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ZEROES OF ORTHOGONAL POLYNOMIALS BY QD-ALGORITHM
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1. INTRODUCTION

When using quadrature formulas of the highest algebraic order (see e.g. [1]) we
need to know the abscissas of those formulas, which are the zeroes of some orthogonal
polynomials of high degree. If we use standard methods, two difficulties arise: fist of
all we need to have sufficient approximations for the roots. Secondly the coefficients
of some polynomials are too large to be handled by up-to-date computers. On the
other hand, the roots are normally small numbers. E.g., for Laguerre polynomial of
the n-th order L’ (the coefficient at x" being equal to 1) the absolute coefficient is
equal to (—1)". n!, but the largest root satisfies the inequality

X, <2n+ 1+ {(2n + 1)* + 1}'2 = 4n

([2] § 6.31, theorem 6.31.2). Thus, for n = 101 this root is equal to 378.892 ...

In this note we propose a method for computing roots of polynomials defined by
some recurrence relations and for which the explicit knowledge of coefficients is not
necessary. The class of polynomials considered below contains all orthogonal poly-
nomials. The method is based on a direct computation of the top row of the QD-
scheme from the recurrence relations.

2. QD-ALGORITHM

If we want to calculate the poles of a rational function, say

N(x)IN3(x) .
Ny(x) =x""" + ...
Nj(x) = x" + ...
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we should get the values

0) (1) (0)
q(l sq2 5 - 4y

(0) ,(0) (0)
ey, ey’ .., e,

from the recurrence relations

— * \
wite) = SN 2
k
* —
Nyiiq(x) = IM, k=1,2,...n—1.

el
These values are determined uniquely by equating to 1 the highest coefficients of the
polynomials Ni(x), N+ ;(x). In this way the computed numbers form the top row of
the QD-scheme:

(0)

q1
0 e?
@
0 &P e
@
0 e(l2 ) e(z”
PRI
e,
e
. ef,l_)l 0
a”

in which we get the following rows by using the rules:

e(v)q(V)

v+1) _ ) (v) (v+1) (v+1) _ %o Yo+1 (v+1) __

7 =qs t e —e_; , € = v+1) eOv =0.
4

Supposing the poles of our function to be real and distinct in magnitude, the g-columns
converge to their values. Moreover we can easily write the continued fraction expan-
sion of the type S (for continued fractions see e.g. [9]) for our function:

I L I R
|x 1 1 X | 1 ' X '—1J

N3()
Concluding the paragraph we refer to the basic Rutishauser’s paper [3] and sub-
sequent papers, in which the QD-algorithm is modified to give a better convergence.

(See e.g. [4].)
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3. QD-ALGORITHM FOR RECURRENTLY DEFINED POLYNOMIALS

Now we are in the position to prove a theorem enabling us to compute directly
the top row of the QD-scheme for some recurrently defined polynomials.

Theorem 1. Let ay, ..., a,, by, ..., b,_1, b, = 0 be real numbers,

ao="bo =0, po(x)=1,
Pi+1(x)=(x_ai+1)Pi(x)"‘biPi-1(x), i=012..,n-1.

Then, if all the following values are defined, we can get the top row of the QD-
scheme for computing the zeroes of the polynomial p,(x) either from

0 0 b -1
Wy 9 = a, o = =2t
91
©) _ 0 ©) _ bu—2
‘12)—~an-1“e(1) ez)——"
0)
q>
0) _ (0) (0)
qn ) - al en—l n 0
or from
(0) o _ b
(H) qy " = a4 e(l):"(—o)
q1
b
0) _ (0) 0 _ 0y
4> = a; — & ey = ==
(0)
qz
0) _ 0 0
qn)_an_'eft—)l en)=0

Proof. Let us put Ny(x) = p,(x) and Ny(x) = p,_,(x). We can get the values g
and e as stated above:

4Nt = xp,—1 — XPy—1 + QuPuey + by_ 1Dy

) _ * _ -1
qi’ =a,, Ni{=p,.1+—""—D,>

n

ON. = N* b,
ey 'N, =N — N, = Pn-2

an

b
0) _ -1 —
e(l —”'"—*‘: Nz—Pn-z

a"
q(ZO)N* = XPp-2 — Pn-1 — e(IO)pn—Z = (an~l - e‘l())) Pn-2 + bn—-2pn—3
bn—2

(0)
q2

(0)

¢ =a,.,—¢”, Ny=p,,+ . and so on.
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The second expression for the top row may be obtained simply by 2pplying the
following

Lemma. If we define the numbers a,, b; by the relations

;= app1-i» bi=1b,;
and polynomials p(x) by

Po=1, Piy1= (x - 5i+1)17i - Eiﬁi—x s

then the equality p,(x) = p,(x) holds.
We obtain the proof from expressing p,(x) as a determinant:

X — a; 1 0 [N 0 0

b, x—a; 1 ... 0 0

p(x)=| 0 b, x—az ... 0 0
0 0 0 b,,._lx—'a,,!

