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SVAZEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

ON GENERAL NONLINEAR AND QUASILINEAR 
UNANTICIPATED FEEDBACK SYSTEMS 

VACLAV DOLEZAL 

(Received March 3, 1968) 

0. As known, a general feedback system is obtained by interconnecting a system 21, 
which has two inputs u and W and two outputs y and <P, with a system X having an 
input $ and output W. (See Fig. 1.) Since the interconnection imposes constraints 
0 = $ and W = W, the formed system has a single input u and a single output y. 

Suppose that F is a nonempty set, whose elements are interpreted as possible 
signals and responses. Then the external behavior of 21 can be described by equations 
0 = A(u, W) and y = B(u, W), where A and B are operators mapping F x F 
into F; similarly, X can be described by the equation W = X<P, where X is an operator 
mapping F into itself. 

Let an operator W mapping F into itself exist such that for every u e F there exist 
uniquely determined elements <2>, W and y which satisfy the equations 

(1) <2> = A(u, W), y = B(u, W), 

W = K<1>, j? = Wu ; 

then W will be called the over-all transfer operator of the feedback system. 
Obviously, the operator W relates the signal u to the corresponding response y of 

the entire feedback system. 
If the response y is bounded in a certain sense whenever the signal u is bounded, 

we will say that we have the input-output boundedness. 
If the operator W is continuous in a certain sense, we will say that the feedback 

system is input-output stable. 
A more thorough discussion of the physical meaning of these concepts may be 

found in [1]. 

1. Let us now turn to the exact treatment. 

Let i Q b e a fixed nonempty set of real numbers; if TeQ, we will denote [T] = 
= ( - c o , T] n Q. 

220 



Next, let 5 be a nonempty linear set, and let F be the system of all mappings from Q 
into g. The system F is a linear set with customary operations of addition and multi­
plication by a constant. 

Furthermore, let F and F* be nonempty linear subsets of F such that F ZD F => F*. 

X 
Ф 

< 

i> 

X s 
•Y 
) 

т 
Ф 

< 

i> t \ 

•Y 
) 

т 

U 
>r, 

•a. /> 

Ғig. 1. 

For each Te Q let us have a linear mapping ST from F into itself which has the 
following properties: 

a) If x e F, then STx e F* for any Te Q. 
b) If x9 y e F and Te Q, then x(t) = y(t) on [F] iff STx = STy. 
c) STlST2 = STl for any T± ^ T2, T1? T2 e .(2. 

For the sake of brevity, we will also use the notation STx = (x)T = xT. 
Observe that c) implies Sk

T = Sr, k = 1, 2, . . . , and a), b) imply: If x e F, then 
x(t) = x r(r) on [T] . 

Finally, we introduce the following axiom: 

AI. If, for an x e F, we have xT e F* for any Te Q, then x e F. 

Before proceeding further, let us present few examples of particular sets F, F 
and F*: 

Let Q = [0, GO) and 5 = En, i.e. the set of all n-tuples of numbers; then F is the 
set of all ^-vector-valued functions defined on [0, oo). 

1. Let 1 ^ p < oo and put 

F = Lp = {x : x e F, x measurable, J0 \x(t)\p At < oo for any 0 < T < oo} , 

F* = Lp = {x,: x e F, x measurable, J^ \x(t)\p At < oo} . 

If p = oo, let 
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F = L ^ = {x : x e F, x measurable, ess sup |x(t)| < oo for any 0 < T < 00} , 
[0,T] 

F* = L^ = {x : x e F, x measurable, ess sup |x(t)| < 00} . 
[0,*)) 

Putting xT(f) = x(t) for 0 ^ t g T, xT(t) = 0 for t > T, (0 signifies the zero vector), 
then we can readily verify that the requirements a), b), c) and AI are satisfied. 

2. Let 

F = C = {x : x e F, x continuous on [0, 00)} , 

E* = c = {x : x e F, x continuous on [0, 00) and |x(t)| bounded on [0, 00)} , 

Putting xT(t) = x(t) for 0 ^ t S Z x(t) = x(T) for t > T, then again the above 
requirements are satisfied. 

3. Let F = C as in 2. and let A > 0; put 

F* = Cx = {x : x e C and eAt|x(t)| is bounded on [0, 00)} , 

and xT(t) = x(t) for 0 ^ t = T, xT(t) = x(T) eA(T_f) for t > T A little thought 
will persuade us that a), b), c) and AI are fulfilled. 

Analogously, let Q = {1, 2, 3, ...} and g = E: then F is the set of all infinite 
sequences of numbers. Putting F = F, F* = lp with 1 ^ p < 00, i.e. 

00 

lp = {x : x e F, Y \x(i)\p < 00} , 
i = l 

and xT(t) = x(^) for t = 1, 2, ..., T, xT(t) = 0 for t > T, we can again verify that 
a), b), c) and AI are satisfied. 

Let us now carry out some preliminary considerations. 

If T e JQ is a fixed number, let 

FT = sTF = {x : x = STy, y e F} . 

By a) it follows that FT c F*; moreover, by c) xT = x for any x e FT, i.e., ST is 
the identity operator on FT. 

Let A be an operator mapping F into itself; A will be called unanticipative, if 

\2,\ OT^TL : = - 0TjnLi:3T 

for any Te Q, i.e., if (Ax)T = (^4xT)T for any T e Q and x e F. 

Remark 1. Observe that unanticipativity of A is equivalent to the following re­
quirement: 

(2)' vuv2eF9 Vl(t) = v2(t) on [T] => (Avt)(t) = (Av2)(t) on [T] . 
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Lemma 1. Let A, B be unanticipative operators mapping F —> F; then A + B and 
AB are also unanticipative. 

The p r o o f is obvious. 

