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SVAZEK 14 (1969) APLIKACE MATEMATIKY ClsLo 2

PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR WAVE EQUATION
IN E; IN A SPHERICALLY SYMMETRICAL CASE

OTT1O VEIVODA

(Received December 27, 1967)

In [1] the existence of periodic solutions of a linear and weakly nonlinear wave
equation in one spacial dimension was studied. The spherically symmetrical case of
a linear or weakly nonlinear wave equation in three dimensions may be treated
analogously. Therefore we shall concentrate our attention to those points in which
the two problems differ.

§ 1. THE LINEAR CASE.

As well known, supposing that the right-hand side and the solution depends only
on r* = x* 4+ y? + z? the wave equation in E; has the form

(l.l,) Uy — U, — zur = f(, r) .
R
We shall study the problem (2,) given by (1.1) and
(1.2) [u(t,0)] < + o0, u(t,m)=0,
(1.3) u(t +2n,r) — u(t,r) =0.

Together with this we shall investigate the problem (.#,) given by (1.1), (1.2) and

(1.4) u(0,r) = o(r), u0,r) = p(r).

Note, that making use of the substitution u(z, r) = v(t, r)[r the equations (1.1) to
(1.4) take the form:

(1.1) v — v, =rf(t,r);
u(t, r)

r

(1.2 lim <+, oft,n)=0;

r-0
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(1.3) ot + 2n,r) — o(t, 1) = 0;
(1.4’) D(O, r) =r (p(r) s v,(O, r) =r 1//(/) .

(Supposing that v(z, r) is continuously differentiable with respect to r in the neigh-
bourhood of r = 0 the first condition in (1.2") is equivalent to v(t, 0) = 0.)
Consulting the results of § I in []] this leads us to formulate the following as-
sumptions:
(&) The function r f(t, r) together with its derivative with respect to r is continuous
intandrfor0 < r<n, 0t < + o0,

(t.5)  f(t+2nr)=f(t,r)=0 and [rf(t,r)]—o =[rf(t,)],=x = 0.

(#7,) The functions r ¢(r) and r (r) are of class C* or C', respectively, and it holds

(1.6) [r @(r)]=0 = [r o(")]/=0 = [r ¥(r)].=0 = 0,
[ro(r)]=r = [r o(r)]/=z = [r ¥(r)].-x = 0.

Let us continue the functions ¢, { and f in r onto (— oo, +c0) by the relations

(1.7) ro(r) =ro(—=r) =(r+2n)o(r+2n),

ry(r) =ry(=r) =(r+2n)Y(r + 2n),

rf(t,r) =rft, —r)=(r + 2n)f(t, r + 27m).
Let us denote the continued functions by the same letters as before. According to
(1.5), (1.6) it may be easily verified that the continued functions have the same degree

of smoothness as the original ones.
Let us introduce the function s(r) by the relation

(1.9) o) = 4 [1‘ o(r) + j "o (o) do + c],

0

¢ being an arbitrary constant. The function s being given the functions ¢ and  are
uniquely determined as

(1.9) ro(r) =s(r) —s(=r),
ry(r) =s'(r) = s'(—=r).
The functions r ¢(r) and r y(r) satisfy the assumption (<Z,) if and only if the
function s(r) satisfies the assumption:
(&73) The function s(r) is 2n-periodic and of class C? for —c0 < r < + o0.

We shall denote € the B-space of functions s(r) satisfying the assumption (2/5)
provided with the norm

= sup (WO L O
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A solution of the problem (2,) or (.#,), respectively, will be sought in a B-space A
of functions u(t, r) which have first derivatives with respect to ¢t and r continuous for
0<r=<m0<=<t< + ooandsuchthatu(t, r), u(t, r), rut,r), ru,(t, r), ru,ft, r),
r*u,(t, r) have finite limits for r — 0 and any ¢ € {0, 4+ c0) which define the values
of these functions for r = 0. The norm in the space 2 is defined by

1.

r”nLlru"

||u|l = max [|u|, ]u,[, Iru, , ]rzu,,
O0<r==m

0<t<+w

>

The following lemma holds:

Lemma 1.1. Let the problem (.#,) be given. Let the assumptions (o£,) and ()
be fulfilled.

Then the problem (M) has a unique solution in A. It is given by

r 0J r—t+8

(110)  u(t,7) = 1[s(r L) s(—r 1) + %j r"sgf(s, 0) do dS].

Proof. It may be easily verified that the function u(z, r) given by (1.10) belongs
to 2 and satisfies the equations (1.1), (1.2) and (1.4) in the usual way. The uniqueness
of the solution follows readily from the energetic inequality. Indeed, u; and u, being
two solutions of (.#,) the function v = u,; — u, satisfies the relation

o-[ ' 08, 0) [u,,(s, ) = 1n(0.0) = 2 (0, e)] a9 do =

0J0O

0

= J 1 0*[vi(t, 0) + v}(t, 0)] do .

Whence in virtue of v(0, r) = 0 the assertion follows.

