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SVAZEK 14 (1969) APLIKACE MATEMATIKY ¢IsLo 3

ON GENERAL NONLINEAR AND QUASILINEAR
UNANTICIPATIVE FEEDBACK SYSTEMS

VAcLAV DOLEZAL
(Received March 3, 1968)

0. As known, a general feedback system is obtained by interconnecting a system 2,
which has two inputs u and ¥ and two outputs y and @, with a system X having an
input & and output P, (See Fig. 1.) Since the interconnection imposes constraints
& = Fand ¥ = P, the formed system has a single input u and a single output y.

Suppose that F is a nonempty set, whose elements are interpreted as possible
signals and responses. Then the external behavior of 2 can be described by equations
® = A(u, ¥) and y = B(u, ¥), where A and B are operators mapping F x F
into F; similarly, X can be described by the equation ¥ = X @, where X is an operator
mapping F into itself.

Let an operator W mapping F into itself exist such that for every u € F there exist
uniquely determined elements @, ¥ and y which satisfy the equations

(1) @ = Au,¥), y=Bu,Y),
Y =Xo, y = Wu;

then W will be called the over-all transfer operator of the feedback system.

Obviously, the operator W relates the signal u to the corresponding response y of
the entire feedback system.

If the response y is bounded in a certain sense whenever the signal u is bounded,
we will say that we have the input-output boundedness.

If the operator W is continuous in a certain sense, we will say that the feedback
system is input-output stable.

A more thorough discussion of the physical meaning of these concepts may be
found in [1].

1. Let us now turn to the exact treatment. ) !

Let Q be a fixed noaempty set of real numbers; if Te Q, we will denote [T] =
= (-0, T]n Q.
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Next, let & be a nonempty linear set, and let F be the system of all mappings from Q
into . The system F is a linear set with customary operations of addition and multi-
plication by a constant.

Furthermore, let F and F* be nonempty linear subsets of F such that F > F o F*.

3 £ ¥
¢ | 4
o u /4 A
Fig. ]

For each Te Q let us have a linear mapping Sy from F into itself which has the
following properties:

a) If x e F, then Srx € F* for any Te Q.

b) If x, y € F and Te @, then x(t) = y(t) on [T] iff S;x = Syy.

c) Sr,Sr, =Sy, forany T}, £ T, T}, T, € Q.

For the sake of brevity, we will also use the notation Szx = (x); = x.

Observe that c) implies S = Sy, k = 1,2, ..., and a), b) imply: If x € F, then
x(t) = x1(t) on [T].

Finally, we introduce the following axiom:

AL If, for an x € F, we have x; € F* for any Te , then x € F.

Before proceeding further, let us present few examples of particular sets F, F
and F*:

Let Q = [0, o0) and § = E",i.e. the set of all n-tuples of numbers; then F is the
set of all n-vector-valued functions defined on [0, c0).

1. Let 1 £ p < oo and put

F =L,={x:xeF, x measurable, [} |x(t)|”dt < oo forany 0 <t < oo},
F* = L, = {x:x e F, x measurable, |§ Ix(t)l”dt < o0}.

If p = o0, let
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F = = {x:xeF, x measurable, ess sup lx(t)| < oo for any 0 <t < o},
{0,t

F*

Il

L, = {x:xeF, x measurable, esssup |x(t)] < o} .
[0,0)

Putting x7(f) = x(¢) for 0 < t < T, x4(t) = 0fort > T, (0 signifies the zero vector),
then we can readily verify that the requirements a), b), c) and Al are satisfied.

2. Let

x : x € F, x continuous on [0, )},

{
{x :xeF,x continuous on [0, 0) and lx(t)l bounded on [0, o)} .

Il
a
Il

F
F*

Putting x(t) = x(t) for 0 < t < T, x(t) = x(T) for ¢ > T, then again the above
requirements are satisfied.

3. Let F = C asin 2. and let 4 > 0; put
F* = C, = {x:xeC and e"|x(t)| is bounded on [0, )},

and x;(t) = x(t) for 0 <t < T, x4(t) = x(T) e*T~" for t > T. A little thought
will persuade us that a), b), ¢) and Al are fulfilled.

Analogously, let @ = {1,2,3,...} and § = E; then F is the set of all infinite
sequences of numbers. Putting F = F, F* = I,withl1 £ p < o0, ie.

l,=1{x:xe F,iglix(i)l” < w},

and x¢(f) = x(t) for t = 1,2,..., T, x4(f) = 0 for t > T, we can again verify that
a), b), ¢) and Al are satisfied.

Let us now carry out some preliminary considerations.

If Te Q is a fixed number, let
Fr=S;F={x:x= Sy, yeF}.

By a) it follows that F; = F*; moreover, by ¢) x; = x for any x € Fr, i.e., Sy is
the identity operator on Fr.

Let 4 be an operator mapping F into itself; 4 will be called unanticipative, if
)] SrA = S;ASt
for any Te Q, i.e., if (Ax); = (Ax)r for any Te Q and x € F.

Remark 1. Observe that unanticipativity of A is equivalent to the following re-
quirement:

@ v, 026 F, y(f) = 0y(t) on [T]=(dv,)(r) = (dv))(f) on [T].
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Lemma 1. Let A, B be unanticipative operators mapping F — F; then A + B and
AB are also unanticipative.
The proof is obvious.