Lemma 2. Let Te Q be fixed', if A is one-to-one from F onto F and both A and the 
inverse A~x are unanticipative, then the operator STA is one-to-one from FT onto FT 

and has the inverse SrA
-1. 

Proof. Observe first that SrA and SrA
_1 map Fr into itself and Sr is the identity 

operator on Fr. Putting B = SrA
_1, we have B(SrA) = STA~1STA = SrA

_1A = 
= Sr; hence, SrA is one-to-one. Furthermore, (S rA) B = SjASrA"1 = SrAA_1 = 
= Sr; hence, SrA is onto and consequently, B is the inverse ( S r A ) - 1 . 

R e m a r k 2. The assumption that A is one-to-one from F onto F and unanticipative 
need not necessarily imply that A"1 is also unanticipative. This can be demonstrated 
by the operator A defined by (Ax) (t) = x(tj2), x e F, t = 0. 

Lemma 3. Let the axiom AI be satisfied, and let A be an unanticipative operator 
mapping F into F. If, for every Te Q, the operator STA has a unique fixed point 
in FT, i.e. a unique $ ( T ) e Fr exists such that 

(3) <f>(T) = SrA<f>(T), 

then there exists a unique element 0 e F satisfying the equation 

(4) <2> = A<f>. 

Before turning to the proof let us make the following comment. First, observe 
that 3>(T) is also a unique fixed point of SrA in F, because if a $ ( T ) e F satisfies (3), 
we have $ ( T ) e FT due to the definition of Fr. Second, Lemma 3 obviously reduces 
the problem of solving (4) in F to solving (3) in a narrower set Fr c: F*. 

P r o o f of Lemma 3. Let T, T e Q and T = V; we are going to show that $P = 
= 0(T\ Actually, we have by (3), 

(5) <f>(T) = SrA<f>(T), <f>(r) = Sr,A#(T,). 

Applying Sr to the second equation (5) and using c) we get 

&P = ST(ST,A$(T,)) = SrA<£(T) = SrASr£
(T,) = SrAd>(

r
T,). 

Since &P e FT, it follows due to the uniqueness that 3>(
r
T,) = <P(T\ 

Next, define the element <P g F as follows: If t e Q, put $(t) = $(T)(t), where 
Te Q and T=t. The definition is clearly meaningful, because taking V e Q, V = T, 
we have by the above result, 0>(r)

 = $p9 i.e. ^(
r
T) = (p(T'\ s o that ^ (T)(T) = ^ ( r ) ( t ) 

for T G [T] by b). Hence, 4>iT)(t) = <P(T'\t). 
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On the other hand, if Te Q is any number, then we have <P(t) = &{T)(t) on [T] , 
i.e. by b), <PT = <£(

r
r). Because <2>(

r
r) e Fr c F*, it follows by AI that <P e F. Thus, the 

value A® is defined. 
As a next step, we are going to show that 0 satisfies (4). Actually, let t e Q and 

choose T=t, Te Q. Then <PT = <£(
r
T) = <£(r). Moreover, (A0)T = (A0T)T = 

= (A0(T))T = <£(T) = <$>T, i.e. by b), (A<P) (T) = 0(T) for T e [T] , and consequently, 

(A<f>) (*) = * (* ) • 
For proving the uniqueness assume that a *P e F exists such that !P = A*P. Choos­

ing a T e .Q we have WTeFT and !Pr = ( A ^ ) r = (AWT)T. Consequently, by the 
uniqueness of 0{T), WT = 0(T\ and by the above, WT = <PT; hence, in view of b), 
W(t) = ^>(r) on [T] and the lemma is proved. 

Now we are ready for stating a proposition concerning the feedback system. 

Theorem 1. Let the axiom AI be satisfied; let X be an unanticipative operator 
mapping F -> F, let A and B map F x F -> F and A be such that 

(6) {A(u, vr)}r = {A(u, v)}r 

for any Te Q and u,veF. 
If for any ueF and TeQ the operator STA(u,X.) has a unique fixed point 

in FT, then the over-all transfer operator W:F-* F exists, i.e., for any ueF 
there exist uniquely determined elements <P, W, y e F such that equations (1) are 
satisfied. 

If, in addition, A and B satisfy the conditions 

(7) {A (u r ,v )} r = {A (u ,v )} r , 

(8) {B(ur, vr)}r = {B(u, v)}T 

then W is unanticipative. 

Proof. For a fixed ueF denote Gu = A(u,K.), and Au = A(u, .). Then Au is 
unanticipative by (6), and consequently, Gu = AUX is also unanticipative by Lemma 1. 
Thus, due to the hypothesis of the theorem and Lemma 3, there exists a unique 
0 e F satisfying the equation 

(9) 0 = GU<P = A(u, X0). 

Hence, (9) defines an operator Q : F -> F by $ = Qu. From (l) it follows that if we 
set 

(10) Wu = B(u, XQu) 

for any ueF, the sought operator Wis established. 
Next, if (7) holds it turns out that Q is unanticipative. Actually, choose ueF and 

let 0 = Qu, $ = QuT, i.e., 

(11) 0 = A(u, X0), $ = A(ur, X$) . 
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Then we have by (7), 

<pT = {A(U, X0)}T , $ = {A(u, X$)}T . 

Thus, by (6) 

<PT = {A(u,(X<f>)r)}r = {A(u,(X<f>r)r)}r = {A(u,X<f>r)}r, 

and similarly, 

$T = {A(u,(X<?)r)}r = {A(u, (X$T)T)}T = {A(u,X$T)}T. 

Hence, by the assumption on uniqueness of the fixed point in Fr, $T = <PT, i.e., 
{Qu)T = (Qwr)r. 

Finally, by (10) and (8), 

(Wu)T = {B(u,XQu)}T = {B(uT, (XQu)T}T . 

