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SVAZEK 14 (1969) APLIKACE MATEMATIKY CisLo 2

A SUFFICIENT CONDITION FOR FLATTENING OF THE THERMAL
NEUTRON FLUX AND SOME RELATED PROBLEMS
(IN ONEDIMENSIONAL GEOMETRIES)

ROSTISLAV ZEZULA

(Received October 30, 1967)

Let us consider a reactor with reflector, the core of which is described by the two-
groups equations (with the usual notation [1], [2], [3], [6])

(1) —div(Dgrad®) + (Zj + 33) P =q<> —D AP — grad D . grad & +
+(Z+ Iy P =g
(la) —div(cgradq) + g = kZi® < —14q — gradt.gradq + q = k Z{®

By elimitation of the slowing-down density ¢ we obtain from (1), (1a) the following
equation for the thermal neutron flux (evidently equivalent to the system (1), (1a)):

(2) —tA[—D A® — grad D . grad ® + (2 + Z3) ®] —
— grad t.grad [~ D A® — grad D . grad @ + (2} + X3, @] +
+ [—DA4® — grad D . grad & + (2} + Z3) @] = kX{®

Often we may assume that, for the diffusion coefficient D and the macroscopic
absorption cross-section in the moderator X3, and the age t (which are given func-
tions), we have approximately

(3) D = const. = 0

(3a) . X% = const.; T = const.

Therefore, it is useful to introduce the following notation for the relative fuel con-
centration M,

(4) M=2U_0%uy
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(under the assumption that

(4a) 4 > 0)

so that for the neutron multiplication coefficient k we have the relation
(5) k = k(M) .

From the equation (2) there follows, under the assumption

(5a) >0,

the following relation between M and ¢ (evidently equivalent to (2)):

(6) A(D A® + A(grad D . grad @) — AZ3[(M + 1) @] —
- —D—A(D— 1gradD‘gradq') - @l.grad [—D A9 — grad D .
T T T

.grad¢+ZX4(M+l)d>]+£"1[M(l —ky+1]e=0
T

which for the case of onedimensional core geometries (with the space coordinate x),
can be transformed with the help of the well-known formulae in the following one:

D
(62) D A(Ad) + AD+1did—D AD + 25]—+l—)gz 9—4~(-13+
7 dx dx dx T dx | dx
A db 95‘7) (M + 1)y + Dlgp -2 4 [Z6(M + 1)] de
dx dx T dx dx
1dD 1 d [0 1dz /dD d?® d D
I i_ dﬁ I Z‘]‘W(M + ]) X at Ei_: + = dr fd 4”@ + _? g__ +
rdxdx 7 dxdx 7dx\dx dx* dx dx?
dM dr dX§
P lsarm — Ky + 1] -z Iy g dR
T dx dx dx dx

—MDMM+Q%=0

From the equation (6a) there follows the validity of the implication

(7) @ = &, = const. = X4 [M(1 — k(M) + 1] — 2§, dvdM
dx dx

v+ )Y s+ )] =0,
dx dx
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which gives the following necessary condition for the relative fuel concentration M(x)

(741) AM-&-——%-QM—P-(}E 9]\_/[+ IC(_M)_A—_1+__1_51£(12_M+
Xy dx dx | dx T 2% \dx dx

+AZ‘,’W> mo= Lo (dmd e
_ T Xy \dx dx

thus, we see (with respect to the spatial symmetry of the problem considered) that
the Cauchy problem, given by the equation (7a) and the initial conditions

(%) (o) = SMC)

=0; M(0)=M0; (Mo 2 0)
dx |y=o

determines a onedimensional spatial distribution M = M(x) of the relative fuel
concentration, which is necessary for attaining the flattened thermal neutron flux
¢ = ¢, = const. =+ 0 in the reactor core described by the eq. (1), (1a). I the assump-
tion (3a) is fulfilled, then the equation (7a) for the fuel distribution M(x) results into
the well-known Goertzel’s equation
M;l_ M = l’

T T

(82) AM +

which together with the initial conditions (8) defines the Cauchy problem, giving
the necessary condition for the fuel distribution in the reactor core with the flattened
thermal neutron flux, considered in the paper [4].