Lemma 2. Let Te Q be fixed; if A is one-to-one from F onto F and both A and the
inverse A~ are unanticipative, then the operator SyA is one-to-one from F onto Fy
and has the inverse S;A™!.

Proof. Observe first that S;4 and S;4~! map F into itself and Sy is the identity
operator on Fr. Putting B = S;4~", we have B(S;A4) = S;A7'S;A = S;A™'4 =
= Sp; hence, S7A is one-to-one. Furthermore, (S;4) B = S;AS;A™! = S;AA™! =
= Sr; hence, SrA is onto and consequently, B is the inverse (SpA4)™".

Remark 2. The assumption that A4 is one-to-one from F onto F and unanticipative
need not necessarily imply that A~! is also unanticipative. This can be demonstrated
by the operator A defined by (Ax) (f) = x(1/2), xe F, t = 0.

Lemma 3. Let the axiom Al be satisfied, and let A be an unanticipative operator
mapping F into F. If, for every Te Q, the operator StA has a unique fixed point
in Fr, i.e. a unique &7 e Fy exists such that

(3) o1 = S 40D,
then there exists a unique element @ € F satisfying the equation
@) ® = A .

Before turning to the proof let us make the following comment. First, observe
that & is also a unique fixed point of S;A in F, because if a &™) e F satisfies (3),
we have &0 € F; due to the definition of Fy. Second, Lemma 3 obviously reduces
the problem of solving (4) in F to solving (3) in a narrower set F < F*.

Proofof Lemma 3. Let T, T’ € Q and T < T'; we are going to show that &}’ =
= @M. Actually, we have by (3),
5 o1 = 5,400 | T = S APT)
Applying Sy to the second equation (5) and using c) we get
P = Si(Sp APTY) = S;APT) = S;AS; T = S AP

Since @Y € Fy, it follows due to the uniqueness that ®{7> = ¢,

Next, define the element ¢ e F as follows: If te Q, put o(t) = ¢™(t), where
Te Qand T = t. The definition is clearly meaningful, because taking 7" e Q, T' = T,
we have by the above result, @™ = ¢ je. & = ¢, 5o that & D7) = 87(z)
for T € [T] by b). Hence, @‘T)(z) = ¢(T')(z), 4

/
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On the other hand, if Te @ is any number, then we have ®(t) = ¢T)(t) on [T],
i.e. by b), &, = &". Because ®{" € F; < F*, it follows by Al that & € F. Thus, the
value A9 is defined.

As a next step, we are going to show that ¢ satisfies (4) Actually, let t € Q and
choose Tzt TeQ. Then &; = &{" = &". Moreover, (4®); = (A7) =
= (49"); = &V = ¢, ie. by b), (49) (1) = &(r) for v € [T], and consequently,
(49) (1) = &(1).

For proving the uniqueness assume that a ¥ € F exists such that ¥ = A¥. Choos-
ing a Te Q we have Y€ Fr and ¥y = (A¥)r = (A¥7)r. Consequently, by the
uniqueness of ¢, ¥, = ¢, and by the above, ¥; = ®r; hence, in view of b),
¥(t) = @(t) on [T] and the lemma is proved.

Now we are ready for stating a proposition concerning the feedback system.

Theorem 1. Let the axiom Al be satisfied; let X be an unanticipative operator
mapping F —» F, let Aand Bmap F x F — F and A be such that

(6) {A(w, or)}r = {A(w, 0)}r

for any Te Q and u,veF.

If for any ueF and Te Q the operator S;A(u, X.) has a unique fixed point
in Fq, then the over-all transfer operator W:F — F exists, i.e., for any ue F
there exist uniquely determined elements ®, ¥,y € F such that equations (1) are
satisfied.

If, in addition, A and B satisfy the conditions

™ {A(ur, v)}r = {A(u, v)}r,
(®) {B(ur, vr)}r = {B(u, v)}r
then W is unanticipative.

Proof. For a fixed ue F denote G, = A(u, X.), and 4, = A(u, .). Then 4, is
unanticipative by (6), and consequently, G, = 4,X is also unanticipative by Lemma 1.
Thus, due to the hypothesis of the theorem and Lemma 3, there exists a unique
@ € F satisfying the equation

(9) ® = G,0 = A(u, X®).

Hence, (9) defines an operator Q : F - F by & = Qu. From (1) it follows that if we
set

(10) Wu = B(u, X Qu)

for any u € F, the sought operator Wis established.
Next, if (7) holds it turns out that Q is unanticipative. Actually, choose u € F and
let ® = Qu, & = Quy, ie.,

(11) ® = A(u, X®), &= A(ur, XP).
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Then we have by (7),

Or = {A(u, XP)};, &= {A(u, XP)};.
Thus, by (6)

P = {A(u, (XP)r)}r = {A(u, (XPr)r)}r = {A(u, XP1)},,

and similarly,

¢y = {A(w, X®)r)}r = {A(u, (X&1)1)}r = {A(”’XCT’T)}T-

Hence, by the assumption on uniqueness of the fixed point in Fp, &, = @, i,
(Q“)T = (Q“T)T~
Finally, by (10) and (8),

(Wiu)r = {B(u, X Qu)}r = {B(ur, (X Qu)r}r -

However, since both X and Q are unanticipative, we have (X Qu)r = (X Qur)r, and
consequently,

(Wu)r = {B((ur)r, (XQur)r}r = {B(ur, XQur)}r = (Wuy); .