However, since both X and Q are unanticipative, we have (XQu)T = (XQuT)T, and 
consequently, 

(Wu)T = {B((uT)T, (XQuT)T}T = {B(uT,XQuT)}T = (WuT)T . 

This concludes the proof. 
In the sequel we will assume that F* is a Banach space with norm ||. ||. Moreover, 

let us introduce the following axioms concerning the norm in F*. 

A2: AI is satisfied; if x e F*, then ||xr|| = \\x\\ for any Te Q. 

A3: A2 is satisfied; if x e F and a constant A > 0 exists such that ||xr|| ^ A for all 
Te Q, then x e F* and ||JC|| ^ A. 

The reader can easily verify that the particular spaces Lp, Lp, L^, L^, C, C and CA, 
and lp mentioned above satisfy the axiom A3 with the corresponding mapping 5 r 

and customary norm. Note that in Cx we define the norm by ||x|| = sup eAf|x(t)|. 
f [0,oo) 

Lemma 4. Let A2 hold; then, for any Te Q, FT with the norm ofF* is a Banach 
space. 

Proof. Fr is clearly a linear normed space. Let {xt}, xteFT, i = 1, 2 , . . . be 
a Cauchy sequence, i.e. \\xt — xk\\ can be made arbitrarily small by taking i and k 
sufficiently large. Since also xt e F* and F* is complete by assumption, there exists an 
x e F* such that xt -> x in F*, i.e. \\xt — x\\ -> 0 as i -> oo. However, due to A2, 
\\(xt)T — xT\\ = \\xt — xT\ = l(xt — x)r | | ^ \\xt — x|| ~> 0; hence, it follows that 
Xi -> xT in F*, and consequently, x = xT. Thus, xe FT and the lemma is proven. 

For our purposes we will slightly generalize the concept of continuity of an operator. 
Let A map F —> F; A is called continuous at xeF, if for every e > 0 a number 

(5 > 0 exists such that for any xe F with x — x e F* and ||x — x|| < S we have 
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Ax — Ax e F* and | |Ax — Ax|| < s. If A is continuous at every point x e F, then A 

is called the continuous operator. 

Similarly, if B maps F x F -> F, then B is called continuous at (x, y) e F x F, 

if for every e > 0 a 3 > 0 exists such that for any (x, y) e F x F with (x — x, y — 

— y) e F* x F* and ||x — x|| < 3, \\y — y\\ < 3 we have B(x, y) — B(x, y) e F* 

and \\B(x, y) — B(x, y)|| < e. The operator B is called continuous, if it is continuous 

at every point (x, y) e F x F. 

It is clear that if At, A2 are continuous operators mapping F -> F, then At + A2 

and A1A2 are also continuous. 

Theorem 2. Let the axiom A2 hold, let the operators A, B map F x F -+ F, 

let A satisfy condition (6), and let X be an unanticipative operator mapping F -> F. 

Furthermore, for every Te Q let an integer mT _ 1 and a number XT < 1 exist 

such that 

(12) | | S r O W T x - ST{AuX)mT y\\ ^ A r |x - y\\ 

for all ue F, x, y e FT, where Au = A(u, .). Then the over-all transfer operator W 

given by (10) exists. 

Moreover, if 

(i) the axiom A3 holds, 

(ii) a fixed integer m _ 1 and number X < 1 exist such that (12) is true for 

every Te Q and x, y e FT, ueF, 

(iii) the operator (AuX)m x is continuous at every (x, u)e F x F, 

(iv) the operators X and B are continuous, 

then W is continuous. 

If, in addition, (AuX)m 9 e F* for any u e F*, X maps F* -> F* and B maps 

F* x F* -> F*, then W maps F* into itself. 

Proof. Choose a u e F and denote Gu = AUX = A(u,X.). Then for any integer 

fc = 1, 

(13) STG
k

u = (STGuf . 

Actually, (13) is clearly true for fc = 1. Above we have shown that Gu is unanticipa­

tive; consequently, by Lemma 1, Gk

u is also unanticipative. Supposing that (13) is true 

for some fc _ 1, we easily conclude by induction that it holds for fc + 1, too. 

Next, condition (12) shows that, for any Te Q, STG™T is a contraction on Fr, 

which is a Banach space by Lemma 4. Hence, in view of (13), there exists a unique 

xT e FT such that 

(14) xT = {STGUJ 
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However, then xT is a unique solution of 

(15) xT = STGux
T 

in Fr. Indeed, from (14) it follows that STGux
T = (STGu)

mT + 1 xT = (STGu)
mT . 

• (^TGMxT); consequently, due to the uniqueness of x r , we have necessarily xT = 
= STGux

T. Moreover, assuming that yT e Fr satisfies the equation yT — STGuy
T, 

it follows that yT = (STGuf yT = .. . = (STGuf
T yT; hence, yT = xT 

Thus, the assumptions of Theorem 1 are met and consequently, the operator W 
exists; the first part of Theorem 2 is proved. 

Assume now that the conditions (i) through (iv) are fulfilled, and let u e F, s > 0. 
Choosing a Te Q and ue F such that u — u e F*, let 

(16) xT = (STGu)
m xT, xT = (STGa)

m xT . 

Then we have by (12) and (13), 

||xT - xT|| rg | | ( S r G ^ x T - ( S r G ^ x T | | + \\(STGa)
mxT - (SrGtt)'«xT|| ^ 

^ A | | x T - x T | | + | | S r { G - x T - G > T } | | ; 

hence 

(17) ||xT - xT|| g (1 - X)-1 \\ST{GmxT - G;?XT}|| . 

