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VARIATIONAL PRINCIPLES FOR PARABOLIC EQUATIONS

IvaN HLAVACEK
(Received January 19, 1968)

1. While the variational principles are well-known and applied since a long time in
the boundary value problems for elliptic and in mixed problems for hyperbolic
partial differential equations, in the problems, described by parabolic equations,
their relation to variational principles were quite different. The effort to find a func-
tional, the Euler’s equation of which would be e.g.

o _ o
ot ox?

(L.1)

was failing. G. ADLER [1] even proved, that such functional of the form

(1.2) S(u) =j F<x, t, u,a—u,gg>dx dt

D ox Ot
with F analytical in some domain R of the five-dimensional Euclidean space, where D
is a subdomain of R, does not exist.

Nevertheless, P. RoseN [2], M. A. Biot [3], [4], [5], R. A. ScHAPERY [6] and
M. E. GURTIN [7] suggested some new sorts of variational principles in the theory of
heat conduction, to which the equation (1.1) (or its operational transcription)
represents the corresponding Euler’s equation. Rosen imposed certain restrictions
on the variations of du/dt, Biot used the operational calculus, Schapery and Gurtin
used the convolutions with respect to time. The convolution functionals are the
nearest to the functional (1.2), but they differ from (1.2) by involving products of
““asynchronic” quantities of convolution type, e.g.

u(ty — 1) u(t), %‘ (i) ulty — 1)

In the following sections we attempt to give a systematic survey of those principles,
to complete and extend them onto a further kind of boundary conditions. Our
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approach will be purely mathematical, without use of any physical concept or law,
so that the results are applicable to all analogous problems of mathematical physics.
The physical interpretation, however, will be explained on the example of heat
conduction only, in order to show the proper situation of the principles mentioned
above [2], [3], [4], [5]. [6]. [7] in the complete group of variational principles.

We can divide the principles into two kinds. Let us call the principles of the first
kind primary principles, because they characterize the original problem, expressed
by means of the unknown function u(X, t). The principles of the second kind will be
referred to as secondary principles, as they characterize the same physical problem,
but expressed by means of another unknown functions. In the theory of heat conduc-
tion the primary principles are those “for temperature” and secondary principles are
those “for entropy displacement” or “heat flux” respectively and furthermore the
generalized principles “for temperature, entropy displacement, heat forces a.s.0.”.

All the variational principles for parabolic equations may be applied to complex
fields of mathematical physics. as e.g. to coupled thermoelasticity and thermo-
viscoelasticity. Some of the above-mentioned principles have been already established
there by Bior [3], [4], [5]., ScHAPERY [6], HERRMANN [8], BEN-AMoz [9] and
others. ’

For the sake of clearness and simplicity, we shall not introduce here the assump-
tions providing the existence, uniqueness and the necessary regularity of the solution
to the original problem (compare e.g. [15], [16]). Let us suppose, that such solution
exists, which enables us to carry out all the steps and transformations required in
the course of the following explanation.

2. Primary variational principles. Let us consider a bounded region Q of the N-
dimensional Euclidean space with a Cartesian coordinates frame X = (xl, - xN).
Let the boundary I of the region Q consists of four mutually disjoint parts I',, I, I',,
and I'y,") the latest of which has the zero (N — 1)-dimensional measure, i.e.

r=r,vr,ur,url,.

Let the problem be given as follows:
to find such function u(X ) t), which satisfies the equation

(2.1) i = (Ku,j),; +f for XeQ, t>0,
the initial condition
(2.2) u(X,0) = up(X) for XeQ

1) Each of Iy, Iy, I', is either vacuous or has a positive (N — 1)-dimensional Hausdorf’s
measure.
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and the boundary conditions

(2.32) u=p for Xel,, t>0,
(2.3b) K;nu,; = P for Xel,, t>0,
(2.3¢) Au + K;nu,; = P for Xel,, t>0.