This concludes the proof.
In the sequel we will assume that F* is a Banach space with norm || . " Moreover,
let us introduce the following axioms concerning the norm in F*.

A2: Al is satisfied; if x € F*, then lle” =< Hx” for any Te Q.

A3: A2 is satisfied; if x € F and a constant A4 > 0 exists such that HxTH < A for all
TeQ, then x€ F* and |x| < 4.

The reader can easily verify that the particular spaces L, L,, L, L, C, C and C,,
and [, mentioned above satisfy the axiom A3 with the corresponding mapping Sy

and customary norm. Note that in C, we define the norm by |x| = sup *|x()|.
0] [0,0)

Lemma 4. Let A2 hold; then, for any Te Q, Fy with the norm of F* is a Banach
space.

Proof. Fy is clearly a linear normed space. Let {x;}, x;€ Fr, i = 1,2,... be
a Cauchy sequence, i.e. |x; — x| can be made arbitrarily small by taking i and k
sufficiently large. Since also x; € F* and F* is complete by assumption, there exists an
x € F* such that x; - x in F*, i.e. ||x; — x| > 0 as i - co. However, due to A2,
[(x)r = x| = |xi = xz|| = |(xi = %)z £ |*: — x| = 0; hence, it follows that
Xx; = Xr in F*, and consequently, x = x. Thus, x € F; and the lemma is proven.

For our purposes we will slightly generalize the concept of continuity of an operator.

Let A map F — F; A is called continuous at x € F, if for every ¢ > 0 a number
8 > 0 exists such that for any e F with x — e F* and ||x — %] < § we have
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Ax — A% e F* and |[Ax — A%| < &. If A is continuous at every point x € F, then 4
is called the continuous operator.

Similarly, if B maps F x F — F, then B is called continuous at (x, y)e F x F,
if for every € > 0 a & > 0 exists such that for any (%, j)e F x F with (x — %, y —
—J)eF* x F* and |x — %|| <4, |y — 7| < we have B(x, y) — B(%, y) e F*
and " B(x, y) — B(%, §)|| < & The operator B is called continuous, if it is continuous
at every point (x, y)e F x F.

It is clear that if A;, A, are continuous operators mapping F — F, then A, + 4,
and 4,4, are also continuous.

Theorem 2. Let the axiom A2 hold, let the operators A, B map F x F - F,
let A satisfy condition (6), and let X be an unanticipative operator mapping F — F.
Furthermore, for every Te Q let an integer my = 1 and a number Ay < 1 exist
such that

(12) [Sr(AX)™" x = S{(AX)" ]| = Arlx = ¥

forallueF, x, yeFrg, where A, = A(u, .). Then the over-all transfer operator W
given by (10) exists.

Moreover, if

(i) the axiom A3 holds,
(i) a fixed integer m = 1 and number ). < 1 exist such that (12) is true for
every Te Q and x,ye Fr,u€F,
(iii) the operator (4,X)" x is continuous at every (x, u)e F x F,
(iv) the operators X and B are continuous,

then W is continuous.
If, in addition, (4,X)" 0 € F* for any ue F*, X maps F* > F* and B maps
F* x F* — F* then W maps F* into itself.

Proof. Choose a u € F and denote G, = 4,X = A(u, X.). Then for any integer
k=1,

(13) S;Gi = (S:G,).

Actually, (13) is clearly true for k = 1. Above we have shown that G, is unanticipa-
tive; consequently, by Lemma 1, G is also unanticipative. Supposing that (13) is true
for some k = 1, we easily conclude by induction that it holds for k + 1, too.

Next, condition (12) shows that, for any Te Q, SyG,7 is a contraction on Fr,
which is a Banach space by Lemma 4. Hence, in view of (13), there exists a unique
xT € Fy such that

(14) , xT = (S;G)"™ xT.
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However, then x” is a unique solution of
(15) xT = S;GxT

in Fr. Indeed, from (14) it follows that S;G,x" = (S;G,)"**' x" = (S;G,)"" .
.(S+G,x"); consequently, due to the uniqueness of xr, we have necessarily x” =
= S;G,xT. Moreover, assuming that yT e F; satisfies the equation yT = S;G,y7,
it follows that y* = (S;G,)* y" = ... = (S¢G,)"" y; hence, y” = x".

Thus, the assumptions of Theorem 1 are met and consequently, the operator W
exists; the first part of Theorem 2 is proved.

Assume now that the conditions (i) through (iv) are fulfilled, and let u € F, & > O.
Choosing a Te Q and i € F such that u — i € F*, let

(16) X1 = (SpG)"xT, & = (S;G)" 57 .
Then we have by (12) and (13),

[T = x| < [(SrGa)™ X" — (S2Ga)™ x| + [[(SrGa)" x" — (S1G,)" x| <
S A&7 = X7 + ||Se{GpxT — GixT}

hence
(17) |57 = x| = (1 = )7 [s{Gax" — GixT}H| .