Let us suppose now that for M = M(x) the necessary condition for thermal
neutron flux flattening (7a), (8) is fulfilled. Then it follows from eq. (6a) and from the
spatial symmetry of the problem that the distribution of the thermal neutron flux @
in reactor with fuel distribution M = M(x) given by the relations (7a), (8) must
necessarily fulfill the homogeneous equation (of third order in @ = d¢[dx)

1 dD D
(9) pA(aw) + 340 Pdv|dae [,  1dedD D
dx tdx| dx tdxdx 1
2 2
- (M + 1) | 4P + 1d_rgg+2d_12 Q+ 492
T dx dx dx? | dx? dx
2 a
+1d_‘t_d_q_-1(‘i_D — 12;4(M+1)$+2(M+1)d2M+
tdx dx* T dx T dx dx
4oz M\ 2
dx /| dx
which under the assumptions (3), (3a) assumes the simplified form
D dM
(9a) pa(ad) — [ (M + 1)z + 2| ae - 252, M2 _
T dx dx

136



and the boundary conditions

o
dx

35! |
B ¢f(b):d£)

=== = @
dx? ‘xzo dx ’

x=bh

(96)  @'(0)

=0; #"(0)

x=0

where b = b™" > 0 determines the boundary between the core and the reflector and @,
is an arbitrary real parameter. Conversely, from the validity of the relations (7a), (8)
and (9), (9b) there obviously follows the validity of the equation (6a).

Due to the fact that the solution @' = d(b/dx of the equation (9) is uniquely de-
termined by the boundary conditions (9b), the sufficient condition for the thermal
neutron flux flattening in the reactor core with the relative fuel concentration M(x)
given by (7a), (8) has the following form

(10) o) =9 _g 0.

X 1x=b
From the homogeneity of the equation (9) it follows that we can set

(11) ¢'=§f=¢;w:w(b)=u/b=1; W0) = o = 0

Y'(0) = v5 =0,

where @y is an arbitrary norming constant, and the function y is uniquely determined
by the relations (11), (9), (9b) and (7a), (8), so that it depends on the parameter
M(0) = My 2 0, ie.

(11a) Y= y(x; My).

Since we have (for ¢, = &(0) > 0)

0 0JO

(12) P(x) = P, + J‘ ?'(x)dx = @, [l + % Y(x; M) dx:l ,
we must also have

(12a) o(b) = @, [1 + wfbw(x; Mo)dx:l = &(b; », M)

0

where

(12b) o="2
. d)o

is a real parameter replacing the parameter @,; thus we get the following sufficient
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condition for inducing the thermal neutron flux given by (11), (12a) in the reactor

core,

(12¢) w = w(b, M,) = —M = w, = const

¢0wa(x; M,)dx

which for w, = 0 is evidently equivalent to the condition (10).

Let us denote now a the coordinate of the extrapolated outer boundary of the
reactor. The shape of the slowing-down density g and of the thermal neutron flux &,
in the reflector, which fulfill the usual conditions on the outer boundary a,

(13) qr(a) =0: @ya) =0, (a=a™ > b>0[4])
are given (according to the considered geometry) by the formulae
(14) gr(x;a) = A.y,(x; a)