Here we use the notation
du ou

] U,; = )
o’ T ox

u ji=12,..,N

and summation over repeated subscripts i,j = 1, ..., N. K;(X) = K;i(X) are pre-
scribed functions for X € Q = Q U T, A(X) = a > 0for X e I, f(X, t) is given for
XeQ, t=0and P(X, t) for XeI = Iy, t > 0. n; denote the components of unit
outward normal to I'. In heat conduction theory, u(X, f) denotes the temperature
distribution, f the internal sources of heat, the boundary condition (2.3b) prescribes
the heat flux and (2.3c) the interchange of heat with the surrounding medium. The
body, occupying the closed region Q, is non-homogeneous in general, if the functions
K;; and A vary with the spatial coordinates. For simplicity, however, the specific heat
is supposed to be constant.

In the following we shall use the concept of convolution of two functions. Therefore,
let us recall its definition: assume that functions f(X, ) and g(X, ) are continuous
in te0, o) for each fixed X € M. Then by the convolution f g of these two
functions we understand the function, defined through the relation

[f*g](X,0) = L:f(X, t —1)g(X,7)de

for X e M, t € 0, ).
Convolution has the following properties (see e.g. [13]):

frg=g=f,
fr(gxh)=(f*g)xh=fxgxh,

2 (g = g + 5(%.0) g(x, 1)

There exists a group of primary variational principles related to the problem
(2.1)—=(2.3c), namely convolution principles, their Laplace transforms, operational
principles and principles with special variations. Moreover, each of those four types
has two alternatives: integral and differential.?) Next we shall deal with all the eight
types, starting with convolution principles.

2) Let us remark, that the terminology of those principles has not yet stabilized, so that our
notation and classification is to be regarded as a suggestion only.
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a-integral convolution principle. Let %~ be a set of functions u(X, t), which satisfy
the boundary condition (2.3a) and for which the functional

(2.4) f,(u)=f{u*u + Kyj*uxu,; — 2% fru — 2up*up dX —
)
—f 2*P*udl"+f (A*u*u —2%Pxu)dl.
I'n Iy

may be defined.
Then

(2.5) §Fu)=0

holds on A~ for every t > 0, if and only if u satisfies the equation (2.1), initial
condition (2.2) and the boundary conditions (2.3b), (2.3c).

Proof. Integrating by parts, using the properties of convolution and the symmetry
of K;; = Kj;, we derive

Jir
%M,(u)=f{”—(1<.-,~*u,i,,-—1*f—uo}*5u+
o)
+J [Kij*u,,-nj—l*P]*éudF,'*‘j [Kij*u,inj—1*P+A*u]*6ud1".
I'n i ry

On the base of some lemmas, which are analogous to the fundamental lemmas of
the calculus of variations (see Lemma 2.1 and 2.2 in [10]), (2.5) yields

(2.6) u—ug=(K;*u,), +1xf for XeQ, t>0,
(2.7) Kij*uun;=1xP for Xel,, t>0,
(2.8) Axu+ K;j*un;=1xP for Xel,, t>0.

Differentiating (2.6) with respect to ¢, (2.1) can be obtained for ¢ > 0. Similarly,
from (2.7) and (2.8) the conditions (2.3b) and (2.3c) follow respectively. As u(X, t)
is continuous in ¢, the limit transition ¢ — 0+ in (2.6) yields the initial condition (2.2).

Remark 2.1. The a-principle was suggested by Schapery [6] and Gurtin [7]
for the boundary conditions (2.3a) and (2.3b) in the theory of heat conduction.

Remark 2.2. If we restrict the definition of the problem (2.1)—(2.3c) onto a finite
interval 0 < t < t; < oo, then a-principle may be modified as follows:

6 F, (u)=0
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holds on ¢, if and only if « is a solution to the problem. The proof goes through like
previously.

Next we are going to show, that to every integral convolution principle (a-type)
an equivalent “differential” principle exists, which we shall denote by f. In fact, there
is

Lemma 2.1. Let v be a vector-function, each component of which v(X, 1) is

continuous in t € 0, 00) for every fixed X € Q. Let 5 (v) be such functional, that its
variation takes the form

b I(v) = f i F(v) * 6v; dX + jr 'if,-(v, X) v, dI’,

o i=1 i=1
where F,, f; are such functions, for which & # (v) can be defined and
0 0
— F(v(X,1),X, 1) or — f{v(X,1),X,1)
ot ot
respectively are continuous in t € €0, oo)for each fixed X € Qor X € T'. Let

5 F(v)=0
holds for every t > 0. Then also

d
ol—F(v))=0
(5 #0)
holds for every t > 0 and the latter equality is true, if and only if

(a) %F,.(v(X, 0,X,1)=0 for XeQ, t>0; F(V),oo=0 on Q,
(b) %f,-(v(X, 0),X,1)=0 for XeI', t>0; fi(v)i=o=0 on I.
Proof. We may write
5 (a‘lt J’,(v)) - %5 gv) = J SO 30+ TR - 300} 4X +
[ 270+ a0+ T10eo () ar

for every t > 0.