On the other hand, as shown above x” = x; and X" = %, where x = A(u, Xx)
and X = A(d, X%), i.e. x = Qu and X = Qi. Since G; and GJ are unanticipative, it
follows that S;{Gjx" — G/x"} = S;{Gjx — Gx}.

However, according to continuity of Gjx, there exists a 6 > 0 such that for
“ﬁ — uﬂ < 6 we have Gjx — Gyx € F* and | Gix — fo'x” < (1 = 7). Introducing
this into (17) and using the axiom A3, we obtain

(18) [S1(x = x)| <e.

Consequently, by the axiom A3, Qi — Que F* and |]QL7 - Qu“ < ¢ whenever
i —ueF* and @ — u| < 6, ie. the operator Q : F — F defined by the above
equations is continuous.

Since then X Q is continuous by (iv), it follows that the operator W = B(., XQ.)
is continuous, too. Hence, the proof.

As for the last assertion, let u € F* and choose Te Q. Then (14), (13) and (12)
yield

[xT|| < [|SrGyxT — S¢Gy0|| + |S+Guo

| = %" = 0] + [s:Go] .

Hence,
x| = (1 =27 [seGu0f = (1 = 7" |Guo]
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by A3. Using again A3 it follows that x € F* and ||x| < (1 — 2)™* |GJ6], i.e. the
operator Q maps F* into itself. The employment of assumptions on ranges of X
and B concludes the proof.

The theorem just proved clearly gives sufficient conditions for the input-output
boundedness and stability of a feedback system; observe that these conditions are
given in terms of “local behavior” of the operator A(u, X )

Let us now present two simple examples clarifying the application of the above
results.

Example 1. Let the sets L, and L, have the same meaning as in the beginning of
the paper. Let the n-vector valued functions G, ¥, H and U have the following proper-
ties:

1. G(t,u) and V(t,u) are defined for 0 <t < oo and u € E", and are such that
G(1, u(t)), V(t, u(t)) € L, whenever u(t) € L,.
2. H(t, 7, u, v)is defined for 0 < © < ¢ < o0, u, v € E” and is such that

j "Ht, 7, u(e), o) dr e L,

0
whenever u(t), v(t) € L,

3. U(t, 7, u)is defined for 0 < 7 < t < oo, u € E"and is such that [ U(t, 7, u(z)) dr €
e L, whenever u(t) € L,

Furthermore, for each T > 0 let constants »p, i, Ay > 0 exist such that
(19) lH(t, T, u,v,) — H(t, 7, u, ”2)1 < %T|v1 — vz|
for 0t=t< o0, uv,v,eE",
(20) |U(t, 7, 00) = Ut 1, 0,)| £ ngfoy — v
for 0st1t< o, v,v,€E",
(21) IV(t, vy) — VA, 1’2)1 < lrlvl — UZI for t=0, v,v,eE".

Let the operator A : L, x L, > L, and X : L, > L, be defined by
22) (A(u, 0)} (1) = G(t, u(t)) + J ;H(z, o, u(e), o(2)) dt ,
23) (X0} (1) = V(t, o(0)) + f ;U(t, . o0)) d

and let B = A. Then the over-all transfer operator W:L, —» L, exists and W is
unanticipative.

Actually, A clearly satisfies conditions (6), (7), and X is unanticipative; thus, all
what remains to do is to show that (12) holds. Choosing a fixed u € L, and T > 0,
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assume that p > 1. Then for any v, v, € (L,); and integer m = 1 we have

(24) |S2GIv, — S1G,|| < T(Tsy)"

- (m — 1) ”vl B vz“ '

where s = x(Ar + prT) and G, = A(u, X .). For proving (24) show that, for any
1ef0, T],

t(l/q)-l-m—l

m s';”v1 — v2|| .

(25) |{Giros} (1) = {Glloa} ()] =
By equations (19) through (23) it follows that, for t € [0, T],

0 = (G} (1) = (Gua) ()] = ﬂm{xl}l ~ Xu;} (9] dr,

and
|(Xo, = X03) ()] < Az [a(t) — 02(0)] + J ;urlvl(r) — oy(0)] dr <

= Agfou(t) = va(0)] + petoy — vo -
Hence,

.= %TJ;(’{TIUI(T) = 0a(0)] + s oy = wo) de <
< Y95 (Ar + prT) o, — v, -

Thus, (25) holds for m = 1. Assuming the validity of (25) for some m = 1, we obtain,

b= |{Gr vy} (1) = {GI" Moo} ()] £ #p J;l{XGZU‘ — XGIv,} (1) dr

and
|{XGrv, — XGyv,} (1) < A|{Glv, — Giv,} ()] +
t 1 ((HD+m-1 1
+ ur | [{Givy — Giva} ()] dr £ ——— 7" o, — v, -
0 xp (m — 1)!
Consequently,

(L) +m (U +m
st oy = val| =

() =l

and (25) is proved.
Realizing that {Szw} (f) = 0 for ¢ > T, we obtain immediately (24) from (25).

b

IIA
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However, for any T > 0, the number T(Ts7)"/(m — 1)! can be made less than one
by taking m sufficiently large, i.e. (12) holds and our assertion is proved.
The cases p = 1 and p = oo can be treated in the same way.