(14a) Dp(x;a) = A.wy,(x;a) + B. y,(x; a)

where the known functions y,(x; a), y,(x; a) (linear combinations of the fundamentai
solutions of the two-group equations for reflector with coefficients depending on a,
which fulfill the boundary conditions (13)) depend on the geometry of the reflector
and the constant u, is a known function of the physical constants of the reflector.
The free integration constants 4, B can be determined from the usual continuity
conditions of the thermal neutron flux and current on the boundary between core

and reflector, i.e.
(15) ®(b) = dp(b; a); Dd'(b) = Dpdy(b; a);

thus it follows from (15), (as a consequence of the relations (11), (12a)) that

(16) A = A(w,, Mo; b, a) = &, (1190 + %) g gy My b a) =
1 W(b; a)
- _¢ (31(00 + ﬂz)
= o ————
W(b; a)
where
b D
(16a) ay = yy(b, a)f Y(x, My) dx — y,(b, a) o= ay(b, My, a) ;
0 R
ay = yy(b, a)
b D
(16b) By = yi(b; a)f Y(x, My) dx — y,(b; a)D— = By(b, My, a);
0 R

By = yll(b’ a)
(16c) W(b, a) = [y,(b, a) y5(b, @) = yy(b, a) yi(b. a)]
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Consequently the integration constants A, B are linear functions of the parameter w,
but depend in a nonlinear manner on the parameter M, and on the values b, a.

For fulfilling the remaining two physically meaningful continuity conditions of the
flux and current of fast neutrons on the boundary of the core and reflector we have

1

1
17 — q(b; wg, My) = —— b; wy, My, a) ;
( ) 52561( 0 o) (fZS)R QR( 0 0 )

1q'(b; we, M) = trqr(b; wo, My, a)
therefore we have (when ais given) two free parameters w,, M, at our disposal so
that, under certain assumptions, we can fulfill these relations for an arbitrary co-
ordinate b of the reactor core. Substituting the relations (1), (1a), (14), (14a), (16),(16a),

(16b), (16c) in both to the conditions (17) and eliminating the parameter w, from them
we obtain an implicit function f(b, M,; a) = 0 depending on the parameter a, i.e.

(18) 0 = f(b, My;a) =

%2 vll(bﬁ a) T a - 23] yl(bs Ll) a
—u s — — ¥ M'(b; M ——— — 1, Xy M(b, M) + 1
iy W(bsa) 1, M o) iy W(b; a) e T M( )+ 1
a2 9 yl(b’ a) ~ X hl(b3 Mo) L0 4) yl(b; a) - M2 hz(b§ Mo)
py Wibsa) 1y iy W(b; a)

where
(18) hy(bs M) = {Z8[M(x: Mo) + 1] ¥(x, My) + i M'(x: Mo) ¥(x; M) —
— D[AY(x, Mo)]'}|c=s

(18b) hy(b: My) = {Z4[M(x: Mo) + 1] ¥(x, Mo) — D A¥(x; M)},
(18¢) ¥(x: M,) = wa(x7 Mo)dx s py = (EZr - (E2)7!

If, for the function f of the variables b, M, given by the relation (18) on the domain
Q, < R, the assumptions

’} . .
(18d) feC(@Q): fi = ;l; 10 on @ = (MI" MI™) x (b, o) < R,

f(b, M5 a) = 0 for some (b, M{") e Q, and all a = a™"

hold for all ¢ = a™" > b > 0, then there is defined by the relation (18) in the stability

interval (M Mg™) of M(x; M,) [4] the unique explicit function (the so called
“criticality condition™)

(19) b = b(My; a)

139



depending on the parameter a. Substituting the relation (19) into sufficient condition
(12c) we get with the help of the first of conditions (15) and of (16), (14a), (18c) the
following equation

(20) 0 = H(M,, a; wo) = 7,00 + 7
where
(20a) yi =1 — {W[b(M,), a] Y[b(M,), Mo]} ™" {1 —
— o, [b(My), Mg, a] v,[b(Mo); a] + Bi[b(M,), My, a] yo[b(M,); al}
(20b) v2 = {W[b(Mo), a] . Y[b(Mo). Mo]} ™" . {1 — W[b(M), a]} .