On the other hand, as shown above xT = x r and xT = x r , where x = A(u, Kx) 
and x = A(u, Xx), i.e. x = Qu and x = Qu. Since Gm and Gm are unanticipative, it 
follows that ST{GmxT - GmxT} = ST{Gmx - Gmx). 

However, according to continuity of Gmx, there exists a S > 0 such that for 
||u - u|| < 8 we have Gmx - Gmx e F* and ||G?x - G"x|| < (1 - X) e. Introducing 
this into (17) and using the axiom A3, we obtain 

(18) ||Sr(x - x)|| < s. 

Consequently, by the axiom A3, Qu — Qu e F* and ||gw — gu | | g e whenever 
u — u G F* and ||M — u|| < S, i.e. the operator Q : F —> F defined by the above 
equations is continuous. 

Since then Kg is continuous by (iv), it follows that the operator W = B(., XQ.) 
is continuous, too. Hence, the proof. 

As for the last assertion, let u e F* and choose Te Q. Then (14), (13) and (12) 
yield 

||xT|| S \\STGmxT ~STGme\\ + ! |S rG^| | ^ X\\xT - 0|| + | | S r G ^ | . 

Hence, 

||xr|| g (i - x y 1 ||srG™0||,^(i - X ) - 1 \\Gme\\ 
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by A3. Using again A3 it follows that x e F* and ||x|| = (l - X)"1 | |G"0| | , i.e. the 

operator Q maps F* into itself. The employment of assumptions on ranges of X 

and B concludes the proof. 

The theorem just proved clearly gives sufficient conditions for the input-output 

boundedness and stability of a feedback system; observe that these conditions are 

given in terms of "local behavior" of the operator A(u, X.). 

Let us now present two simple examples clarifying the application of the above 

results. 

E x a m p l e 1. Let the sets Lp and Lp have the same meaning as in the beginning of 

the paper. Let the n-vector valued functions G, V, H and U have the following proper­

ties: 

1. G(t, u) and V(t, u) are defined for 0 = t < oo and u e En, and are such that 

G(t, u(t)), V(t, u(t)) e Lp whenever u(t) e Lp. 

2. H(t, T, u, v) is defined for 0 ^ T ^ t < co,u,veEn and is such that 

I H(t, т, w(т), v(т)) dт є Lp 

whenever u(t), v(t) e Lp. 

3. U(t, T, u) is defined for 0 g T = t < oo, u e En and is such that JQ U(t, x, u(x)) dx e 

e Lp whenever u(t) e Lp. 

Furthermore, for each T > 0 let constants xT, \iT, A T > 0 exist such that 

(19) \H(t, x, u, vx) - H(t, x, u, v2)\ ^ xT\vx - v2\ 

for 0 g T ^ t < oo , u, v1? v2 e En, 

(20) \U(t, x, vi) - U(t, x, v2)| ^ /i r |v ! - v2| 

for 0 = x S t < oo , v1,v2eEn, 

(21) |V(t, vj) - V(t, v2)| = XT\v1 - v2| for t = 0 , vi, v2 e En. 

Let the operator A : Lp x Lp -> Lp and X : Lp -> Lp be defined by 

(22) {A(w, »)} (í) = G(t, u(t)) + H(t, x, u(т), v(т)) dт , 

(23) {Xv} (t) = V(t, v(t)) + f U(t, x, v(x)) dx , 

and let B = A. Then the over-all transfer operator W: Lp -> Lp exists and W is 

unanticipative. 

Actually, A clearly satisfies conditions (6), (7), and X is unanticipative; thus, all 

what remains to do is to show that (12) holds. Choosing a fixed u e Lp and T > 0, 
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assume that p > 1. Then for any vl9 v2 e (Lp)T and integer m ^ 1 we have 

(24) \STG:VI - sTGy2\\ á 
T(Tsт)m 

(m - 1)! 

where sT = xT(XT + fiTf) and Gu = A(u, X.). For proving (24) show that, for any 
t e [0, T], 

f(l/c3f) + m - l 

(25) | {G>a (0 - {G>2} (0| < - sm

T\\Vl - v2\\ . 
(m — 1)! 

By equations (19) through (23) it follows that, for t e [0, T], 

a = \{Guvx} (t) - {GMv2} (t)| S | \ | { ^ i " ^ 2 } (T)| d i , 

and 
tn 

|{Z»1 - X»2} (0| ^ XT |»,(0 - »2(t)| + j /tr|fi(t) - P2(T)| dT ^ 
J o 

g Ar|v!(0 - v2(0| + /M1 A z |h - v2\\ . 
Hence, 

a < xT (Ar|oi(T) - »2(T)J + M»i:1/4||f! - »2||) dT ^ 
J o 

g r ^ ' x ^ r + fiTT) 1»! - »2|| . 

Thus, (25) holds for m = 1. Assuming the validity of (25) for some m ^ 1, we obtain, 

b = \{G:+1

Vl} (0 - {G:+1v2} (01 g xT f | { Z G > 1 - XGy2} (T)| dT 

and 

| {XG:P. - ZG> 2 } (0| S Ar|{G>! - G> 2 } (t)| + 

+ Лг |{GГ»i - GУ2} (т)| dт ^ 
ţ j(l/q) + m - l 

xT (m — 1)1 
\Vi - Vo 

Consequently, 

b < 
(l/«) + m 

(m — 1)! (—I- m 

f(l/<z) + m 

m! 
" l ~ «2 | > 

and (25) is proved. 
Realizing that {STw} (t) = 0 for t > T, we obtain immediately (24) from (25). 
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However, for any T > 0, the number T(TsT)
mj(m — 1)! can be made less than one 

by taking m sufficiently large, i.e. (12) holds and our assertion is proved. 

The cases p = 1 and p = oo can be treated in the same way. 