Example 2. Let the signals and responses be interpreted as elements of the sets C
and C mentioned above. Let G(t, u, v), V(t, v), H(t, 7, u, v) and U(t, 7, v) be con-
tinuous n-vector valued functions of all arguments 0 <t <t < o0, u,veE"
Furthermore, assume that the following conditions are satisfied:

1. Constants cy, c,, c3 > 0 exist such that

(26) |G(t, uy, v)) = G(t, uz, )| £ €4fuy — us| + cofoy — vy
and
(27) V(5 uy) = V(tus)| £ esfuy — uy

forallt = 0, uy, u,, vy, v, € E".
2. Nonnegative functions h(t, t), hy(t, 7), p(t, t) with
nt t
supJ hit,r)dt = k; < o0, i=12, supjp(t,r)dr =l< o
[0,00) ) o [0,0) ) o
exist such that
(28) ]H(t, T, uy, vy) — H(t, 7, uy, vz)[ < hy(t, 1) lul - uzl + hy(t, 1) Ivl — ”2|
and

|U(t, T, uy) — Ut r, uz)[ < p(t, 1) ‘ul - uz[

forany 0 < 7 =<t < o and uy, u,, v, v, € E".

Let, for u,ve Cand t = 0,
(29) {A(u, v)} (1) = G(1, u(t), o(t)) + le(t, 7, u(x), (7)) dt ,
(X0} (1) = V6, o(0) + J ;U(t, . o0)) d

and let B = A.

First, it is clear that 4 maps C x C — C, X maps C — C, and that A satisfies
conditions (6), (7). Moreover, it is a matter of a simple routine to verify that, for any
Uy, Uy, vy, 0,€Cand T > 0,

(30) [Sr{A(uy, Xv,) — A(uy, X0,)}| £ (¢y + ky)|| Sruy — u,)| +
+(e2 + ky) (c3 + 1) [Se(vy = va)] -
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If 2 = (c; + ky) (c3 + I) < 1, then (30) shows that the condition (12) in Theorem 2
is satisfied for any T > 0. (Note that S;v;, Syv, € Cy); hence, the unanticipative
over-all transfer operator W: C — C exists.

Moreover, (30) shows that the operator A(., X.) is continuous at any point (u, v) €
e C x C; actually, let u,, u,, v,, v, € C be such that u; — u, € C and v, — v, € C.
Then, due to the axiom A3, the right-hand side of (30) is less than (¢, + ky) [Ju, —
— u,| + A|v; — v,; consequently, again by A3, A(u,, Xv,) — A(up, Xv,) € C and
[A(uy, Xv,) — A(uz, Xv,)| £ (ey + ky) Juy — uy]| + A|jvy — v,]. Hence, condition
(iii) is satisfied.

Similarly, from (27) and (28) we obtain easily that

(31) ISr{Xvy — Xv,}| < (c5 + D] Sx(vy — v))]

for vy, v, € C, and from (26), (28),

(32) ISr{A(uyr, v1) = A(uz, v2)}]| < (cx + ky) [|Sr(uy — us)| +
+ (c2 + ky) [Sx(vy = v))]

for uy, u,, vy, v, € C. By the same argument as above we conclude that X and 4 = B
are continuous operators. Thus, condition (iv) is fulfilled, and consequently, W is
a continuous operator.

Finally, if we assume that

(X0} (1) = V(1, 0) + f Ut 0) dre C
and

{400, 0)} (1) = G(1, 0, 0) + JtH(t, 56,0)dreC,

then we have by (31) and (32) for u,ve C,
ISrXo]| < (c5 + 1) |[Szv] + [[SX0]
and
ISrA(u, v)| = (ex + ki) [Szu]| + (2 + ks) | Syo]| + [Sr4(6, 0)] 5

consequently, by A3, Xve C and A(u, v) € C. Hence, according to the last assertion
of Theorem 2, Wmaps C into itself, i.e. we have the input-output boundedness.

Let us now consider the quasi-linear case of a feedback system.

Lemma 5. Let C be a linear unanticipative operator mapping F — F.

a) If A2 holds, C maps F* —» F* and C is bounded on F*, then |S:C| < |C|
for any Te Q. ;
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b) Let A3 hold; if, for every Te Q, the operator S1C is bounded on Fr and a con-
stant A > 0 exists such that HSTC” < A, then C is bounded on F* and ||C|| < A.

