 

for u e J f and t > 0. Then 

b0$^'pt(u) = 0 

on JT for every t > 0, if and only if u satisfies the equation (2.11) and the boundary 
conditions (2.3b), (2.3c). 

Proof. The variation being carried out, we apply the fundamental lemmas of the 
calculus of variation for u(X, t) with a fixed t and divide by p. 

4 ) If we restrict the definition of £%fFpt{u) onto a subset Jf 0 cz of of functions, which satisfy 
also the initial condition, then the term — 2pu0u may be omitted. Consequently, instead of (2.11) 
we have the equation 

pu= (Kijuj)9i + f. 
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Interpreting p again as the differential operator like in ^a-principle, we obtain the 
equivalence of ^-pr inciple with the original problem (2.1) —(2.3c). 

R e m a r k 2.8. ^-pr inciple was suggested by Biot [5] in the theory of heat 
conduction for / = 0, F = FM u Fh. 

Remark 2.9. An assertion analogous to that of Remark 2.6 holds. 
The survey of primary variational principles for parabolic equations may be com­

pleted by a couple of principles with special variations. 

a-integral principle with special variations. Define 

<Ft(u) = {u2 + KtJ * uyiufj - 2*fu - 2u0u} dX -
JQ 

2 * Pu dF + J (A * u2 - 2 * Pu) dF 
Th JT. 

for u e Cft and t > 0. 

Let the variations Su do not depend on t, i.e. 

Su = Su(X) , — b*u = §u = 0 . 
dt 

Then 

S3F\(u) = 0 

on C/C for each t > 0 if and only if u satisfies the equation (2.1), the initial condition 
(2.2) and the boundary conditions (2.3b), (2.3c). 

The proof runs likewise that of a-principle, replacing only the convolution 
products with Su by the usual multiplication and using the fundamental lemmas of 
the calculus of variations. 

R e m a r k 2.10. The functional 3Ft(u) coincides with $ZFpt(u), ljp being interpreted 
as the integral operator. Nevertheless, variations in ^a-principle may depend on t. 

//-differential principle with special variations. Let Jf0 c j f be the subset of 
such functions from Jf, which satisfy also the initial condition (2.2). Define 

<F\(u) = J {2uu + Kiju^u,! - 2/u} dX - 2Pu dF + I (Au2 - 2Pu) dF 
Jn Jrh Jrv 

for each u e J f 0 and t > 0. Let the variations Su do not depend on t, i.e. 

p, 

Su = Su(X), — Su = Su = 0 . 
dt 

Then 

S<F\(u) = 0 
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on Jf0for every t > 0, if and only if u satisfies the equation (2.1), and the boundary 
conditions (2.3b), (2.3c). 

The p r o o f follows easily from the relation 

±&£;(i#) = f {u - (Kiju,i),j - f} Su dX + f (Kijnju,i - P) Su dF + 
J Q Jrh 

+ (Aw + Kl7unn; - P) O*u dF = 0 . 

R e m a r k 2.11. The functional !F\(u) coincides with M^'vt(u), if we restrict fflfi-
principle onto the subset JT0 and interpret the parameter p as the differential 
operator with respect to t. 

R e m a r k 2.12. A similar principle was suggested by Rosen [2] in the theory of heat 
conduction. 

3. Secondary variational principles. In the present section we shall derive a group 
of variational principles, which characterize the original problem, but expressed by 
means of some other unknown functions. The well — known Friedrichs' method of 
inverting the minimum problem into a maximum problem [11] will be applied in 
a way similar to that used for the derivation of the principle of minimum complemen­
tary energy from the principle of minimum potential energy in the theory of elasticity 
(see e.g. [12]). Furthermore, some generalized variational principles, counterparts 
of Hellinger-Reissner principle and Hu-Washizu principle in elasticity, will be 
established. 

Let us start with some of those primary principles, which imply the minimum 
property in the sense of Remarks 2.4 (or 2.5, 2.7, 2.9 respectively). For simplicity, let 
us consider the ^-pr inc ip le and take the assumptions of Remark 2.4 (where P 
and f will be replaced by P,f) for granted. Then fixing P0 > 0 and t0 > 0, the condi­
tion of stationary value implies the minimum value for the functional @}<Fpoto(u) 
on the set J f (t0). According to the Friedrichs' method, we rewrite this minimum con­
dition in the form 

®r^Poto{u> 9i) = m i n 

for u G J f (f0) with subsidiary conditions 

(3.1) u9i = gt in Q, 

where 

(3.2) a'&'potJiu, gt) = J {p0u
2 + K^Sj - 2fu - 2p0u0u} dX -

Jfi 

I: 2Pu dГ 4 Au2 dГ 
TҺ^Tv 
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First we shall restrict ourselves onto a subset tf(t0) of functions from c/f(t0)9 

which satisfy also the boundary condition (2.3c), and express the latter by means of u 
and gf, i.e. 