4. ZEROES OF ORTHOGONAL POLYNOMIALS

Now we are going to apply successively Theorem 1 to some classical orthogonal
polynomials. The notation is the same as e.g. in [2].

Laguerre polynomilas satisfy the following recurrence formula
v+ DL ()= +a+1—=x)LP(x) — (v + o) L24(x) .

Here we put p,(x) = (—1)"v! LP(x). After simple calculations we shall get the
sought recurrence relation

Pori(x) =[x — v + a« + D] py(x) — v(v + &) p,—4(x) .
From this we have immediately:

Theorem 2. The zeroes of Laguerre polynomial I* can be computed by using
QD-algorithm in which we take as the first row the values calculated from (I) or (II)
with

a,=2v—1+a, b,=vv+a).

In the second case we have the explicit equalities for q and e:
g =i+a (i=123,..,n)

e =i (i=1,23..,n-1)
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Example. The beginning of the scheme for L(f)(x) reads according to (I[):

0
1
0 1
2 2
0 1 2
3 3 3
0 1 2 0
4 4 1
0 1 05 0
57 35 05
0 0-35263 0-071428 0
605263 252946 0-42857
0-14737 0-001761 0
2-38385 0-416149
0-000307 0
0-415841

The exact values are: 6:28994 ..., 2-:29428 ..., 0-41577 ... We can get easily also the
following continued fraction expansion:

1IN _ 1 lﬂl_flj_ 2+a|_€_ _ ntaf
X X

n LP(x) |x ‘ 1 1 | 1

Hermite polynomials. The zeroes of Hermite polynomials can be calculated as
square roots of the zeroes of the polynomials L */?) for n even or L{!/? for n odd.
Actually, we have these well known formulas

Hy(x) = (=122 I VP(x?),
Hypei(x) = (=1)" 22" nl x I2(x?) .

Thus, we can take as the top row in the case (II) the following numbers

05 1 115 2 25 3 ... n—% 0 (neven)
and

51 25 2 35 3 ... n+ 0 (nodd).

N

In both cases the g-columns converge to the squares of the corresponding zeroes.
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Gegenbauer polynomials. Gegenbauer polynomials satisfy the following recurrence

relation
(n+1)Chi(t) =200+ n)tCYt) = (24 + n — 1) C}_ (1)

and the highest coefficient is equal to

I(n+2)T(A+3) 1 (2n + 24 — 1>
r@yr+i+1%) 2" n '

A) even order: we have successively

2An + 1) Ch,ua(Vx%) = 24 + 2n + 1) J(x) C3,i1(v/x) —
42 +2n + 1) (A + 2n) __,
2n + 1 *Cal(Vx) -

— 2(A + n) C3,(Vx) =

224+ 2n—1)(A+2n +1) ) Cha (V%) = 201 + m) €2, =

2n + 1
=2 D) 24 n) Chiy) -
_2A% 22— (42 D
@n + 1) (L + 20 — 1) €l
__2(/1+2n+1)(2/1+2n—1)(/1+n-—1)C1 W)
@n + 1) (L + 2n — 1) o

Let us denote

_ @Y I@n + 2+ 1) <4n + 24 — 1>"1 i) .

Pix) = r@n + 22) (2 + 3) 2n

After some calculations we get the recurrence relation
pv+l(x) = (x - av+1) pv(x) - bv pv—l(x)

where
8v3 4+ 12vA + A2 — A
(*) av+1 =
20+ A+ 22v—1)(A+2v+1)
vy —=1D)RA+2v =1 (A +v—1)
oAy +A=2)(2v + A) (A + 2v — 1)

B) odd order: the calculations are similar.

As a result we get the following
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Theorem 3. If we construct QD-scheme using (1) or (1) and values (%), then the
g-columns will converge to the squares of zeroes of Gegenbauer polynomial C3,.

If we take
8v  + 12(2 + 1) v + (442 + 144 + 4) v + 32> + 31
22v+ AH@v+ A+ 1)(2v + A+ 2)
v2v + 1) (v + 2) (24 + 2v — 1)
42v+2=1)2v+ AP 2v+2-1)

Ay+1 ’

as initial values, then the g-columns will converge to the squares of zeroes of the

polynomial C%,, ,.

Legendre polynomials. Zeroes of Legendre polynomials can be computed as
a particular case of the previous theorem. Actually we have the relation

P(x) = C}/*(x).
After an easy arrangement we shall get the

Theorem 4. If we start with the values
8v2 + 4v — 1
av+1 = m’
(4v — 1) (4v + 3)
b = 4v2(2v — 1)2
T (v + 1) (4v = 1)2 (v - 3)

then the q-columns of the QD-scheme according to (I) or (II) will converge to the
squares of the zeroes of Legendre polynomial P,, and similarly starting with
8v2 + 12v + 3
av+1 = 9
(4v + 1) (4v + 5)
_ 4v2(2v + 1)2
T 4y — 1) (4v + 1)> (4 + 3)

the same algorithm gives the squares of the zeroes of Legendre polynomial P,,, .