Under the assumptions

oH o ‘
(20¢) He C(@y) 5 Hiy, = -0 #0 on @ = (M3, M5™) x (a™", w0) e R, ,
Mo

HMS, a®; 0y) = 0 for some (MG, a®) € Q, and all real w,

we can determinate from the above equations the critical initial relative fuel con-
centration M(0) = M, = Mg§(a, o) inducing the desired thermal neutron flux

1) & = o(x; wo) = B {1 + wo f “Ulx: ME(a, wo)] dx}

0

in the reactor core. From (21) it follows that choosing w, = 0 we obtain the case of
the flattened thermal neutron flux in the reactor core, i.e.

(21a) wo =0=¢ = P, = const. > 0

By substitution of the critical value M(a, w,) of the initial relative fuel concentra-
tion M, into the criticality condition (19) we get the corresponding value of the critical
dimension of the reactor core with the desired thermal neutron flux (21) and for the
given outer dimension a of the reactor

(22) bcrit = bcrir(a’ 600) = b[Mz(a’ (1)0); a] N

By the preceding reasoning we have proved the validity of the following

Theorem 1. Let the distribution of the relative fuel concentration M(x; M) in
the reactor core (in an arbitrary onedimensional geometry) be a solution of the
Cauchy’s problem (7a), (8) and let the corresponding function &' = (d®[dx) =
= y[x; M(x; M,)] be the solution of the boundary value problem (9,) (9b) for
P, = (ddi/dx)lx:,, = 1. Let the functions f(b, My; a) and H(M, a; w,) defined by
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the relation (18), (20) resp. fulfill the condition (18d), (20c) resp. Let a = a™" >
> b > 0 [4] and let a real parameter w, exist so that the critical initial relative
fuel concentration M, = Mﬁ(a, w,) given by (20) lies in the stability interval
ME™, MG™) [4] of the solution M(x; M) of the nonlinear Cauchy problem (7a),

(8), ie.

(23) M*(a, wo) € (™, MZ™) .

Then the thermal neutron flux & = ®(x; M[x; My(a, wo)]; wo) in the reactor
core induced by the distribution M[x; M(a, )] of the relative fuel concentration
is given by the relations (12), (12b). Especially, for w, = 0 we get from (12) for
M = M[x, M§(a,0) the flattened thermal neutron flux ® = &, = const. in the
reactor core and therefore, (as a consequence of the wellknown theorems of Goertzel
and Wilkins), also the minimum of the critical mass:

b[Mo*(a,0),a]
(24) j M[x, M(a, 0)] dx = min .
0

Remark 1. From the fact that the condition (120) is for w, = 0 sufficient for thermal
flux flattening it follows that the critical value My = Mg(a) of the initial relative
fuel concentration in the papers [1], [4] (which was obtained by substituting w, = 0
into the relations (17) and by eliminating M, from them) must be the same as
Mg(a, 0).

Remark 2. As a natural generalization of the functional (24) for the case of a non-
flattened thermal neutron flux @ induced by a given fuel concentration distribution
M[x; Mg(a, w,) we have the following “output functional”

b[Mo*(a,w0),a]

(25) F(a, wp) = fo @(x; M[x; M3(a, wo)]; wo) . M[x; My(a, )] dx,

which yields by the mean value theorem and by (24):

_ [*b[Mo*(a,wo0),a]
(254) Fla,00) = & f M[x; M(a, wg)] dx =

0

 (bIMo(a,0),a]
> <Dj M[x; Mg(a, 0)] dx
0

Therefore it may be useful to determine the value wj of the parameter w, maximizing
the value of the functional F(a, w,) for a given value of the parameter a. For wg we
have evidently the condition

(26)

OF(a, w,)|
0w,

=0

o =wo*
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under the assumptions

0*F(a, w,)

26a
(26a) o,

<0; Mj(a, wg) e {My™, MF™).

wo=wo*

One can expect that for some a this maximum will be an absolute one. The “output
optimization coefficient”

b[Mo*(a,wo*),al
j M[x; M(a, wg)] dx
(27) n(a) = +° ; lim pla) =1, [4]

b[Mo*(a,0),a] a-gmin
J M[x: M3(a, 0)] dx

0

does not depend on the mean thermal neutron flux ¢ in the reactor core and can be
determined (as a function of the outer boundary of the reactor) by solving (e.g.
numerically) the equations (26), (20) and the Cauchy problem (7a), (8).