Let us denote by Z(M, (0, t)) and 2(M) the linear manifolds of functions with
compact support in M x (0,t) and M respectively (here M represents Q or I'),
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having continuous derivatives of all orders. Let i be an arbitrary subscript. Then
choosing suitable functions

S0, (2, (0,1)), vi)e Q). ovie DI, (0,1)), dvft)e NI,

and 6v; = 0 for j # i, the assertions (a) and (b) follow gradually (compare e.g. the
proof of lemma 2.1 in [10]).

Now lemma 2.1 yields
p-differential convolution principle. Let us define

(29) Fi(u) = J {i*u+ Kju,xu,; — 2f xu — 2uou + u(X, 0)u} dX —
2
—f 2P*udI’+J‘ (Auxu — 2P+ u)dr',
I'n r,

for everyt > 0andue A'. Then
(2.10) 0 F(u) =0

holds on A for every t > 0°3), if and only if u satisfies the equation (2.1), the initial
condition (2.2) and the boundary conditions (2.3b), (2.3¢c).

Proof. Substituting v = v, = u(X, t) in Lemma 2.1, then F,(u) = 0 is expressed
by (2.6), f1(u, X) = 0 by (2.7) and (2.8). The remainder of the proof follows im-
mediately from the Lemma 2.1.

Remark 2.3. The f-principle was suggested by Schapery [6] in the theory of
heat conduction for f = uy = 0 on the subset 4", of functions from ¢, satisfying
also the initial condition (2.2) and for I' = I, u I,.

It is well known, that the Laplace transform

WX, p) = J e Pu(X, 1) dt

0

is often used to the solution of the problem. Then the product f§ corresponds with
the convolution f * g and u,/p with the function u,(X) independent of t. We may
establish

ZLa-Laplace transform of integral principle. Let £ be a set of all functions
(X, p), X € Q, p > 0, which satisfy the transformed boundary condition

£(2.3a) i=P for XelI, p>0,

inserted in all the convolutions. (See also Remark 2.2).
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and for which the functional

PF (i) = f{~2+ K; u,,-zi,j—iuoﬁ-—zfﬁ}dX—

p
—f 2 pa dr+J~ (f—lal—
p r,\pP

may be defined for each real p > 0. Then

P‘) dr

hS IR )

8L F (i) =0

on LA for each p > 0, if and only if i satisfies the transformed equations

2(2.6) Vi s (yag)]=d—2 jor Xxe, p>o,
p P

£(2.3b) Kdi,n; =P for Xel,, p>0,

Z£(2.3c) A + Ky, =P for Xel,, p>0.

The proof follows from the relation

1L F (i) =f {u k). -1 - -”—0} s4dX +
o) p p p

+f (—&a,in,.—f>5adr+f <&ﬁ,jni+é12+g>6ﬁdf=0.
m\ P p r\ P P p

Remark 2.4. Let p = p, be an arbitrary positive number and the matrix K;;

symmetric and positive definite in @, i.e. let such u > 0 exists, that

K”(X) é;f] g ufiéi

holds for every real vector (£, &,, ..., £y) and every X € Q. Denote by Wi"(Q) the
Sobolev space of square-integrable functions (in the Lebesgue’s sense), which have
square-integrable generalized first derivatives. Assume that such function #(X)e

e W§'(Q) exists, that
#(X) = P(X, po)

on I', in the sense of traces. Furthermore, let K;; be bounded and measurable functions
of X e @ for each i, j, f(X, po) and uo(X) square-integrable on Q. Denote by £ 4 (p,)
the set of functions, resulting from the set # " by fixing the parameter p = p, in

each 4(X, p)e LA .

