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SVAZEK 13 (1968) APLIKACE MATEMATIKY ČÍSLO 6 

ON GENERAL FEEDBACK SYSTEMS CONTAINING DELAYERS 

VACLAV DOLEZAL 

(Received January 17, 1968) 

The paper deals with general nonlinear feedback systems which contain delaying 
elements. Theorems concerning the existence of the over-all transfer operator and 
the boundedness and stability of the response are given. 

0. Consider a system 31 which has two inputs u and f, and two outputs y and <$>. 
We shall assume that to each pair of signals (w, *P) applied to the inputs of 31 there 
corresponds a uniquely determined pair of responses (y, <P) appearing at the outputs 
of 31. The signals and responses are usually functions or vector-valued functions 
of time. Furthermore, let X be a system having an input $ and an output *P; we shall 
again assume that the response <F appearing at the output of X is uniquely determined 
by the signal $ acting on the T 

input. If we form an intercon­
nection of 31 and X described 
by the block-diagram in Fig. \, 
i.e. if we impose the constraints 
<P = § and W=*F, we obtain a 
new system which is usually re­
ferred to as a feedback system. 
Its part consisting of the system 
X is then called the feedback-
loop. (Cf. [1], p. 614.) Observe 
that the new system has in fact 
a single input u and a single 
output y, because the introduced feedback-loop imposes a constraint on <P and W. 

Having built up a feedback system, we face the following problems: 
1. whether the new system is meaningful at all, i.e. if for every signal u there exist 

uniquely determined quantities y, <$ and *¥ which satisfy the equations governing 
the subsystems 31 and X; 

2. whether the response y is bounded in a certain sense for any bounded signal /./, 
i.e. the system does not blow up for some signal; 
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3. whether the response y is insensitive to small changes of the corresponding 
signal u, i.e. a small change of u gives raise to a small change of y. 

If the requirement 1 is satisfied we will say that the system has an over-all transfer 
operator. (This terminology is borrowed from the network-theory.) If 2 is met, 
we will say that we have an input-output boundedness. Finally, if requirement 3 
is satisfied, the feedback system will be called input-output stable. 

In the sequel we are going to discuss such feedback systems, where either X or $1 
delays signals (in a certain generalized sense). Engineering applications of such 
linear systems may be found in [2], 

1. Let us now turn to the exact treatment. 

Let (£ be a linear set and let F be a non-empty system of mappings from the interval 
[0, oo) into (£. For the sake of simplicity, the elements of F will be called functions. 

Observe that taking particularly (£ = E (set of all real numbers), we obtain a set 
of ordinary functions defined on [0, oo) for F; similarly, putting (£ = En, we obtain 
a set of rc-vector-valued functions defined on [0, oo). 

Referring to the introduction, F will play the role of the set of all possible signals 
and responses. 

R e m a r k 1. In practice the signals and responses are usually vector-valued func­
tions, but it may happen that u, y, # and W have distinct dimensions. However, 
augmenting the considered feedback system by fictitious feedback-loops with zero 
transmission or fictitious inputs and outputs, we can always adopt the fact that all 
entities are from a single space F. 

For the time being, no other assumptions on the system F but the following axiom 
AI* are needed. 

AI*. If v is a mapping from [0, oo) into (£ such that, for every ft > 0, there exists 
a function v^e F with v(t) = vj(t) on [0, pi), then v e F. 

Now, we are ready for stating the following proposition. 

Theorem 1. Let A and B be operators mapping F x F into F, and let X be an 
operator mapping F into itself. Furthermbre, let the operators A and X satisfy 
the following conditions: 

1. For any ueF and vl,v2eF such that vx(i) = v2(t) on [0, p), (ja arbitrary), 
we have {A(u, vt)} (t) = {A(u, v2)} (t) on [0, JX). 

2. There exist a fixed number T > 0 and a fixed element a e F such that, 
a ) tf x i ( 0 = x 2\0 on [0, /f) for Xi, x2e F, then (Xxx) (t) = (Xx2) (t) on 

[0, \i + T\ 

b) for any x e F we have (Xx) (t) = a(t) on [0, T). 
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Then there exists a unique operator W mapping F into itself such that, for any 
u e F, uniquely determined elements <P, W e F exist which satisfy the equations 

(1) <f> = A(u, W), 

(2) W = X<P, 

(3) y - B(u, W) 

with y = Wu. 
Before turning to the proof, let us make a few comments on the above facts. Refer­

ring to the discussion carried out in the introduction we see that external behaviour 
of the system 51 may be described by the operators A and B; obviously, A relates 
the response $ to the pair of signals (u, W), and B the response y to the same pair 
(u, W). Analogously, the operator X relates the input and output quantities on the 
system X. Then, the equations (l), (2) and (3) govern the feedback interconnection 
plotted in Fig. 1. Thus, if the assumptions of Theorem 1 are met, we have exactly 
the situation described in problem 1; in particular, any signal u determines uniquely 
the response y of the entire feedback system and we have y = Wu. Consequently, 
W is called the over-all transfer operator. 