Proof. a) is obvious. As for b), choose Te Q and x e F*; then |Sy(Cx)| =
< |S¢C| . ||x| £ 4]x|. Thus, by A3, Cxe F* and ||Cx| £ 4|x|; consequently,
ol £ 1

Theorem 3. Let A2 hold; let the operators A,, X, C,, C, map F into itself, let X,
C,, C, be unanticipative and C,, C, be linear and such thatI — C,C, is one-to-one
from F onto F and (I — C,C,)™" is unanticipative. (I is the identity operator.)
Let the operator A map F x F — F and satisfy the condition (6), and let B map
F x F — F. Furthermore, for every Te Q let

i) S;C, and S;C, be bounded on Fr,

i) S,;C dS;C, beb ded F
it) numbers d¥, d5 > 0 exist such that
ii bers d¥ d§ 0 h th

(33) IScA(u, v,) — SrA(u, v,)| £ di[v; — v,
and N
(34) [SrXv, — SrXv,|| < difv, — v,

forallueF, vy, v, € Fr and

(35) [S:(I = C,Co)~ M| {IS+Cy| d5 + |S+Ca| df + did3} < 1.
If, for all u, v e F,

(36) A(u,v) = Agu + Cyo + A(u,v), Xv=Cy + Xv,

then the over-all transfer operator W: F — F exists.

Moreover, if

(iii) A3 holds,

(iv) Cy, C, map F* - F* and are bounded on F*, and ||Sy(I — C,C,)™"|
for all Te Q with a fixed u > 0,

(v) fixed numbers d, d, > O exist such that (33) and (34) are true for any
ueF, v, v, e F*,

o) Iy, + 1oy + duds) < 1

vii) Ay, 4 and B are continuous,

IIA
=

then W is continuous.
If, in addition, A, X map F* — F* and A, B map F* x F* - F*, then W
maps F* into itself.

Proof. First, observe the following facts. Since I — C,C, = K is one-to-one
from F onto F and K, K~! are unanticipative, then, due to Lemma 2, S;K is one-to-
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one from Fr onto Fr and (SrK)™' = SpK ™. Since by (i) SyK is clearly bounded
on Fr, and Fy is a Banach space by Lemma 4, it follows by Banach theorem (see [2],
p. 123) that S;K ™" is also bounded on Fy; hence, ||S;K ™| < 0.

Moreover, if conditions (iii) and (iv) are satisfied, then K is one-to-one from F*
onto F*; actually, since K is one-to-one, all we have to show is that K is onto. Thus,
choose ye F*; then K™'ye F. However, for any TeQ we have ||S;K™'y|| <
< SeK7Y - |y]| £ uly]l; hence, by A3, K™'y e F* and |[K™'y| < uly]-

Next, recalling Theorem 1 choose u € F and consider the equation

(37) " = SpA(u, X)) =
= Sp{d,u + C{(C,@™ + X&) + A(u, C,0™ + XoM)}

on the space Fr, i.e. the equation
(38)  SHI — C,Cy) 2" = S{Au + C, XD + A(u, C,0" + XdD)} .

However, in view of the above considerations, (38) is equivalent to

(39) »® = SR,
where
(40) RO™ = K Y Au + C, XD + Au, C,0 + XoM)} .

As a next step we are going to show that SyR, is a contraction on F. Actually,
for @, ®, € Fr we have by (40),

(41) % = ||S;R Py — StR,D,| = |SrK7'C (X, — Xd,)| +
+ |SeK~H{A(u, C,@, + X@,) — A(u, C,8, + X,)}] .

However, since S;K'C; = S;K™'S;Cy = (StK ') (57C,) Sy, we have by (34),
IStk Cy(X @, — Xao)| < SR [S:C | i@y — .
On the other hand, by (6) we have
StA(u, C,@; + X0)) = SrA(u, S1(C,®; + Xo,) =
= SpA(u, S;C,®; + S;X®)); i=1,2;
hence, (33) and (34) yield
ISrK = {A(u, C,@, + X&) — A(u, C,®, + X&,)|| <
< S {d1][S2Ca]| + didi} @, — @] .
Introducing this into (41), we obtain finally,

(42) |SrR,®, — StR®,| < Ar|®, — &,

233



with
Ar = |SeKTH {[[S2C [ d2 + [[S:C, | di + did3}

hence, by (35), S¢R, is a contraction on Fr. Consequently, (39) and also (37) has
a unique solution in Fr, i.e. the operator W exists by Theorem 1.

Assume now that the conditions (iii) through (vii) are satisfied and let u € F,
e > 0; choosing a i € F such that i — ue F*and Te Q, let

= T ) ! ) b )= T M, ® k)
(43) T = SpA(u, XoP), &7 = S, AT, X))
ie.

(44) o = §; R, D = §,RIT .

From Lemma 5 it follows that |S;C;|| < ||Ci|, i = 1,2, and consequently, Ay <
< u(|Cy|| d; + ||C,| dy + dydy) = A < 1. Thus, we can write by (42) and (44),

|87 — o™ = [SeRB™ — S;R,0T] <
< |S1R: B — SpR M| + |SiR@" — S R, <

< A|8D — ™| 4 ||S;R&™ — S;R,D|
i.e.

(45) \[50) — ™| < (1 = 7)1 |S;R D — SR, .

Next, recall the fact that 37 = &, and ¢ = ¢, where & and & is the solution
of & = A(u, X®) and & = A(u, XP), respectively, and put for brevity ¢ = C,P +
+ X¢. Then S;0 = S;C,® + S;Xd = SH(C,0T + Xo™).