By a generalization of the preceding reasoning we can find also the solution of the
inverse problem of the reactor theory: For the given thermal neutron flux ¢ = &(x)
the corresponding distribution M = M[x; My; ®(x)] of the relative fuel concentra-
tion in the reactor core is to be determined (in the two-group approximation and in
an arbitrary onedimensional geometry [5]) i.e. M inducing the prescribed thermal
neutron flux @ in the reactor core and fulfilling the boundary conditions [1]

N 1 1
(28) M(b; Mo, &) = 3y(b,a) = —— {A aa(b) + div (D grad @) } 1

’ ‘ o(b) Zy(b) Lz '
(284) M Gbay = [

dx |, ®(b) Zy(b) v dx |-,
d .. ~ d |
+ — [div (D grad ®)]|,-, — | 1 + §,(b, a) — (PX}) | ,
dx dx fx=b

where the outer boundary parameter @ = a* is given and the core boundary para-
meter b as well as the initial fuel concentration parameter M, are to be determined.
For the sought function M there follows in this case from the equation (6a) the in-
homogeneous quasilinear ordinary differential equation of the second order

1 /de  20dz%,  2cdo\dM (I
(29) AM+~i+iwﬂ+l£Vm—— 1 — kM)) -
t\dx 2§ dx ¢ dx/ dx T
_Léz%_iw]_ 2 dnyde 1 dede | }M:

M —_————— — — — 4]
Zy dx dx 2y o @y dx dx ot dx dx @

D
__-_L_ DA(A@).{. 3(}24___{[_ Eié_?+ AD.}.lgEd_D_
DLy dx T dx/ dx
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D >N AP + 2Q+199511 @‘l‘ d__A“_D,_lZ”dl_
T M) dx? 7 dx dx/ dx? dx t Mdx

a 2 a a
_zdzM d_(b+1 Eld_? d_‘?+§ﬂ lflldzM_i,A);gl o\,
dx /dx 7 \dx dx?/ dx T Xy dx dx X%

which, under the usual conditions (3), (3a), takes the simplified form

2
(29a) AM + = grad @ . grad M — {1 [1 = kMm)] — Af} M =
® . p
- DA (49) — AR T )
dXYy T -

and which gives together with the initial conditions (8) the Cauchy problem deter-
mining uniquely the sought relative fuel concentration M = M(x; M, d’) In par-
ticular for the flattened thermal neutron flux ¢ = @, = const. we get again the
formerly considered Cauchy problem (7a), (8). The two equations (28), (28a) give
us the possibility (under the assumption that they are uniquely solvable in the para-
meters a, b) to determine for the arbitrarily chosen initial relative fuel concentration
My = M(0) e (MJ™, M3™), the corresponding value b(M,) of the critical reactor
core boundary parameter b and the corresponding value a(M,) of the reflector outer
boundary parameter a. From the condition

(30) a(MO) = a*

we can then determine (under the assumption that the equation (30) is uniquely
solvable in the parameter M) the critical value Mg of the initial relative fuel con-
centration M:

(30a) Mg = Mg(a*); a(M5) = a*

Solving the Cauchy problem (29), (8) for M and the equations (28), (28a) for a and b

with this critical initial relative fuel concentration M} we obtain evidently the sought

distribution of fuel M = M[x; Mg, ¢(x)] which induces the prescribed thermal

neutron flux @ = ¢(x) in the core of the critical reactor with the core boundary

parameter b* = b(M{) and with the given reflector outer boundary parameter a*.
Therefore, the following statement is true:

Theorem 2. Let the Cauchy problem (29), (8) have for all values M, € (M§™, M§™)
of the initial relative fuel concentration M, = M(0) a unique stable solution M =
= M[x; My, ®(x)] depending on the given thermal neutron flux & = &(x). Let the
equations (28), (28a) for the fuel distribution M = M[x; My, ®(x)] have unique
solutions b = b(M,), a = a(M,) depending on the parameter My e (M™", MG™)
and let the equation H(MO) = a*, where a* is the prescribed value of the reflector

143



outer boundary parameter have the unique solution Mj = Mg(a*) such that
a(Mg3) = a*.