E x a m p l e 2. Let the signals and responses be interpreted as elements of the sets C 

and C mentioned above. Let G(t, u, v), V(t, v), H(t, T, U, V) and U(t, T, v) be con­

tinuous rc-vector valued functions of all arguments 0 ^ T ^ t < oo, u,veEn. 

Furthermore, assume that the following conditions are satisfied: 

1. Constants cl9 c2, c3 > 0 exist such that 

(26) |G(t, ul9 vx) — G(t, u2, v2)\ S Ci\u\ — u2\ + c2|vi — v2| 

and 

(27) \V(t,u,)^ V(t,u2)\ ^ c 3 | u ! - u 2 | 

for all t ^ 0, ul9 u2, vl9 v2 e En. 

2. Nonnegative functions hx(t9 T), h2(t, T), p(t, T) with 

sup 
[0,oo) 

П çt 
hi(t, т) dт = kj < oo , i = 1, 2, sup p(t, т) dт = l 

0 [0,oo)J 0 

< 00 

exist such that 

(28) \H(t, T, ui, vj) - H(t, T, u2, v2)| ^ hi(t, T) \u1 - u2| + h2(t, T) [vi - v2 

and 

\U(t, T, ui) - U(t, T, U2)\ ^ P(t, T) [ui - U2\ 

for any 0 ^ T ^ t < oo and ul9 u2, vl9 v2 e En. 

Let, for u, v e C and t ^ 0, 

(29) {A(u, v)} (t) = G(t, u(t), v(t)) + f H(t, T, U(T), V(T)) dx , 

{Xv} (t) = V(t, v(t)) + U(t, x, v(x)) dт , 
o 

and let B = A. 

First, it is clear that A maps C x C -» C, X maps C -> C, and that A satisfies 

conditions (6), (7). Moreover, it is a matter of a simple routine to verify that, for any 

uu u2, vu v2 e C and T > 0, 

(30) I S r l A ^ , ^ ) - A(u2,Xv2)}\\ ^ (c, + fc.)|| S T ( M l - « 2 ) | + 

+ (c 2 + fc2) (c 3 + 0 ||Sr(t>i - P 2 ) | | • 

230 



If X = (c2 + k2)(c3 + /) < 1, then (30) shows that the condition (12) in Theorem 2 
is satisfied for any T> 0. (Note that STvl9 STv2eCT); hence, the unanticipative 
over-all transfer operator W: C -> C exists. 

Moreover, (30) shows that the operator A(., X.) is continuous at any point (u, v) e 
e C x C; actually, let ul9 u2, vl9 v2 e C be such that u1 — u2e C and vx — v2 e C. 
Then, due to the axiom A3, the right-hand side of (30) is less than (cx + kx) \\ut — 
— u2|| + A||v! — v2||; consequently, again by A3, A(u1,Xv1) — A(u2,Xv2)e C and 
\\A(ul9Xv1) — A(u2, Xv2)\\ = (cx + kx) ||u! — u2|| + X\\v1 - v2||. Hence, condition 
(iii) is satisfied. 

Similarly, from (27) and (28) we obtain easily that 

(31) \\ST{XVl - Xv2}\ g (c3 + 01 ST(vt - v2)\\ 

for vl5 v2 e C, and from (26), (28), 

(32) \\ST{A(ul9 vt) - A(u2, v2)}|| = (Cl + kO | |5 r(W l - u2)|| + 
+ (c2 + k2) \\ST(vx - v2)|| 

for ul9 u2, vl9 v2 e C. By the same argument as above we conclude that X and A = B 

are continuous operators. Thus, condition (iv) is fulfilled, and consequently, W is 
a continuous operator. 

Finally, if we assume that 

{X9} (t) = V(t, 6) + U(t9 T, 0) dr e c 
Jo 

and 

{A(0, 0)} (t) = G(t9 9, 6) + I H(t9 T, 0, 6) dx e c, 
Jo 

then we have by (31) and (32) for u, v e C, 

||SrKv|| g (c3 + l) ||srv|| + \\sTxe\\ 
and 

||5 rA(u, v)|| ^ (Cl + kx) | |5 ru | | + (c2 + k2) ||Srv|| + ||SrA(0, 0)\\ ; 

consequently, by A3, Kv e C and A(u, v) e C. Hence, according to the last assertion 

of Theorem 2, Wmaps C into itself, i.e. we have the input-output boundedness. 

Let us now consider the quasi-linear case of a feedback system. 

Lemma 5. Let C be a linear unanticipative operator mapping F -» F. 

a) If A2 holds, C maps F* -+ F* and C is bounded on F*, then \\STC\\ = ||C|| 
for any Te Q. 
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b) Let A3 hold; if, for every Te Q, the operator SrC is bounded on FT and a con­
stant A > 0 exists such that ||STC|| rg A, then C is bounded on F* and ||C|| ^ A. 

Proof, a) is obvious. As for b), choose Te Q and xeF*; then ||Sr(Cx)|| ^ 
g ||-SrC|| . Hxll S A\\x\\. Thus, by A3, Cx e F* and ||Cx|| ^ -4|x | |; consequently, 
ICII ^ A. 

Theorem 3. Let A2 hOld; let the operators A1,X,C1,C1 map F into itself, let X, 
Cl9 C2 be unanticipative and Cl9 C2 be linear and such that I — CXC2 is one-to-one 
from F onto F and (I — C ^ ^ " 1 is unanticipative. (I is the identity operator.) 
Let the operator A map F x F —> F and satisfy the condition (6), and let B map 
F x F —> F. Furthermore, for every Te Q let 

(i) STC1 and SrC2 be bounded on FT, 

(ii) numbers d\, d2 > 0 exist such that 

(33) \\STA(u, Vl) - STA(u, v2)\\ S d[|h - 02|| 

ana7 

(34) HSrKvi - SrKv2|| S dT
2\\v1 - v2|| 

fOr all u e F, vt, v2 e FT and 

(35) \\ST(I - C .Ca) - 1 ! {flSrC.fl <£ + | |S rC2 | | rf[ + « } < 1 . 