Then ## , () attains its absolute minimum on % #'(p,), if and only if 6L F , (&)=

= 0 on LA (p,).

284



The proof of this assertion is based on the inequality

jQ (K,'jL i,;a,; + t'iz) dXx +J‘ il— 2> dr = Cf (ﬁ,iﬁ,i + 122) dXx
Q Po r., Po

Q

and a similar approach may be used, as in [14] (Sections 2 and 3), where the principle

of minimum potential energy for a general boundary-value problem of linear elasticity
is proved.

The counterpart of the differential convolution principle is

% f-Laplace transform of differential principle. Let us define the functional

LF () = J {pd* + K,i,i,; — 2fi — 2ugi} dX — j 2Padr +
Q I'n

+-[ (A4@* — 2Pa@)dr,
ry

for tie LA and real p > 0.
Then
SLF (i) =0

on LA for every real p > 0, if and only if i satisfies the transformed equation
£(2.6) and the transformed boundary conditions £(2.3b), £(2.3c).

Proof. It suffices to write
LF () = pLF (i)
and to use the proof of Za-principle.

Remark 2.5. The assertion of Remark 2.4, that the stationary value of L% , ()
is a minimum value, remains in validity also for % S-principle.

Next we are coming to the operational principles, which correspond closely with
the Laplace transforms of convolution principles.

%o-integral operational principle. Let p £ 0 be a fixed real parameter. Define

g'g’_lﬂ(u) =j. {uz + "& Usilh,j — gfu - 2“0”} dX —
Lo} p p

—J~ zPudF+j (éuz—%Pu>dI’,
r» P . \P p

for every ue A and t > 0. Then
OBF ,(u) =0
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on A for every t > 0, if and only if u satisfies the equation
1
(2.11) U —uy= ; [(Kijus),; + f]

and the boundary conditions (2.3b), (2.3c), for t > 0.
The proof runs just like that for Za-principle.
If we interpret the parameter p in (2.11) as the differential operator and 1/p as the
integral operator, i.e. if
0
=—, —= dr,
2= ]O

then from (2.11) both the equation (2.]) and the initial condition (2.2) follow. Hence
PBa-principle is equivalent to the original problem in the sense mentioned above.

Remark 2.6. ZBa-principle was suggested by Biot [3] in the theory of heat
conduction for f =0, =T, U I,.

Remark 2.7. Again, the functional Z% ,,(u) attains its minimum on (t,) for
any fixed p = py > 0, t = t, > 0, if and only if 8% ,,,(u) = 0, provided the same
assumptions as in Remark 2.4 are valid. Here #(t,) is the set, which results from the
set of functions u € A" by fixing t = t,.

BB — differential operational principle. Let p + 0 be a fixed real para-
meter. Define

B ,(u) zf {pu® + Kjju,u,; — 2fu — 2puou} dX —
o

——f 2Pudr +J (Au* — 2Pu)dr . *)
I'n r,

forue A andt > 0. Then

ORBF ,(u) =0
on A for every t > 0, if and only if u satisfies the equation (2.11) and the boundary
conditions (2.3b), (2.3¢).

Proof. The variation being carried out, we apply the fundamental lemmas of the
calculus of variation for u(X, t) with a fixed # and divide by p.

4y If we restrict the definition of 8% ,(u) onto a subset #', < X of functions, which satisfy
also the initial condition, then the term — 2pugu may be omltted Consequently, instead of (2.11)
we have the equation
pu= (Kij",j),i+f-
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Interpreting p again as the differential operator like in %a-principle, we obtain the
equivalence of #p-principle with the original problem (2.1)—(2.3c).

Remark 2.8. %B-principle was suggested by Biot [5] in the theory of heat
conduction for f =0, I' = I', U T,

Remark 2.9. An assertion analogous to that of Remark 2.6 holds.
The survey of primary variational principles for parabolic equations may be com-
pleted by a couple of principles with special variations.

a-integral principle with special variations. Define

.9“:,(14) =J‘ {u* + Kij*u,u,; — 2% fu — 2ugu} dX —
Q

—j‘ 2*PudF+J (A *u*— 2% Pu)dl
Iy ry,

forue A and t > 0.
Let the variations Su do not depend on t, i.e.