Then the distribution M[x; My, ®(x)] of the relative fuel concentration deter-
mined by the Cauchy problem (29), (8) with the initial value M, = My induces in
the core of the critical reactor (with the core parameter b* = b(M}) given by the
equations (28), (28a) and with the given value a* of the reflector outer boundary
parameter a) the prescribed thermal neutron flux @ = ¢(x). .

Remark 3. From (24) and from the mean value theorem we have for all possible
thermal neutron fluxes @ = &(x) and the corresponding fuel distributions M =
= M[x; M§, ®(x)] in the critical reactor core with criticality parameter b* = b(Mg)
the inequality

bk bk
B  F= j o(x) . M[x; M%, 0(x)] dx = @ J M[x; M2, a(x)] dx =
0 0
o b[Mo*(a,0),a]
> ¢J M[x, Mg(a, 0] dx

0

However from (12), (12b), (18¢) and (25) it follows due to the “nearly linear” depend-
ence of the output functional F(a, w,) on the parameter w, with the help of the mean
value theorem

b[Mo*¥(a,wo),a]
(32) F(a, wy) = @, j (I + wo ¥[x; Mi(a, wo)] - M[x, Mg(a, w,)] dx =
0
. b[Mo*(a,wo),a]
= @yl + w, Y[M}(a, wo)])j M[x; M¥(a, w,)] dx =
0

= '[ b*qb(x) - M[x; M5, &(x)]dx = F

0
for all @(x) and the corresponding M[x; Mg, ®(x)], provided
(32a)
bk
| J d(x) . M[x; M3, &(x)] dx
0

Y[M5(a, w5*) o J‘b[Mo*(a,mow;,a]
0

0

wozw?;*: -1

M[x; Mg(a, wg*)] dx

We see also that if the equation (32a) for wg* is solvable (e.g. by iterations) for some
@ = &(x) and the corresponding M = M[x; Mg, ®(x)], then for the value w* given
by the relations (26), (26a) majorizes the output functional F(a, wg) the corresponding
functional F given by (31) for this possible thermal neutron flux ¢ = &(x) and the
corresponding fuel distribution M = M[x; Mg, ®(x)].
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Vytah

POSTACUJICI PODMINKY PRO VYROVNANY TOK TEPELNYCH
NEUTRONU A NEKTERE PRiBUZNE PROBLEMY
(V JEDNOROZMERNYCH GEOMETRIICH)

ROSTISLAV ZEZULA

Préce se zabyva ndsledujicim problémem teorie jadernych reaktor: Pro zadany
prabéh toku ¢ tepelnych neutronit v aktivni zoné reaktoru uréit rozloZeni koncentrace
paliva M, které tento tok vytvafi. Tento problém je matematicky formulovédn v t.zv.
dvougrupovém difusnim pfibliZeni a pro jednorozmérné geometrie. Je uddna posta-
Sujici podminka pro existenci jediného feSeni tohoto problému, zejména tézZ ve spe-
cidlnim pripadé vyrovnaného toku tepelnych neutroni. Ddle se uvazuje jistd metoda
optimalisace celkového vykonu reaktoru.

Hlavni vysledky prace jsou formulovdny ve vétdch 1 a 2.

Author’s Address: Dr. Rostislav Zezula, CSc., Matematicky ustav Karlovy university, Praha 8
Karlin, Sokolovska 83.
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