Let us still explain the meaning of conditions 1 and 2 stated in Theorem 1. Condi­
tion 1 obviously states that the operator A is unanticipative in variable v; to be more 
specific, the values of the response <P in an interval [0, /L) are determined only by u 
and values of W in [0, ji), i.e. at any instant t0 the response <P is independent of the 
future t > t0 of W. 

As for condition 2, it is a generalization of the delaying property of the system X; 
in other words, X is a generalized shifting operator. It can be easily verified that 
an example of such operator is furnished by the operator PT defined by (P rx) (t) = 
= x(t - T) for t ^ Tartd (PTx) (t) = 0 (zero element of F) for 0 g t < T, xeF. 

Proof of T h e o r e m 1. Choose a fixed element u e F and for any integer n ^ 1, 
define the element <Pn by 

(4) <£„ = A(u,X$H-t) , <P0 = a. 

The definition is clearly meaningful, since ^ „ e f for any n. We are going to show 
that 

(5) *„ + i (0 = #»(') on [0,nT). 

Actually, (5) is evidently true for n = 1. We have $1 = A(u, Xa) and $ 2 = A(u, X#i); 
however, (Xa) (t) = a(t) = (X<Pt)(t) on [0 T) by 2b), and consequently, by 1, 
* i ( 0 = ^2(0 on [0, T). Next, suppose that (5) is true for some n. Then, by 2a), 
(X^n + 1) (t) = (X<f>„) (t) on [0 ,(n + 1) T); consequently, by 1, (A(u, X<2>„+1)} (t) = 
= {A(u, X<Pn)} (t) on [0, (n + 1) T), i.e. <Pn+2(t) = #„+i(0 on the same interval 
and (5) is proved. 
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Due to (5), define a mapping $> from [0, co) into (£ by <P(t) = $n(t)9 where nT > t. 
Since for any /L > 0 the mapping <P coincides with <Pm with m > \i\T on [0 //), 
we have <£ e F by the axiom A I*; hence the value X<P is defined and belongs to F. 

Let us now show that <P satisfies the equation 

(6) <P = A(u, X<P) . 

Actually choose a t* §; 0. Then we can find an integer n ^ 1 such that t* e [0, nT)9 

and <£,J+1(*) = $n(i) = <£(t) on [0, nT); hence, #(t*) = <f>„+1(t*). On the other hand, 
by (4) we have <£>,J+1 = A(u, X<Pn); however, (X<Pn) (t) = (X$) (t) on [0, (n + l) T) 
by 2a), so that, by \, {A(u,X<Pn)} (t) = {A(u, X&)} (t) on [0, (n + 1) T). Conse­
quently, d>n + l(t) = {A(u, X<P)} (t) on [0,(n + 1.) T), and particularly, <Pn+1(t*) = 
= {A(u, X<P)} (t*); hence <P(t*) = {A(u, X<P)} (t*), i.e. (6) holds. 

As a next step show that the function <P is the unique solution of (6). Thus, suppose 
that a $ e F exists such that 

(7) $ = A(u, X$). 

Then, due to 2b), both X<P and X$ are equal to a e F on [0, T), and consequently, 
by V <£(r) = <?(t) on [0, T). Assume that, for some n = 1, ^(t) = ^(t) on [0, nT); 
then (K^) (t) = (X$) (t) on [0, (n + 1) T) by 2a), so that, by 1, <1>(t) = $(t) on 
[0, (/i + 1) T). Hence <2>(t) = $(t) on [0, kT) with any k ^ 1 i.e. $ = $. 

Thus, equation (6) defines an operator Q mapping F into itself, i.e., for any u e F 
there exists a unique <P e F denoted by Qu which satisfies (6). However, since the 
equations (1) and (2) are equivalent to (6), it suffices to set W = B(.9XQ.), i.e., 
Wu = B(u, XQu) for any u e F and the proof is completed. 