(3.3) Au + Ktjntfj = P for X e rv, t = t0 . 

Inserting (3.3) into (3.2) and joining the side conditions (3.1) and (2.3a) by means of 
Lagrange multipliers 2kf and 2/i0 respectively, we obtain the functional 

^"^'poto(u> 9h K Ho) = {Pou2 + Kijgtgj - 2fu - 2p0u0u + 2kt(gt - w,f)} dX -
JQ 

- f 2Pu dF + f | i (P - K0nfq,)2 - 2 ^ (P - Kl7nfg,.)j dF + 

+ J 2fi0(u - P) dF . 

JTu 
Integrating the term ktu9i by parts and substituting again from (3.3), we may write 

(3.4) 0'^'PQto(u9 gi9 ki9 fi0) = {p0u
2 + Kijgxgj - 2fu - 2p0u0u + 

J Q 

+ 2ktgt + 2kitiu} dX - 2 | (Pu + A,n,tt) dF + 
J rh 

+ 2 [u_0(u - P) - kpiU] dF + 

+ f 1 [(KfJnfg,)2 - P2 - 2Afnf(P - K,7nfgy)] dF . 
Jf„ -4 

Let US consider the variational equation 

with respect to independent variables u, gi9 kt in Q9 u, Af on rh u FM, #f, /lf on F„ 
and /x0, u on FM. Among all Euler's equations and natural boundary conditions let 
us choose only the relations complementary to the subsidiary conditions (3.1), (2.3a) 
of the original problem, i.e. 

(3.5) s p0(u - w0) = / - ktJ in Q, 

(3.6) Ktflj + kt = 0 in Q , 

(3.7) P + ktnt = 0 on rh , 

(3.8) ^0 - ktnt = 0 on FM, 

(3.9) K^Kij^gj + n^^O on Fy. 
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Let us insert the results from (3.5) —(3.9) into the functional (3.4), i.e. 

(3.50 u - u0 = — (/ - Xu) in Q , 
Po 

(3.60 9i= ~Kulh in Q ,5) 

Aini=~P on FA, fi0 = Xini on F„, 

(3.90 ^7",gy= -*,*, on rv .6) 

Thus we are led to the functional 

-WpoM = - f | — ( / + Po"o ~ A,.,)2 + K y ' W dX -

- 2 I /ltntP dF - I - [(^n t)
2 + 2PAtnt- + P2] dF . 

JTH JY ,^4 

Now we are already able to formulate the secondary J'/f-differential operational 
principle: 

Let A be the set of vector-functions X((X9 t), which satisfy the boundary condition 

(3.10) A,/!, + P = 0 

for X e rh9 t > 0, and for which the functional 

(3.11) ^;p(A,) = f UTJ%IJ + - (/ + Pu0 - *,,,)2J dX + 

+ I IPXpi dr + ^ ^ [(^nt)2 + 2P2inJ dF 

J Tu J Tt, -^ 

raaj be defined for any p 4= 0, t ^ 0. Then 

(3.12) S@&'tp(Xi) = 0 

hOMs On A/Or a/l t _• 0, if and only if Xt satisfy also the equations 

(3.13) KJ1^ + - (/ + Pu0 ~ h j),t = 0 for XeQ9 t = 0 
P 

5) Kl7 * denotes the inverse matrix to Kxj. 
6) By virtue of the positive definiteness of Ktj on Q, at least one of the components K,/*y does 

not vanish. 
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and the boundary conditions 

(3.14) P~~(f+ puo-*jj) = 0 for XeTu, t>0, 
P 

(3.15) - (f + pu0 - 2 y j ) - ^/i, = P for X e Pv, t > 0 . 
P 

The p r o o f follows easily by carrying out the variation of (3.12), integrating the 

term with dXifi by parts and using the relation 

rift hi = 0 on Fh, 

which is a consequence of (3.10). 

R e m a r k 3.1. Taking (3.5') and (3.6') for the definitions of u(X, it) and gt(X, t) 

respectively (and replacing at the same time p0, t0 by parameters p =j= 0, t _ 0), 

defining K^ntfj through (3.9') and finally interpreting p, ljp as 

Зř P Jo 

then (3.13) may be understood as the relation 

gt = u9i for X eQ , t _ 0 , 

(3.14) as 

u = P for X e Ftt , t > 0 

and (3A5) as the condition 

Au + Ko'Hfg; = P for I e f y , t > 0 . 

Altogether (3.12) characterizes the dual problem, expressed by means of a vector-
function Xt by means of the relations (3.13), (3.14), (3.15) and (3.10). 