However, since both operators 4; and A4 are continuous, there exists a § > 0 such
that for || — u| < & we will have

Al — Ajue F*, A(ii,0) — A(u, 0) e F* and |A,ii — A <
< ;u"l(l -2, 4@, o) — Au, o) < gu"l(l - 2.
Then (45) and (40) yield with the aid of (6) and A3,

|80 — oD < (1= )1 |S;K (4,7 — Ayu) +
+ (4@, .00 + X)) — Alu, 0T + KoM} <

<=7 SK7Y . g pH U= 2) + (1= )7 S KT YSA(, Spg) —
—SrA(u, Sro)}|| < % + (1= HSTK"IST{E(:I, e) — A(u, 0)}] <

< g + (L= )7 sk .%y“l(l —<e.
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Hence, by A3, & — ¢ e F*and | — @] < ¢, i.e. the operator Q : F — F defined
by the equations Qu = @, & = A(u, XP) is continuous.

Finally, the inequality (34) together with A3 show that X is continuous; con-
sequently, X is a continuous operator. Since B is continuous, the continuity of W fol-
lows immediately.

As for the last assertion of Theorem 3, let u € F* and @™ = S;R,®'". Then (42)
yields

[o®] = 2]o™] + [SrR.0]

K

f
u -(_Qy_;?i > - )

9’1 ye
el
N

2

Fig. 2.
(46) o™ < (1 =27 [SR0] -

However, the assumptions and (40) imply that R,0 € F*; then (46) with A3 show
that ® € F* and ||| < (1 — 2)~" |R,0||, i.e. Q@ maps F* into itself. The assumption
on the range of B concludes the proof.

The physical interpretation of Theorem 3 is straightforward; if the linearized system
described by operators A'(u, v) = Au + Cyv, X'v = C,v, and B'(u, v) = B(u, v) is
well-behaved, then the feedback system itself is well-behaved provided the non-
linearities are not too large. (Witness (35) and (vi).)

Let us now present two simple examples.

Example 3. Consider the classical feedback configuration portrayed in Fig. 2,
where f, f, signify pure memoryless gains and K is a linear system governed by the
equation

(Kx) (1) = J:k(r, 0 x(2) de + a x(i)

(a is a constant). For the system of signals and responses we shall take the set C.
Furthermore, we will assume that
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1. k(z, t) is continuous for 0 < 7 < r < o and

t
M = sup J |k(t, 7)| dr < o0,
[0,) o

2. constants p; and «; > 0 exist such that

(47) W — o < L(_él) - fi(fz)

RS Gty

& =&

forany &,,&,€E, & +¢&¢,,i=1,2,and 1 — pu,a + 0.

Our task is to find constraints for a,, «, which guarantee the input-output stability

and boundedness of the system, provided the linearized system is assumed to be well-
behaved (see below).

From Fig. 2 it follows that here
(48) {A(u, v)} (1) = {B(u, v)} (1) = afi(u(t) + o()) +
+ J k(t, 7) f1(u(z) + o(z)) dr,

0
{Xv} (1) = £2(o())-
It is clear that A actually maps C x C — C and X maps C — C. Moreover, (47)
and 1. show that A maps C x C - C and X maps C — C.

Using the language of Theorem 3, put

(49) (Aqu) (t) = (Cu) (1) = apy u(t) + py j;k(t, ) u(r) dr,
Cyv = pipv;

consequently,
(50) {A, 0)} (1) = a{fi(u(r) + o(1) — pi(u(r) + o())} +
+ ‘Lk(t, ) {f1(u(z) + v(r)) — py(u(z) + v(z))} dr,

Xv = f,(v) — pyv.

It can be easily verified by using (47) that

(51) [57(Xv, — Xvo)[| < a3 Sa(v, — 0vs)|
and
(52) “ST(/T(“La v;) = Alu, ”2))H S (M + l“D {“ST(‘M - “Z)H +

+ [S1(00 = va)[}}
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for any uy, u,, vy, v, € Fand T > 0. Since A3 holds, (51) and (52) show that X and 4
are continuous operators.

Furthermore, we obtain
(53) Il = lu] (Ja] + M), [[Caff = |us] »
and from (51), (52),

dy = oy(|a] + M), d, = a,.
Next,

(I = C1Co) x = (1 — uyiza) {x - _ﬁ‘.l_“z_J K, ) x(z) dr} ;

I — pypaa

consequently, for x € C,

(54) (I —CC) P x=(1 = pyppa)! {x + j h(t, ) x(7) dr} ,
0
where h(1, 7) is given by
Wet) = 3 ( Haltz > K51, )
1 — pypsa

Equation (54) shows that (I — C,C,)™" is an unanticipative operator.
Assume now that N = sup 1B ‘h (t, r)| dt < o0, i.e. that the linearized system is
[0

well-behaved as indicated abovc Then |[(I — C,C;)™"| £ |1 — mypqa| ™" (L + N),
and, by (vi) in Theorem 3, the sought constraint for «;, o, reads

(55) (1 +N)(M + |a]) |1 - tpaa] ™t (] on + [pp| oy + ag2y) < 1.

Hence, if (55) holds, then the considered feedback system has the over-all transfer
operator and is input-output stable and bounded.