Theorem 2. Let the conditions of Theorem 1 be satisfied, and, in addition, let the 
operators A and B satisfy the assumptions: 

3. For any veF and any ul9 u2eF such that ux(t) = u2(t) on [0, /L), we have 
{A(uu v)} (t) = {A(u2, v)} (t) on [0, n). 

4. For any ux, u2, vl9 v2eF such that ut(t) = u2(t) and vx(t) = v2(t) on [0, fi) 
we have {B(ux, VX)} (t) = {B(u2, v2)} (t) on [0, /L). 
Then the operator W is unanticipative, i.e., ux, u2eF, ux(i) = u2(t) on [0, /i) 

implies that (Wut) (t) = (Wu2) (t) on [0, /i).v 

The interpretation of Theorem 2 is straightforward; if the system $1 is unantici­
pative, i.e. both A and B are unanticipative in both variables, then the over-all transfer 
operator of the feedback system is unanticipative, too. 

P r o o f of T h e o r e m 2. First observe that conditions 1 and 3 imply the validity 
of condition 4 for the operator A. Thus, let ux, u2e F be such that ux(t) = u2(t) 
on [0, /u); denote ^>x and <P2 the corresponding solutions of (6), i.e., we have <PX = 
= A(ux, X<PX) and <P2 = A(u2, X<f>2). Let m be the largest integer such that mT = fi. 
Without loss of generality we may assume that m > 0. 
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Since (X#i) (t) = (X$2) (t) = a(t) on [0, T), it follows by the above observation 
that <Pt(t) = 02(t) on [0, T). Suppose that ^ ( t ) = $2(t) on [0, fcT) with 1 ^ fc < m; 
then (X<f>x) (t) = (X^ 2)(0 on [0, (fc + 1) T) by 2a), and consequently, {A(uuX<P1)} (t) = 
= {A(u2, X02)} (0 on [0, (fc + 1) T), i.e., ^ ( t ) = <P2(t) on the same interval. 
Hence, <Pt(t) = <£>2(t) on [0, m l ) . Then, (X<PX) (t) = (X<P2) (t) on [0, (m + 1) T), 
i.e. also on [0, JJ), so that, ^ ( t ) = {A(uu X<PX)} (t) = {A(u2, X<P2)} (t) = <P2(t) 
on [0,/L). 

Thus, due to (2) and 2a), W±(t) = W2(t) on [0, /i); finally, by (3) and condition 4, 
yi(0 = y2(0 on [0, p). Hence, the proof. 

Using the pattern of proof of Theorem 1, we can easily prove the following pro­
position. 

Theorem 3. Let A and B be operators mapping F x F into F and let X be an 
operator mapping F into itself. Furthermore, let the following conditions be 
satisfied: 

1*. There exists a fixed number T > 0 such that, 
a) for any u, vu v2e F we have {A(u, vt)} (t) = {A(u, v2)} (t) on [0, T), 
b) for any u, vu v2e F such that vx(t) = v2(t) on [0, /L) we have {A(u, vt)} (t) = 

= {A(u, v2)} (t) on [0, \i + T). 

2*. If vu v2eF and v^t) = v2(t) on [0, ^), then (Xv{) (t) = (Xv2) (t) on [0, ^). 

Then a unique operator W mapping F into itself exists such that, for any u e F, 
uniquely determined elements <P, WeF exist which satisfy the equations (\), (2) 
and (3) with y = Wu. 

Moreover, if in addition the operator A is unanticipative in variable u and B 
is unanticipative in both variables u and v (i.e. if conditions 3 and 4 hold), then W 
is also unanticipative. 

(The p r o o f is left to the reader.) 

The theorem just stated clearly concerns such feedback systems whose part $1 
delays signals W, and part X is unanticipative. 

Let us now present two actual feedback systems as examples. 

Example 1. Consider the classical feedback configuration plotted in Fig. 2. 
Assume that F, in addition to axiom AP , is a linear set, that the operator N mapping 
F into itself is unanticipative and X satisfies the condition 2. From Fig. 2 it is apparent 
that we have here 

4> = N(u + W); y = ^ = N(u + W) ; W = X<P . 

Hence, in the language of Theorem \, 

A(u, v) = B(u, v) = N(u + v) for any (u, v)e F x F . 
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Due to the unanticipativity of N, the operator A satisfies the conditions 1 and 3, 
and B the condition 4. Consequently, the considered system has an unanticipative 
over-all transfer operator. 