Now let the problem (2,) be given with f satisfying the assumption (/). Then the
condition (1.3) is equivalent to the conditions

(r11)y  u@nrr) —u(0,r) =0, u2n,r)—uf0,r)=0, 0<r=m.

Inserting (1.10) into (1.11), differentiating the first of them with respect to r (the
differentiate equation is equivalent to the primitive one since this is satisfied for
r= n) and then adding and subtracting the two equation we obtain (according to

(175))
Jzn(r - 9f,r—9d9 = O,Jzn(r + NS r+ 9Hd =0,

0

IIA

r

I\

.
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Taking again into account (1.75) these two conditions may be joined to a single one
2n

(1.12) J(r——S)f(S,r—S)dS:O, 0<r<2n.
0

Thus the following theorem holds.

Theorem 1.1. Let the problem (2,) be given, let f satisfy the assumption (7).
Then the problem (2,) has a solution if and only if (1.12) holds. If this condition
is satisfied, then the solution (1.10) of (#,), for any s satisfying (3) is a solution
of (2,), too.

The necessity of the condition (1.12) may be also found with help of Green’s
formula. It may be easily found that the problem (2§) adjoined to (2,) reads

(1.13) w,,—w,.,+2f7—(—vf)=o;

ar \r
(1.14) Iw(t, O)I <+, wtn)=0;
(1.15) w(t + 2m, r) - W(t, r) =0

and its solution is given by
(1.16) w(t,r) = r(o(r + 1) — o(—r + 1))
for any o satisfying the assumption (&/5). Then, by the known procedure

2n

(117) 0= f znf “w(t, P (1, r) dr di = f f (o(r + 1) — o(=r + 1) rf(t, r) dr dt
0Jo 0Jo
for any ¢ satisfying (o).

Performing similar calculations as in [1] we find that (1.17) has (1.12) as a conse-
quence.

§ 2. WEAKLY NONLINEAR CASE.
Let the problem (2) be given by
(2.1) Uy — Uy — gu, =cf(t,r,u,u,u,e)
r

and by (1.2) and (1.3). Analogously let the problem (.#) be given by (2.1), (1.2) and
(1.4). '
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Let the following assumption be fulfilled:
(#,) The function f(t, 7, ug, uy, uy,e) = f(t, 7, ug, uy, uyfr, ) together with its
derivatives of [or, of |ou,, 0*f(or du;), *F[(6u; du;) (i, j = 0, 1, 2) is continuous
in all its arguments for 0 £t < 0, 0 < r <7, —0 <u; < o0, 0 L ¢e < g
(20 > 0). Besides it is 2n-periodic in ¢ and
(2.2) f(t,7,0,0,u,,¢) =0.

Let us continue the function f in r onto (—co, + c0) by the relations

(23) r f(t’ r,Ug, Uy, Uy, 8) = rf(ta =T, Uy, Uy, — Uy, 8) =
= (r + 2n) f(t, r + 27, ug, uy, Uy, €) !
According to (2.2) the function (which we shall denote again by f) continued in
this way has the same degree of smoothness as before.

It may be easily verified that every solution u € 9 of (.#) satisfies the integral
equation

(2.4) P) () () (1) = —u(t,7) + ;[s(r F)—s(er )+
+ 3 sft.['+t_3F(u) (2) (9, @) do dSil =0,

OJr—t+8

where s has the same meaning as in § 1 and

(2.5) F(u) (&) (t, ) = r f(t, r,u(t, r), u(t, r), ult, r), €) .
On the other hand every solution u € 2 of (2.4) is a solution of (.#). The existence

of a solution of (2.4) for 0 < t < T(T > 0), 0 < r < = and ¢ sufficiently small may
be proved with help of the following lemma.

Lemma 2.1. Let the equation

(2.6) P(u)(s)(e) = —u + L(s) + e R(u) (¢) = 0

be given, where P(u) (s) (¢) maps the direct product A x & into A for every value
of the numerical parameter € from € = 0, &>, ¢ > 0.

Let Le[© — A]. Let R(u) (¢) be continuous in u and ¢ and have a G-derivative
R;(u) (¢) continuous in u and ¢ for any u € W and ¢ € €. Then to every § € S there
exist numbers 6 and €*,0 > 0,0 < ¢* < g, such that the equation (2.6) has a unique
solution U(s) (¢) € A for each s € S(3; &) and e € 0, e*). This solution has a ®-deri-
vative Uy(s) (¢) continuous in s and e.

(Notation. [€ — U] is the space of all linear operators mapping & into A;
S(3; 0) is the sphere with the center § and the radius 6. See the theorem 2.1 in [1]
where also the proof is indicated.)
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For the spaces 2 and € of Lemma 2.1 let us choose the spaces 9 and & defined
in§1.
Let

Ls) (. r) = ’1 [s(r ) s+ t)] :
Rw) (6) (1, 7) = l} f 0 J " (9, 0)) (2) (5, 0) do 9

2 r—t+9

It may be easily verified that under the conditions on ¢, ¥ and f as stated above all
assumptions of Lemma 2.1 are fulfilled and the following theorem follows.