R e m a r k 3.2. If we restrict ourselves again onto fixed parameters p0 > 0, t0 > 0, 
then using Friedrichs' method, the following assertion can be proved (compare [11], 
[12]): 

if a function it exists, which minimizes the functional 382F'vata{u) on the set J f (t0), 
then the dual problem is a maximum problem 

-0'9'POM = m a x - . M . 4 ( f 0 ) , 

which has a solution Xt and it holds 
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In order to show some examples of the secondary principles in the theory of heat 
conduction and to compare our results with the existing principles there, first let us 
derive the integral ^a-type of the principle, related to (3.11), (3.12). Denote 

- a&M = ae'M 
p 

and substitute 
Xt = phi. 

Then 

(3.16) mtp(ht) = m'tp(Phi) = f iKjj'phihj + tt + u0- hitX \dx + 

. f Phfli 
JTu 

+ 2 PhiYii dF + - [PM2 + 2PM/J dr 

and we may formulate the secondary J'a-integral operational principle: 

Let p =f= 0 be a fixed real number. Denote by ffl(p) the set of vector-functions 
ht(X, t), which satisfy the boundary conditions 

ph^i + P = 0 for XeTh, t > 0 , 

and for which the functional ^^tp(ht) may be defined through (3.16). Then 

(3.17) Smtp(ht) = 0 

on H (p) for every t g: 0, if and only if ht satisfy also the equations 

(3.13') pKJj'hj + tt + u0- hjX for XeQ, t = 0 

and the boundary conditions 

(3.14') P - (- + u0 - hjj) = 0 for X e Ftt , t > 0 

(3A5') A (- + u0 - hjj\ - phtni = P for X e Fy, t > 0 . 

The p r o o f follows easily carrying out the variation, integrating the term with Shifi 

by parts and using nfihi = 0 on rh. 

R e m a r k 3.3. An assertion analogous to that fo Remark 3.1 holds again. 

R e m a r k 3.4. Let us interpret p as the differential operator djdt, 

X. = phi = hi = Hijc 
» 

292 



as the reduced vector of heat flux and 

hl = -hi= f\(T)d- = TrSjc, 
P Jo 

where St denotes the vector of entropy displacement, Tr the (constant) relative 

temperature and c the (constant) coefficient of specific heat. Then the variational 

equation (3.17) represents an extension of Biot's equation [3], [4]. 

Secondary a-integral convolution principle. Let us define ht = 1 * ht and 

Vflit) = f {KTj% * hj + (1 * f + u0 " hjj) * (1 * f + u0 " *,,,)} dX 

+ 2 P * h^i dF + 

JTu 

[ M i + 2P] * ft -и. dF 
T„^ 

for every hte A 7 ) tfnd t _̂  0. Then 

<5^(h f) = o 

on A for every t > 0,8) if and only if ht satisfy also the equations 

(3.13*) K^h; + (1 * f + u0 - ft/j),, = 0 for X e a, r i> 0 

and the boundary conditions 

(3.14") l * f + u0 - hjj = P for XGFM, * > 0 , 

(3.15") Ai(l*f+ u0 ~ ftL/) ~ htnt = P for X e F,, t > 0 . 

The p r o o f follows easily, if we carry out the variation, integrate the term with Shjj 

by parts, use the relations 

« A = 0 on rhf K71 =KJi

1 , 

ht * dhj = ht * (l * <5hy) = (1 * Af) * (5/ij = ht* Shj 

and the counterparts of the fundamental lemmas of the calculus of variations (see 

[10]). Finally the differentiation with respect to t yields (3.13") — (3.15"). 

R e m a r k 3.5. If we define 

St = chi\Tr 

7 ) The set A contains those hj G A, which may be inserted into convolution, i.e. for example 
hj(X, t) continuous in t. 

) A modified principle in the sense of Remark 2.2 is true, too. 
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as the entropy displacement, then ^t(StTrjc) represents an extension of Schapery's 
functional in [6], (2.47), the latter being completed by a non-homogeneous initial 
condition and the boundary condition on rv. Moreover, here we use the reduced heat 
flux vector ht = lh proportional to the "entropy velocities" 5,-, as independent 
variables, while Schapery employed the entropy displacements St. 

Secondary ^-differential convolution principle. Define ht = 1 * ht and 

9'Jlh,) = f {K^h, *hj + (l*f + u0- hjj) * ( / - hj j) - uohjj dX + 
J Q 

+ 2 P * hitii dF + I - [hiiii + 2P] * hjrij dF 
JTu )rvA 

for hte A (see the footnote belonging to a-principle) and for every t *> 0. Then 

SVtfit) = o 

on A for every t > 0 9) , if and only if ht satisfy also the equations (3A3"), (3.14"), 
(3.15"). 