If, for all u,v e F, 

(36) A(u, v) = Atu + C ^ + A(u, v) , Kv = C2v + Kv , 

then the over-all transfer operator W: F -> F exists. 

Moreover, if 

(iii) A3 holds, 

(iv) C1? C2 map F* -> F* and are bounded on F*, and ||Sr(I ~~ ^1^2)" x | | = A-
fOr a// T e .Q with a fixed ja > 0, 

(v) fzxed numbers di, d2 > 0 exist such t/iat (33) and (34) are true fOr any 
ue F, v1? v2 eF*, 

(vi) ii{\C11| d2 + ||C2|| d! + d!d2) < 1, 
(vii) Ai, A and B are continuous, 

then W is continuous. 

If, in addition, At, X map F* -> F* and A, B map F* x F* -> F*, then W 

maps F* into itself. 

Proof. First, observe the following facts. Since I — C1C2 = K is one-to-one 
from F onto F and K, K""1 are unanticipative, then, due to Lemma 2, <SrK is one-to-
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one from FT onto Fr and ( S r K ) - 1 = SrK
_1. Since by (i) SrK is clearly bounded 

on Fr, and FT is a Banach space by Lemma 4, it follows by Banach theorem (see [2], 
p. 123) that SrK

_1 is also bounded on FT; hence, IS jK"11| < oo. 
Moreover, if conditions (iii) and (iv) are satisfied, then K is one-to-one from F* 

onto F*; actually, since K is one-to-one, all we have to show is that K is onto. Thus, 
choose j / e F * ; then K-1yeF. However, for any TeQ we have ||SrK"1

<y|| = 

_ HSrK"1! . ||3;|| _ ju||y||; hence, by A3, K_1j/eF* and HK" 1 ^ _ £*||y||-
Next, recalling Theorem 1 choose u e F and consider the equation 

(37) <2>(T) = STA(u, X¥T)) = 

= Sr{Aiu + Ci(C2<f>(T) + X0m) + A(u, C2d>(T) + X<£>(T))} 

on the space Fr, i.e. the equation 

(38) Sr(I - CiC2) <f>(T) = Sr{Aiu + CiX^(T) + A(u, C2<f>(T) + X<P(T))} . 

However, in view of the above considerations, (38) is equivalent to 

(39) <£(T) = SrKu<2>(T), 

where 

(40) RU&T) = K-^Aiu + CiX<£(T) + A(u, C2<2>(T) + X<f>(T))} . 

As a next step we are going to show that STRU is a contraction on FT. Actually, 
for <Pl9 $2 e FT we have by (40), 

(41) x = ||SrKM*i - STRU$2\\ _ H S r ^ - ' C i ^ i - X<2>2)|| + 

+ | |S rK-x{A(u , C 2 ^i + X<Z>i) - A(u, C2<P2 + x$2)}\\. 

However, since SrK
_1Ci = SrK

_1SrCi = (S rK" 1 ) (STC t) Sr, we have by (34), 

H ^ K - ' C i ^ i - X<P2)\\ = HSr^"1! • II^TCil . dT
2\\^1 - #21| . 

On the other hand, by (6) we have 

SrA(u, C2<2>r- + X$) = SrA(u, Sr(C2^, + X0,)) = 

= SrA(u, STC2<Pt + STX<Pt) ; i = 1, 2 ; 

hence, (33) and (34) yield 

USTK-^Atu , C2<2>i + X<2>i) - A(u, C2(P2 + X$2)\\ = 

S WSTK-'I {'d[||SrC2|| + d\dT} ll^i - <P2|| . 

Introducing this into (41), we obtain finally, 

(42) ||STKM*i - SrKM<Z>2|| = *r | |*i - <M 
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with 

kT = | |S rK
_ 1 | | {||STCi|| d\ + ||S rC2 | | d\ + d\dT

2) ; 

hence, by (35), SrKu is a contraction on Fr. Consequently, (39) and also (37) has 
a unique solution in Fr, i.e. the operator Wexists by Theorem 1. 

Assume now that the conditions (iii) through (vii) are satisfied and let u e F, 
e > 0; choosing a u e F such that u — u e F* and Te Q, let 

(43) <2>(T) = SrA(u, X<Z>(T)) , <£>(T) - SrA(u, X<?(T)) , 

i.e. 

(44) <2>(T) = SrKM^(T), £ ( T ) = STRU&T). 

From Lemma 5 it follows that ||STC*|| „ ||Q||> * = -•> 2, and consequently, ^ r _ 
_ ^(IJCiH d2 + ||C2|| u\ + d!d2) - A < 1. Thus, we can write by (42) and (44), 

||£(D _ _>c-r>|| _ ||SrjR||_5C-r> _ S r ^ ^ ( r ) | | _ 

_ \\STRa$
m - SrKfl<2>(T)|| + ||SrKfl<2>(r) - STRu0

m\\ _ 

_ /1||<£(T) - <f>(T)|| + |SrKfl<2>(T) - Sri?u^
(T)|| , 

i.e. 

(45) \\&T) - d>(T)|| _ (1 - A)"1 ||SrKfl<2>(T) - SrK^(T)|| . 

Next, recall the fact that $(T) = $T and $ ( T ) = $ r , where <l> and $ is the solution 
of $ = A(u, X<l>) and <P = A(u, X<2>), respectively, and put for brevity O = C2# + 
+ X<2>. Then SrO = SrC2<Z> + STX<P = Sr(C2<£>(T) + Xd>(T)). 