Jacobi polynomials. Zeroes of P*#) for a = f can be computed as a particular
case of the algorithm for Gegenbauer polynomials, because we have the following

equality:
I'2e + 1) I'(n + o + 1) Cer1D(y)

T2« +n + 1) I'(a + 1) !

Pt )(x) =
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Case « + f3: The following relation holds:

2n+ 1) (n+a+p+1)2n + a+ ) PIA(x) =
=@n+ o+ B)[2n + o+ B)(2n + o + B+ 2) x + o — 2] PP(x) —
—2n +a)(n + B)(2n + o« + B + 2) PA(x).

The coefficient at the highest power of x is

1 /2n+o+p
2" n '

Dividing our recurrence relation by this value and denoting
! -1
px) = 2 <2» + o + ﬁ) PEP(x)
v

we shall get after some calculations the relation

Pyrr(x). Qv +a+Bv+a+B+)2v+a+p+2)=
=[Qv+a+p@v+a+B+1)Q2v+a+p+2)x—

(v S (R (R (R R
@v+a+p+1)(p )T p.x) @ +a+p)@+at+p-1)

Py-1(x) .

Theorem 5. The zeroes of Jacobi polynomial P*P for o + B can be computed
by using QD-algorithm with the values q and e given by (I) or (II) where
‘BZ . 062
~(2v+a+ﬁ)(2v+oc+[§+2)’

b — d(v+a)(v+ B v+ a+ p)
' (2v+oc+ﬁ—1)(2v+zx+ﬁ)2(2v+a+ﬁ+l)'

ayi1

The general case. Using Christoffel-Darboux formula we can easily get the general
QD-scheme for computing zeroes of orthogonal polynomials. The method is the same
as in the preceding particular cases.

5. SOME NUMERICAL RESULTS

Large scale computations were made only for Laguerre polynomials and were
carried out on the computer Ural-2. We have used a general program for solving
algebraic equations by the QD-algorithm (see [5]); however, the top row of the
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QD-scheme was computed by using Theorem 2. The tables of zeroes of Laguerre
polynomials were made for n = 3 (1) 50 and for n = 101. (Eight decimal places.)
The efficiency of the method was verified for Laguerre polynomial of the 500th order.
As the computations in this case were very time-consuming, we got only 80 smallest
roots with the precission of 8 decimal places. The following table contains 50 smallest
zeroes of the polynomial L'),. The results can be compared with known asymptotic
estimates (see [2], § 6.31, Thm. 6.31.3).

mantissa exponent mantissa exponent mantissa exponent
0-28887051 —2 0-56988716 0 0-21234935 +1
0-15220446 —1 0-68083238 0 023331686 +1
0-37406324 —1 0-80164407 0 0-25527265 +1
069451483 —1 0-93232340 0 0-27821694 +1
0-11136684 0 0-10728716 +1 0-30214994 +1
0-16312296 0 0-12232902 +1 0-32707191 +1
0-22475039 0 0-13835806 +1 0-35298308 +1
0-29623977 0 0-15537444 +1 0-37988371 +1
0-37759180 0 0-17337833 +1 0-40777407 +1
0-46880730 0 0-19236990 41 0-43665443 +1
mantissa exponent mantissa exponent

0-46652508 +1 0-81976768 +1

0-49738632 “+1 0-86055328 +1

0-52923845 +1 0-90233338 +1

0-56208179 +1 0-94510841 +1

0-59591667 +1 0-98887878 +1

0-63074342 +1 0-10336449 +2

0-66656238 “+1 0-10794073 +2

0-70337391 +1 0-11261664 +2

0-74117839 +1 0-11739227 +2

0-77997618 +1 0-12226766 +2

The results for small n were successfully compared with the tables computed by
other methods. (See e.g. [6], [7], [8].)
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Souhrn

NULY ORTHOGONALNICH POLYNOMU QD-ALGORITMEM

JIRi FiaLA

V ¢lanku se pteklddd metoda pro vypocet kofenl orthogondlnich polynomt.
Véta 1. ddva algoritmus pro pfimy vypocet horniho fddku QD-schématu pro ttidu
polynomil, které jsou definovdny rekurentnimi vztahy tvaru

ao=bo =0, po(x)=1,
Pi+1(x) = (x - ai+1) Pi(x) - b; Pi—1(x), i=01,2..,n—-1.

Algoritmus je ddn formulemi (I) a (II). Ve zbyvajici &dsti ¢lanku se tato v&ta aplikuje
na klasické orthogondlni polynomy. Na konci ¢lanku jsou uvedeny numerické
vysledky pro Laguerrovy polynomy.

Author’s address: Dr Jifi Fiala, Vypocetni laboratof dopravy, Olsanska 7, Praha 3.
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