Su = Su(x), aﬁsu —5i=0.
t
Then
5F (u) =0

on A for eacht > 0 if and only if u satisfies the equation (2.1), the initial condition
(2.2) and the boundary conditions (2.3b), (2.3c).

The proof runs likewise that of a-principle, replacing only the convolution
products with éu by the usual multiplication and using the fundamental lemmas of
the calculus of variations.

Remark 2.10. The functional # ((u) coincides with 8% ,(u), 1/p being interpreted
as the integral operator. Nevertheless, variations in Za-principle may depend on ¢.

p-differential principle with special variations. Let %', = A" be the subset of
such functions from A", which satisfy also the initial condition (2.2). Define

.Q'N",(u) = j {20u + K;ju,u,; — 2fu} dX — j
o

Tn

2Pudl’ + f (Au* — 2Pu)dr
ry
for eachue Ay and t > 0. Let the variations Su do not depend on t, i.e.

Su = u(X), §—5u=5d=0.
t

Then
59':',(14) =0
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on Ao for every t > 0, if and only if u satisfies the equation (2.1), and the boundary
conditions (2.3b), (2.3c).
The proof follows easily from the relation

18F (u) = J (i — (Kyjus); — £} udX + f (Kinju,; — P) Sudl +
Q T'n
+ J (Au + K;ju,n; — P)dudl = 0.
ry

Remark 2.11. The functional & :(u) coincides with B ,,(u), if we restrict %p-
principle onto the subset 4", and interpret the parameter p as the differential
operator with respect to ¢.

Remark 2.12. A similar principle was suggested by Rosen [2] in the theory of heat
conduction.

3. Secondary variational principles. In the present section we shall derive a group
of variational principles, which characterize the original problem, but expressed by
means of some other unknown functions. The well — known Friedrichs’ method of
inverting the minimum problem into a maximum problem [11] will be applied in
a way similar to that used for the derivation of the principle of minimum complemen-
tary energy from the principle of minimum potential energy in the theory of elasticity
(see e.g. [12]). Furthermore, some generalized variational principles, counterparts
of Hellinger-Reissner principle and Hu-Washizu principle in elasticity, will be
established.

Let us start with some of those primary principles, which imply the minimum
property in the sense of Remarks 2.4 (or 2.5, 2.7, 2.9 respectively). For simplicity, let
us consider the %p-principle and take the assumptions of Remark 2.4 (where P
and f will be replaced by P, f) for granted. Then fixing p, > 0 and t, > 0, the condi-
tion of stationary value implies the minimum value for the functional #% ,,(u)
on the set #(t,). According to the Friedrichs’ method, we rewrite this minimum con-
dition in the form

B'F oio(th, 9;) = min

for u € #(t,) with subsidiary conditions

(3.1) u;=g; in Q,

where

(3-2) B'F iUt 95) = f {pou® + K;;9:9; — 2fu — 2pouou} dX —
Q

—j 2PudF+fAu2dF.
Ihol, r,

288



First we shall restrict ourselves onto a subset #(t,) of functions from #(t,),
which satisfy also the boundary condition (2.3c), and express the latter by means of u
and g;, i.e.

(3-3) Au + K;ng; =P for Xel,, t=1t,.

Inserting (3.3) into (3.2) and joining the side conditions (3.1) and (2.3a) by means of
Lagrange multipliers 24; and 2y, respectively, we obtain the functional

93”-9;;7010(”, 9i> Ais #o) = f {Po”2 + Kijgigj — 2fu — 2pouu + Zli(gi - uu’)} dX —
2
1 2 P
-~ | 2Pudrl + —(P - K;ng;)* —2— (P — K;ng;)s dI' +
I'n r, (4 A
+ J 2uo(u — P)dI.
Ty
Integrating the term A;u,; by parts and substituting again from (3.3), we may write
(3~4) -@”9’_;0:0(“, g Ais llo) = J {Pou2 + Kijgigj — 2fu — 2pougu +
Q
+ 249, + 24 u} dX — ZJ‘ (Pu + Anu)dr +
I'n
+ 2‘[ [po(u — P) — Anu] dI’ +
I
+ J i [(Kinig;)* — P* = 24;n(P — K;jn,g;)] dI' .
T,
Let us consider the variational equation

0BT,

Poto

=0

with respect to independent variables u, g;, 4; in Q,u, 4, on I, U T, g;,A; on I,
and pgy, u on I',. Among all Euler’s equations and natural boundary conditions let
us choose only the relations complementary to the subsidiary conditions (3.1), (2.3a)
of the original problem, i.e.