However, since both operators Ax and A are continuous, there exists a d > 0 such 
that for || u — u| < O* we will have 

A!u - Axu e F* , A(u, O) - A(u, O) G F* and ||A!u — A!u|| < 

< - A r x(i - A) , ||A(u, Q) - A(u, O)|| < - / i - ^ i - A). 

Then (45) and (40) yield with the aid of (6) and A3, 

\\$(T) _ ^(T)|| < ^ __ ; ) - ! | | S r X - i p ^ _ ^ + 

+ (A(u, C2<1>(T) + X^T)) - A(u, C2¥
T) + X<f>(T)))}|| _ 

< (1 - A)"1 HSrK"1!! . I /x_1(l - A) + (1 - A)"1 I S r K - ^ S ^ u , Sr^) -

- S r A ( u , SrO)}|| < ~ + ( 1 - I ) " 1 | |S rK " % { ! ( £ , O) - A(u, O)}|| ^ 

< - + (1 - A)"1 HSrK"1!! . - fi'l(l ~ X)<e. 

234 



Hence, by A3, $ — 0 e F* and \\$ — # | | g e, i.e. the operator Q : F -» F defined 

by the equations QM = <P, <p = A(u, X<P) is continuous. 

Finally, the inequality (34) together with A3 show that X is continuous; con­

sequently, X is a continuous operator. Since B is continuous, the continuity of W fol­

lows immediately. 

As for the last assertion of Theorem 3, let u e F* and <2>(r) = STRU(P{T). Then (42) 

yields 

|!<f>(T)|| = 4&T)\\ + \\sTRue\\, 

U + V 

n 

U K 
У 

i<p 

Ғig. 2. 

i.e. 

(46) |<P<T)| ^ (1 - A ) " 1 | |S rR„0|| 

However, the assumptions and (40) imply that Ru6eF*; then (46) with A3 show 
that $ e F* and ||<p|| ^ (1 — A)"1 ||KM0||, i.e. Q maps F* into itself. The assumption 
on the range of B concludes the proof. 

The physical interpretation of Theorem 3 is straightforward; if the linearized system 
described by operators A'(u, v) = Axu + Civ, X'v = C2v, and B'(u, v) = B(u, v) is 
well-behaved, then the feedback system itself is well-behaved provided the non-
linearities are not too large. (Witness (35) and (vi).) 

Let us now present two simple examples. 

E x a m p l e 3. Consider the classical feedback configuration portrayed in Fig. 2, 
wherefi,f2 signify pure memoryless gains and K is a linear system governed by the 
equation 

(Xx) (0 = k(t, т) x(т) dт + a x(t) 
Jo 

(a is a constant). For the system of signals and responses we shall take the set C. 

Furthermore, we will assume that 
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1. k(t, T) is continuous for 0 g T g t < GO and 

M = sup |k(t, T)| dT < GO , 
[0,co)J0 

2. constants jU(- and at > 0 exist such that 

(47) . - ^ ^ " ^ g ^ , 

for any £ l9 £2 e E , ^ #= £2, i = V 2, and 1 — \i^i2a 4= 0. 

Our task is to find constraints for al9 a2 which guarantee the input-output stability 
and boundedness of the system, provided the linearized system is assumed to be well-
behaved (see below). 

From Fig. 2 it follows that here 

(48) {A(u, v)} (t) = {B(u, v)} (t) = af^uit) + v(t)) + 

+ k(t,x)f1(u(z) + v(T))dT, 

{Xv}(t)=f2(v(t)). 

It is clear that A actually maps C x C -> C and X maps C -> C. Moreover, (47) 
and 1. show that A maps C x C -> C and X maps C -> C. 

Using the language of Theorem 3, put 

(49) (Axu) (t) = (C!u) (t) = a/L! u(t) + Mi k(t, T) U(X) dT , 

C2v = \i2v ; 

consequently, 

(50) {A(u, v)} (t) = a{/x(u(t) + v(t)) - Mi(u(t) + v(t))} + 

+ J fc(^, 0 { / I (^(T) + I<T)) - JUI(W(T) + v(T))} dT , 

It can be easily verified by using (47) that 

(51) \\ST(XVl - Xv2)\\ g a2\\ST(Vl - v2)\\ 

and 

(52) \\ST(A(uu Vl) - A(u2, v2))\\ ^ a,(M + \a\) {\\ST(Ul - u2)\\ + 

+ \\SAv, - v2)\\} 
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for any ul9 u2, v1,v2eF and T > 0. Since A3 holds, (51) and (52) show that X and A 

are continuous operators. 

Furthermore, we obtain 

(53) 1|Cx|| S \Vi\(\a\ + M ) , ||C2|| = I n l ­

and from (51), (52), 

d1 = oct(\a\ + M ) , d2 =• a2 . 

Next, 

(I - CtC2) x = (1 - jij^fl) l x - — - ^ — [k(t, T) X(T) dTJ ; 

consequently, for x e C , 

(54) (I - C.C,)-1 x = (i- fi^a)'1 j x + [\(t, T) X(T)<IT1 , 

where h(t, T) is given by 

h(t,r) = fj(r^^lk-(^)^ 

Equation (54) shows that (I — C ^ ) - 1 is an unanticipative operator. 
Assume now that N = sup J*0 \h(t, T)| dT < OO, i.e. that the linearized system is 

[0,cx>) 

well-behaved as indicated above. Then ||(I — C1C2)~11| = | l — ju1Ju2a|~1 (l + N), 
and, by (vi) in Theorem 3, the sought constraint for a1? a2 reads 

(55) (1 + N)(M + |a|) |l - /i1/i2a|~1 (^^ oc2 + |/L2| a t + a ta2) < 1 . 