Theorem 2.1. Let the problem (/) be given. Let the assumptions (£,) and (4,)
be fulfilled.

Then a function § € S and a number T > 0 being given, there exist numbers 6 > 0
and e*,0 < &* < &, such that the problem (/) for 0 < & < &* and for all s € S(5; J)
has a unique solution u*(¢) (¢, r) = U(s) (¢) (t, r) € A. The operator U is together
with its ®-derivative U(s) (¢) continuous in s and &, while

u*(()) (t, r) = U(s) (O) (t, r) = s(r -+ l) - s(—-r + t) .

Now let us write down that the solution U(s) (¢) (¢, r) of (.#) is a solution of the
problem () i.e. that it satisfies the conditions (1.11). Inserting u(t, r) = U(s) (¢) (t, r),
into (1.11) making use of the fact that U(s)(e) satisfies the equation (2.4) and
performing the same arrangements as in § 1 we find that U(s) (¢) is a solution of the
problem () if and only if

(2.7) G(s) (e) (r) = J‘zn(r — 9 FU(s)(e) (9,7 — ) () (9, r — 9)d% =0,

0 r<2n.

To bring this condition to a more practical form we make use of the following
lemma.

Lemma 2.2. Let the equation
9 (7)) = 0
be given, where G(p) (¢) maps a B-space B into a B-space Q for all e € € = (0, &,
&y > 0. Let the following assumptions be fulfilled.
(i) The equation
(29) G(po) (0) = 0
has a solution p, = pg € B .
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(ii) The operator G(p) (¢) is continuous in p and & and has a G-derivative G)(p) (&)
continuous in p and € for p e S(pg; 8) (5 > 0 being a suitable chosen number
such that S(pg; 6) = P) and ¢ € €.

(i) There exists

= [Got) O)] " e[2 - %]

Then there exists £¥ > 0 such that the equation (2.8) has for 0 < & < ¢* a unique
solution p = p*(¢) € P, continuous in & such that p*(0) = pj.

(For the proofcf. [1].)

In our case p = s and the equation, (2.9) reads

(0 G(s0) ) (7) =
= J‘ (r=9)f(%, r — 9, so(r) = so(—r + 29), so(r) — so(—r + 29), so(r) +
0
+ so(—r +29),0)d% =0.
By our above assumptions we have to choose for the space B a subspace & of the
space €. The choice of the space Q depends upon the form of the function f. If
|of [ou,| + |of [ou,] + 0 it is natural to take for Q a subspace &, of the space of 2z-

-periodic functions of class C' with the usual norm which we shall denote ;. On
the other hand if f = f(t, x, u, €) it is more natural to suppose that in (2.7) no loss

of smoothness occurs and to take for Q a subspace & of &. Further, we find easily

that in the first case with regard to the continuity of U(s) (¢) in s and & the assumption

(#,) ensures the existence of the derivative Gy(s) (¢) continuous in s and &. On the

contrary to guarantee the existence of G(s) (¢) continuous in s and ¢ in the second

case the assumption on f must be strengthened as follows:

(#,) The function f(t, r,u, ) = rf(t, r, u, &) together with its partial derivatives
of |or, of [ou, *flor?, 0*f(ou or), 0*f|ou?, &3F|(or* ou), &3] (or ou?), &°f|ou®
is continuous in all its arguments for0 < t < 0,0 < r <7, —0 <u < + ®©
0 < ¢ < &,. Besides it is 2n-periodic in ¢ and f(t, 7, 0, £) = 0.

Then the following two theorems may be proved easily.

Theorem 2.2. Let the problem (2) be given. Let besides the assumption (#,) the
following assumptions be fulfilled:
(i) The equation (2.10) has a solution s, = s§(r) € &.
(ii) There exists the operator

~

H = [G(s5) (0] ' e[€, - €],

where &, > G(&) (e).
Then there exists a number ¢* > 0 such that the problem (?) has for any
e€<0,&*) a unique solution U(s*()) (¢) (¢, r) € A such that s*(0) (r) = s5(r), while
the function s¥(¢) (r) € S is continuous in e.
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Theorem 2.3. Let the problem () be given with f = f(t, v, u, €). Let besides the
assumption (8,) the following two conditions be fulfilled:

(i) The equation (2.10) has a solution s, = sg(r) € &.

(ii) There exists the operator H = [G(s3) (0)] ' €[ €~ &], where & > G(&) (e).
Then there exists ¥ > 0, such that the problem (9) has for any € € 0, ¢*) a uni-

que solution u*(e) (t, r) = U(s*(¢)) (¢) (1, r) € A such that s*(0) (r) = so(r), while

the function s*(c) € & is continuous in ¢.
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Vytah

PERIODICKA RESENI SLABE NELINEARNI VLNOVE ROVNICE V E,
V KULOVE SYMETRICKEM PRiPADE

OTTO VEIVODA

V &ldnku se vySetfuji podminky existence 2n-periodického FeSeni v ¢ ulohy (2,1),
(1,2) za predpokladu, Ze funkce f je dostate¢né hladkd a 2n-periodickd v 1.
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