Example 4. Consider the same system as in Example 3, but now let K be time-
invariant and set F = C, F* = C,, where C; is the set introduced in the beginning
of the paper. It can be easily verified that C, with the norm ||x| = sup e“[x(t)| is

[0,

a Banach space, and that the axiom A3 is satisfied with the mapping ST defined
above.

Here, let
(56)  {Aw o)} () = wwwwo—ja—ﬂnwm+wmm
(X} (1) = £2(6(0)

u,veC.
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Assume that the following conditions are met:

1. Positive constants j, p,, oy, o, exist such that (47) holds for any &, &, € E,

&, #+ &, and £,(0) = £,(0) = 0.

2. k(t) 2 0 and is continuous for t = 0, and the Laplace integral K(p) =
= [¢ k(t) e 7" dt converges for Re p > —A — &, £ > 0, A fixed.

3. The function K(p)/(1 — uyp, K(p)) is analytic for Re p > —1 — e.

Our task is to establish conditions for oy and «,, under which the over-all transfer
operator W exists and maps C, into itself.

As before, let

(57) (A41d) (1) = (Cyu) (1) = f Kt = )y u(e)de, Cyo = mao,
Xv =f2(v) — HaV,

(0} () = [ e =) 1o+ 0) = i + ) o

First of all, we are going to show that C, maps C, into itself and ||C,| = u,K(—2).
Actually, let x € C;; then for any ¢ > 0, |x(1)| < | x| e™*, and consequently,

(Cox) (1) €] = 1, J;lk(t o) ] e e =

= ol [ e = 0f e~ ar = ] [[ Koy a0 = el .

0
Hence, ||C;x| £ uK(=2) |x||.
On the other hand, letting xo = ¢~ *, we have |[x,| = 1 and
T 13
(Caxo) (1) ¥ = 1t f k(i — 7) e dt = p, J ko) & do ,
0 0

so that sup |(Cixo) (1) €] = 1K (= 2); consequently, [|C,| = uK(—2).
[0,)

Next, we have [|C,|| = p,, and

t
(58) (I = CiCy)x=x MIMZJ k(t — t)x(r)dr, xeC.

0

238



Then

t
(I—CICZ)"1x=x+Jh(t—r)dt, xeC,
0

where h(1) is given by h(t) = Y. ()" k*/(1), (here, k*' signifies the i-times iterated
i=1

convolution of k) and satisfies the equation
(59) h(t) — oy k(f) — pyps h(t) = k(t) = 0.

Hence, (I — C,C,)™" is unanticipative, and due to fi1t, > 0 and k(f) = 0 we have
h(t) = 0. Since assumption 2. implies that h(r) is Laplace transformable, we have by
(59) in some half-plane Re p > ¢,

(60) H(p) — ny> K(p) — pipy H(p) K(p) = 0.

However, since by 3. H(p) from (60) is analytic for Re p > — 1 — &, we have

(61) H(=7) = 1_‘,_“22,1‘*1{(_1%)7) _ rh(t) Pl < oo

Hence, using the same argument as in considering the above operator C, we conclude
that (I — C,C,)™" maps C, > C, and ||(I — C,C) =1+ H(—2). (Observe
that we have also I — yu;p, K(—2) > 0.) Thus, condition (iv) in Theorem 3 is
satisfied.

Now, let u,, u,, v, v, € C, T > 0; then we have by (57), (47),

Iezt{g(u,, vl) — AT(uz, 02)} (I)l = rlk(t — -L-)l e;'tal(lul — UZI + ‘“1 - uzl) dr <

JO

< a,K(=2) {[|Se(uy = wa)|| + |Se(vs = v2)|

b, 01T

consequently,

() [S1(ur, 1) — Az va))]| < 0K (=2) (120, — )] + 2, — )]
Similarly, we get

() IS:(%o, = Ke3)] = callSefor = 03)] -

Inequalities (62) and (63) show that the operators 4 and X are continuous, and
that we may set d; = o;K(—24), d, = . Thus, condition (vii) holds, too.
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Using the fact that f;(0) = f,(0) = 0 and (62), (63), we easily conclude in an
obvious way that 4 maps C, x C, — C, and X maps C, » C,. Hence, the last
assumption in Theorem 3 is also satisfied.

Finally, the condition (vi) reads
(64) (1 + H(=2) {u;K(= ) oy + pro,K(—2) + oo, K(=2)} < 1
substituting (61) into (64)x we obtain the sought condition for oy, a5,
(65) K(=2) (oty + py) (o2 + p) < 1.

Hence, if (65) is satisfied, the over-all transfer operator W maps C, into itself, i.e.
any exponentially decreasing signal produces an exponentially decreasing response.
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Souhrn

O OBECNYCH NELINEARNICH A KVAZILINEARNICH KAUZALNICH
ZPETNOVAZEBNICH SOUSTAVACH

VAcLAV DOLEZAL

V ¢ldnku jsou vySetfeny obecné nelinedrni a kvazilinearni kauzdlni zp&tnovazebni
soustavy. PouZitim metod teorie abstraktnich prostort jsou dokdzdny véty o existenci
operatoru pfenosu a o ohraniéenosti a stabilité typu vstup-vystup. UZiti vysledku je
ilustrovdno na né€kolika konkrétnich prikladech.
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