Hence, if (55) holds, then the considered feedback system has the over-all transfer 
operator and is input-output stable and bounded. 

E x a m p l e 4. Consider the same system as in Example 3, but now let K be time-
invariant and set F = C, F* = Ck, where Ck is the set introduced in the beginning 
of the paper. It can be easily verified that CA with the norm ||x|| = sup eAf|x(l)| is 

[0,oo) 

a Banach space, and that the axiom A3 is satisfied with the mapping ST defined 

above. 

Here, let 

(56) {A(U, V)} (t) = {B(U, V)} (t) = [\(t - T)fx(u(T) + v(T)) dT , 

{Xv}(t)=f2(v(t)), 
u,veC. 
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Assume that the following conditions are met: 

1. Positive constants fxl9 \i2, a l9 a2 exist such that (47) holds for any ^ , ( 2 e £ , 
Z± * ^ 2 , a n d / 1 ( 0 ) = / 2 ( 0 ) = 0. 

2. k(t) ^ 0 and is continuous for t ;> 0, and the Laplace integral K(p) = 
= Jo0 k(t) e~pt dt converges for Re p > —k - e, e > 0, k fixed. 

3. The function K(p)/(l - [ix\
x2 K(P)) *s analytic for Re p > —k — s. 

Our task is to establish conditions for a1 and a2, under which the over-all transfer 
operator IV exists and maps CA into itself. 

As before, let 

(57) (Aiu) (0 = (Ciu) (t) ~[k(t~ T) fi, u(x) dT , C2v = ii2v , 

%v = fi(p) ~ W , 

{ A ( u , v)} (t) = I k(t - T ) { / x ( u + v) - M l ( W + v)} dT . 

First of all, we are going to show that Ct maps Ck into itself and \CX\ = fi^-k). 
Actually, let x e CA; then for any t ;> 0, |x(t)| ^ |x| | c~At, and consequently, 

\(ClX)(t)eXt\ S nx f'|fc(t - T)| ext. \\x\\ e~Xx dr = 

= /Zi||x|| f | k ( t - T ) | ^ " T ) d T = /i1||x|| f k ( ( j ) ^ d O = /T1 | |x | |K(--A). 

Hence, ||Ci*;|| ^ /LiK( —A) ||x||. 

On the other hand, letting x0 = e~Xt, we have ||x0|| = 1 and 

(C^o) (ř) eXt = /f ľ fc(ŕ^т)eЯř 

Jo 
dт = џx 

k{a) eXa á<т.. 

so that sup \(ClXo) (t) e'a\ = fiiK(-X); consequently, IICJ = nM-X). 
[0,oo) 

Next, we have | C 2 | = n2, and 

(58) ( f - A C * ) * - * - , . ^ 
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Then 

(I - ClC2)-
1x = x+\ h(t-r)dr, x e C , 

oo 

where h(t) is given by h(t) = £ (HiViY k*%t), (here, k*' signifies the i-times iterated 

convolution of k) and satisfies the equation 

(59) h(t) - \ix\i2 k(t) - ^ - ^ h(t) * k(t) = 0 . 

Hence, (I — C ^ ) " 1 is unanticipative, and due to fixp2 > 0 and k(t) ^ 0 we have 
h(t) *z 0. Since assumption 2. implies that h(t) is Laplace transformable, we have by 
(59) in some half-plane Re p > f, 

(60) H(p) - fiifx2 K(p) - w 2 H(p) K(p) = 0 . 

However, since by 3. H(p) from (60) is analytic for Re p > — X — e, we have 

(61) H(-X) = - / ^ 2 X ( ; / ) - - f > ) ^ dt < 00 . 
1 - iixii2K(-X) J 0 

Hence, using the same argument as in considering the above operator Cx we conclude 
that (I - CxC2y

i maps CA -> Cx and ||(I - C ^ ) " 1 ! g 1 + H(-2). (Observe 
that we have also 1 — JU1JI2K( — X) > 0.) Thus, condition (iv) in Theorem 3 is 
satisfied. 

Now, let ux,u2,vx,v2eC,T> 0; then we have by (57), (47), 

\eXt{A(ux, vx) - A(u2, v2)} (t)\ ^ \k(t - T)| extccx(\vx - v2| + |Ml - u2\) dx S 
Jo 

^ axK(~X) {\\ST(ux - II2)| | + \\ST(vx - v2)||} , 0 rg t ^ T ; 

consequently, 

(62) | |S r ( l (M l ,» . ) - A(u2,v2))\\ <, a1K(-A)( | |S r(u, - «2)|| + \ST{v, - p2)fl) . 

Similarly, we get 

(63) HS^Xv! — Xv2)|| S a2||ST(^i — v2)\\ . 

Inequalities (62) and (63) show that the operators A and X are continuous, and 
that we may set dx = axK( — X), d2 = a2. Thus, condition (vii) holds, too. 

239 



Using the fact that fj(0) = f2(0) = 0 and (62), (63), we easily conclude in an 
obvious way that A maps Ck x Cx -> Cx and X maps C; —> Ck. Hence, the last 
assumption in Theorem 3 is also satisfied. 

Finally, the condition (vi) reads 

(64) (1 + H(-X)) {^K(--X) a 2 + ^oc^-X) + a x a 2 K(-A)} < 1 ; 

substituting (61) into (64),\we obtain the sought condition for a l s a2, 

(65) « ( - - * ) ( « ! +/xi ) (a 2 + fi2)< 1 . 

Hence, if (65) is satisfied, the over-all transfer operator W maps Cx into itself, i.e. 
any exponentially decreasing signal produces an exponentially decreasing response. 
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V článku jsou vyšetřeny obecné nelineární a kvazilineární kauzální zpětnovazební 
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