(3:5) \ po(u —up) =f—4,; in Q,
(3.6) Kijgj+ 4, =0 in Q,

(3.7 P+An;,=0 on T,
(3.8) do - An; =0 on T,,
(3.9) Kin{(K;mng; +nd)=0 on T,.
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Let us insert the results from (3.5)—(3.9) into the functional (3.4), i.e.

(3.5) U ug=(f=1,) in @,
Do
(3.6) 9= —Kj'4; in Q)
Am;=—-P on I,, po=4n; on I,,
(3.9) King; = —An; on TI,.5)

Thus we are led to the functional

1
0

_'%,gl.?ulu('{i) = - f

Q2

_.2J‘ AnPdr —-f i[(lini)z + 2PAn; + P*]drI.
In r,

Now we are already able to formulate the secondary % [-differential operational
principle:
Let A be the set of vector-functions (X, t), which satisfy the boundary condition

(3-10) An; + P=20
for XeT,, t >0, and for which the functional

(3.11) BG,() = f {Kfjlii/lj + Y+ puo - z,.,,.)Z} dx +
Q p
+f 2PAn; dI +j 1 [(Ain;)* + 2PAn;] dr
I'y r, A

may be defined for any p + 0,t = 0. Then
(3-12) 88, (1) =0

holds on A for all t = 0, if and only if A; satisfy also the equations

(3.13) K;'2; + 1(f+ pug — A; ;)i =0 for XeQ, t=0
p

%) K7 denotes the inverse matrix to K.
) By virtue of the positive definiteness of K;;on Q, at least one of the components K;jn; does

not vanish.
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and the boundary conditions

(3.14) P—l(f+pu0—).j,j)=0 for Xer,, t>0,
p
A
(3.15) =(f+pug—2;;)—An, =P for Xel,, t>0.
p

The proof follows easily by carrying out the variation of (3.12), integrating the
term with 64; ; by parts and using the relation

nol; =0 on I,

which is a consequence of (3.10).

Remark 3.1. Taking (3.5) and (3.6") for the definitions of u(X, ¢) and g,(X, t)
respectively (and replacing at the same time po, o by parameters p + 0, ¢ = 0),
defining K;;n,g; through (3.9') and finally interpreting p, 1/p as

I3} 1 ¢
pz—,~sf()m,
at p 0

then (3.13) may be understood as the relation
gi=u,; for XeQ, t=0,

(3.14) as
u=P for Xel,, t>0

and (3.15) as the condition
Au + Kyng; =P for Xel,, t>0.

Altogether (3.12) characterizes the dual problem, expressed by means of a vector-
function 4; by means of the relations (3.13), (3.14), (3.15) and (3.10).

Remark 3.2. If we restrict ourselves again onto fixed parameters p, > 0, t, > 0,
then using Friedrichs’ method, the following assertion can be proved (compare [11],

[12]): B
if a function # exists, which minimizes the functional %, , (1) on the set (1),
then the dual problem is a maximum problem

—B'Y o(4) = max., ;e A(ty),

ofo
which has a solution /; and it holds
_'%,g'vofo(j'i) = ‘%‘97'?0?0(&) ’ j'i = _Kijﬁ’j .
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In order to show some examples of the secondary principles in the theory of heat
conduction and to compare our results with the existing principles there, first let us
derive the integral Bo-type of the principle, related to (3.11), (3.12). Denote

1 . ,
;%%,p(li) = ?ﬁ?fﬁ,p(}hi)
and substitute

Then
f 2
(3.16) B\ (h) = BG,,(ph;) = f {K,-“j’ phil, + <— ug - hi‘,-> }dX +
Q p
+ 2J Ph;n; dI +J 1 [p(hin))? + 2Phn;] dr
I, TVA

and we may formulate the secondary Zo-integral operational principle:

Let p = 0 be a fixed real number. Denote by #(p) the set of vector-functions
h{(X, 1), which satisfy the boundary conditions

phn; + P=0 for Xel,, t>0,
and for which the functional #%,,(h;) may be defined through (3.16). Then
(3.17) 5B, (h) =0

on H(p) for every t 2 0, if and only if h; satisfy also the equations
(3.13) pK;'h; + (I+uo—hj,j>,,- for XeQ, t=0
p

and the boundary conditions

N

(3.14) P—<I+uo—hm>=0 for Xel,, t>0
p

(3.15) A<I+u0—hj,j>—phini=P for Xel,, t>0.
p

The proof follows easily carrying out the variation, integrating the term with oh; ;
by parts and using n;0h; = 0 on I',.

Remark 3.3. An assertion analogous to that fo Remark 3.1 holds again.

Remark 3.4. Let us interpret p as the differential operator 9/,

A; = ph; = h; = Hc
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as the reduced vector of heat flux and

hy=~h;= Jthi(r)dr = T.Sic,

1
p
where S; denotes the vector of entropy displacement, T, the (constant) relative

temperature and ¢ the (constant) coefficient of specific heat. Then the variational
equation (3.17) represents an extension of Biot’s equation [3], [4].

Secondary o-integral convolution principle. Let us define h; = 1 = h; and
% (h;) = f {Kij'his by + (L f + ug — hy ) (Lo f + ug — hy )} dX +
Q2
1
+2 P*hinidl"-i-f =~ [hin; + 2P] * h;n;dr
ra r.4

for every h;e A7) and t = 0. Then

8%9,h;)) =0
on A for every t > 0,%) if and only if h; satisfy also the equations
(3.13) Ki'hy + (Lxf +up — h;;),; =0 for XeQ, t=0
and the boundary conditions
(3.14") lsf+uy—h;;=P for Xel,, t>0,
(3.15") A(Lsf +ug— h;;) — hn, =P for Xel,, t>0.

The proof follows easily, if we carry out the variation, integrate the term with 64; ;
by parts, use the relations

nsh;=0 on I,, K;'=Kj'

ji
hix 8hj = h;# (1% 6h;) = (1= h)=h; = h; x5h;
and the counterparts of the fundamental lemmas of the calculus of variations (see
[10]). Finally the differentiation with respect to ¢ yields (3.13")—(3.15").
Remark 3.5. If we define
S; = Chi/ T,

) The set 4 contains those izi € A, which may be inserted into convolution, i.e. for example
h{(X, t) continuous in z.

8) A modified principle in the sense of Remark 2.2 is true, too.
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as the entropy displacement, then % (S,T,/c) represents an extension of Schapery’s
functional in [6], (2.47), the latter being completed by a non-homogeneous initial
condition and the boundary condition on I',. Moreover, here we use the reduced heat
flux vector h; = A, proportional to the “entropy velocities” S; as independent
variables, while Schapery employed the entropy displacements S;.

Secondary f-differential convolution principle. Define h; = 1 % h; and

G, (h) = j (K hiw by + (s f +ug — hy ) % (f = Dy ) = uoh; ;) dX +

Q2

+2J~ P*hinidl"ﬁ-J l[hi”t’|‘2P:|”‘hj”fdr
Ty rvA

for ;e A (see the footnote belonging to a-principle) and for every t > 0. Then
59.(0) = 0

on A for every t > 0°), if and only if h; satisfy also the equations (3.13"), (3.14"),
(3.15").

The proof is based on the secondary o-principle and the lemma 2.1. In fact,
equations (3.13”)—(3.15") are derivatives with respect to ¢ of Euler’s equations and
natural boundary conditions, following from

6%,h)=0.
The initial conditions

Fi(¥)li=o =0, fi(¥)|e=0=0
of the lemma 2.1 are fulfilled already by virtue of the definition.