The p r o o f is based on the secondary a-principle and the lemma 2.L In fact, 
equations (3.13") — (3.15") are derivatives with respect to t of Euler's equations and 
natural boundary conditions, following from 

S9Jiht) = 0. 
The initial conditions 

Ffc)\,-o = ° • /<M|.-o = o 

of the lemma 2.1 are fulfilled already by virtue of the definition. 

R e m a r k 3.6. It is obvious, that in the above-mentioned principles, the independent 
variables ht may be replaced by ht or St respectively. We shall not discuss these pos-
sibilites, but notice only, that then the initial conditions ht(0) = 0 or S;(0) = 0 have 
to be satisfied a priori. 

R e m a r k 3.7. Also the secondary principles may be completed by a couple of 
Laplace transforms (5£a, <£$) and a couple of principles with special variations 
(a, ft). Moreover, there is an optional choice of independent variables in the sense 
of Remarks 3.5, 3.6. 

At the end we shall establish two generalized secondary principles, analogous to 
that of HELLINGER-REISSNER and HU-WASHIZU in the theory of elasticity. They may 

be derived e.g. like in [12] from the functional (3.2) or (3.11) respectively. 

9) A modified principle in the sense of Remark 2.2 holds again. 
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1. generalized ^-principle. Let p =j= 0 be a fixed chosen number. The functional 

ajfrpt(u9 gi9 Xt) = {pu2 + KtJgigj - 2/w - 2pu0u + 2A,(flf, - u9i)} dX + 

+ 2 | AjWj(ii - P) dF - 2 I Pu dF + j (Au2 - 2Pu) dF 
J Tu J Th J Tu 

attains its stationary value with respect to independent functions u, gi9 Xt (without 

any side condition) for every t ^ 0, if and only if u, gi9 Xt satisfy the equations 
(3.5)10), (3.6), (3.1), (3.7), (2.3a), (2.3c). 

By virtue of (3A) and (3.6), (3.7) is equivalent to (2.3b). The parameter p being 
interpreted as the operator djdt, the principle characterizes the solution of the 
problem, expressed in terms of functions u9 gh Xt. 

R e m a r k 3.8. The corresponding 1. generalized Jte-principle (for / = 0, 
F = Tu u Th and regardless of the initial condition (2.2)) is involved in Herrmann's 
extension [8] of the Reissner-Hellinger principle from elasticity onto coupled thermo-
elasticity. 

2. generalized ^-principle. Let p + 0 be a fixed chosen number. The functional 

®Jpt(u, gi9 Xi9 L) = j i -Ktjgaj + -(f+ pu0 + L)2 - 2u(L + Xu) -

2giXi\ dX + 2 j Pn.Xi dF + 2 u(Xtni + P) dF + 
rM J rh 

f \ [(A^)2 + ipxin,] dr + 

attains its stationary value on the set of independent functions u, gh A;, L(without 
any side conditions) for every t 2: 0, ;/ and only if u, gh A(, L satisfy the equations 

(3.18) u-u0 = -(f + L), 
P 

(3.19) L + AM = 0 

and (3.1), (3.6) in Qfor every t ^ 0 and rhe boundary conditions 

(3.20) A« - A,*!, = P for X e r„, t^O, 

(2.3a) and (3.7). 

10) We wrìtep insteаd of ̂ 0 in (3.5). 
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If we interpret the parameter p as the operator djdt, the principle characterizes the 
solution to the problem, expressed in terms of u, gi9 Xi9 L. 

R e m a r k 3.9. The corresponding 2. generalized ^-principle (for / = 0, 
F = FM u Th and regardless of the initial condition) is involved in the Ben-Amoz's 
extension [9] of Hu-Washizu principle from elasticity onto coupled thermoelasticity. 
In the theory of heat conduction the newly introduced variable L is proportional to 
the rate S of entropy change, as we may write 

T T 

L= -hpsu = ±pS. 
c c 
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Výtah 

VARIAČNÍ PRINCIPY PRO PARABOLICKÉ ROVNICE 

IVAN HLAVÁČEK 

V článku je dán systematický přehled nových typů variačních principů ekvivalent­
ních smíšené úloze pro parabolickou rovnici s počátečními a okrajovými podmínka­
mi, které byly předloženy fyziky. Ačkoliv metoda je čistě matematická a jako taková 
může být použita k vyšetřování všech analogických úloh matematické fyziky, fyzikální 
interpretace se týká pouze teorie vedení tepla. 

Principy jsou dvojího druhu: jedna třída dává variační charakteristiku počáteční 
úlohy, vyjádřenou jednou skalární funkcí (teploty); druhá třída charakterizuje tutéž 
úlohu za pomoci jiných proměnných (např. toku tepla nebo rozdělení entropie). 

Authoťs address: Ing Ivan Hlaváček CSc, Matematický ústav ČSAV, Praha 1, Žitná 25. 
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