Remark 3.6. It is obvious, that in the above-mentioned principles, the independent
variables /; may be replaced by h; or S; respectively. We shall not discuss these pos-
sibilites, but notice only, that then the initial conditions h,(0) = 0 or S,(0) = 0 have
to be satisfied a priori. :

Remark 3.7. Also the secondary principles may be completed by a couple of
Laplace transforms (Z«, #f) and a couple of principles with special variations
(&,/}). Moreover, there is an optional choice of independent variables in the sense
of Remarks 3.5, 3.6.

At the end we shall establish two generalized secondary principles, analogous to
that of HELLINGER-REISSNER and HU-WASHIZU in the theory of elasticity. They may
be derived e.g. like in [12] from the functional (3.2) or (3.11) respectively.

9) A modified principle in the sense of Remark 2.2 holds again.
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1. generalized Zp-principle. Let p = 0 be a fixed chosen number. The functional
BA (u, gi 1) = J {pu® + K;;9i9; — 2fu — 2puou + 24(g; — u,;)} dX +
Q

+ 2j Amu — P)dr — 2 [ Pudr +J (Au? — 2Pu)dr
I r,

vTIn

attains its stationary value with respect to independent functions u, g;, A; (without
any side condition) for every t = 0, if and only if u, g;, A; satisfy the equations

(3.5)'9), (3.6), (3.1), (3.7), (2.3a), (2.3¢c).

By virtue of (3.1) and (3.6), (3.7) is equivalent to (2.3b). The parameter p being
interpreted as the operator 9/dt, the principle characterizes the solution of the
problem, expressed in terms of functions u, g;, 4;.

Remark 3.8. The corresponding 1. generalized Zo-principle (for f =0,
I = I, u T, and regardless of the initial condition (2.2)) is involved in Herrmann’s
extension [8] of the Reissner-Hellinger principle from elasticity onto coupled thermo-
elasticity.

2. generalized Z[-principle. Let p + 0 be a fixed chosen number. The functional

BI (g A L) = f

1
{"Kijgigj + = (f + puo + L)* = 2u(L + 4;;) —
Q 4

- 2gi/1,~} dx + 2J PnA;dl’ + 2J u(An; + P)dI' +
Iy

I'n

+ '[ L 1) + 2Pan] dr
A

attains its stationary value on the set of independent functions u, g;, A;, L (without
any side conditions) for every t 2 0, if and only if u, g, A;, L satisfy the equations

(3.18) w—uo =1 (7 +L),
p
(3.19) L+ 2,;=0
and (3.1), (3.6) in Q for every t = 0 and the boundary conditions
(3.20) ' Au — Am; =P for Xel,, t=0,
(2.3a) and (3.7).
10y We write p instead of pg in (3.5).
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If we interpret the parameter p as the operator 0/dt, the principle characterizes the
solution to the problem, expressed in terms of u, g;, 4;, L.

Remark 3.9. The corresponding 2. generalized Zoa-principle (for f=0,
I' =T, u T, and regardless of the initial condition) is involved in the Ben-Amoz’s
extension [9] of Hu-Washizu principle from elasticity onto coupled thermoelasticity.
In the theory of heat conduction the newly introduced variable Lis proportional to
the rate S of entropy change, as we may write

T, T,
L=—--"pS;;,=-—"pS.

Cc c
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Vytah
VARIACNI PRINCIPY PRO PARABOLICKE ROVNICE

IvaN HLAVACEK

V ¢ldnku je ddn systematicky prehled novych typl varia¢nich principt ekvivalent-
nich smiSené tloze pro parabolickou rovnici s poateCnimi a okrajovymi podminka-
mi, které byly pfedloZeny fyziky. Ackoliv metoda je Cisté matematickd a jako takovd
muzZe byt pouZita k vySetfovdni vSech analogickych uloh matematické fyziky, fyzikdlni
interpretace se tykd pouze teorie vedeni tepla.

Principy jsou dvojiho druhu: jedna tfida ddvd variacni charakteristiku pocdte¢ni
tlohy, vyjddienou jednou skaldrni funkei (teploty); druhd tfida charakterizuje tutéz
Gilohu za pomoci jinych proménnych (napf. toku tepla nebo rozdéleni entropie).

Author’s address: Ing Ivan Hlavdcek CSc., Matematicky tGstav CSAV, Praha 1, Zitna 25.
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