ŰL 

N 

——rvtl—* -

1 
Fig. 2. 

E x a m p l e 2. Let F be the set of all rc-vector-valued functions defined on [0, oo) 
which are locally integrable. It is obvious that F satisfies the axiom AI*. Let 
P ( d , £ 2 , . . . , Cik)» #0h> ^/25 ...» *Ji) and T(Ci, C2, •••, Cm) b e ^-vector-valued functions 
of n-vector arguments £f, rjj and Cp such that, for any choice of Cf(f), i»7j(t), Cp(t) e F, 
f = 1, 2, .. . , k, j = 1, 2 , . . . , /, p = 1,2,... , m, we have 

P(^(t),..., $k(t)) , K(^(t),..., ^(0) , T(d(0, • •., CM e F • 

Furthermore, let H^t, w, v), i = 1, 2, ..., k, Mj(t, u), j = 1, 2, ..., I and Sp(t, w, v)5, 
p = 1,2,..., m be defined for t ^ 0 and u, v e E" and be such that 

Hit, u(i), v(t)) , Mj(t, u(t)) , Sp(*, t*(f), v(t)) e F 

for any u(t), v(t) e F. Finally, let Kt(t, T, u, v), i = 1, 2, .. . , k, Nj(t, T, u), f = 1,2, . . . 
..., / and Qp(t, T, u, v), p = V 2, ..., m be defined for 0 ^ T ̂  t < oo and w, v e F" 
and be such that 

Í Kt(t9 т, u(т), v(т)) dт , Nj(t, т, и(т)) dт , Qp(t, т, u(т), v(т)) dт є F 

for any choice of u(t), v(t) e F. 

Let the feedback system be described by operators A, B and X, which are defined 

by 

{A(u,v)}(t)^P(^(t),^(t),...,^(t)), 
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where 

£,.(0 = H((t, u(t), v(t)) + Ki(t, T, M(T), V(T)) dT , t ^ 0 , w, v e F , 

{«(«,»)} (0 - ixciW. U0 UO). 
where 

Cp(t) = Sp(U U(t), V(t)) + Qp(t, T, 1*(T), v(T)) dT , t ^ 0 , II, v G F , 

J o 
and 

{Xv}(t) = K()7l(t),f/2(t),...,^(t)), 

where „t 

Vj{t) = Mj(t, (PTjv) (.)) +\ Nfr r, (PTjv) (-)) dr , 

t = 0, v e F and f}, j = 1, 2, ..., / are fixed positive numbers. (As above, Pf denotes 
the shifting operator.) 

It is obvious that, due to assumptions made above, the operators A and B actually 
map F x F into F and X maps F into itself. Moreover, it can be easily verified that 
operators A, B and X satisfy the conditions 1 through 4 given in Theorems 1 and 2. 
(Note that 2 is satisfied with T = min T,- and a = R(fj1(t),fj2(t), ...,fji(t)), where 

//;(*) = My(l, 0) + J0 Ny(t, T, 0) dT.) Hence, the considered system has an unantici-
pative over-all transfer operator. 

Let us now turn to the discussion of the input-output boundedness and stability. 
Since here it is necessary to measure somehow the size of a signal or response, we 
have to introduce a metric or a norm into a subset of F. Thus, let us state the fol­
lowing requirement. 

A2*. Let F satisfy the axiom AI* and, in addition to it, let F contain a subset F* 
which is a linear normed space possessing the property: 

If, for a function v e F, a number A > 0 exists such that for any ja > 0 
there exists a vM G F* with vjj) = v(t) on [0, fi) and \\v^ ^ A, then v G F* 
and ||i?|| S A. 

Observe that the commonly used linear normed spaces satisfy the axiom A2*. 
Actually, let F be the set of all measurable n-vector functions defined on [0, oo). 

a) Let (M c F consist of all n-vector functions x such that the norm \x(t)\ is bound­
ed in [0, oo), and let ||x|| = sup \x(t)\; (here, |c| signifies a norm of a constant 

te[0,oo) 

vector c); then, clearly, M is a linear normed space. Next, let v e F and let a number 
A > 0 exist such that, for any /i > 0, we can find a ^ e l with vM(t) = v(t) on 
[0, fi) and ||vM|| = A. Then 

sup \v(t)\ = sup |vM(0| ^ sup \vj(t)\ = |KJ = A ; 
W,a) W,v) [0,<x>) 

thus, sup |v(t)| S A, i.e. v e J1 and | v | ^ A. Hence, M satisfies the axiom A2*. 
[0,oo) 
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The situation is the same in the case of the space C c $ consisting of all continuous 

vector functions with the above norm. 

b) Let p ^ 1 and let Lpa F consist of all vector functions x such that J^ \x(t)\p & < 

< oo; putting |jx|| = (JQ \x(t)\p dt)llp for x e Lp, then, as known, Lp is a linear 

normed space with the usual operations of addition and multiplication by a constant. 

Thus, let again v e F be such that a fixed A > 0 exists and for any fi > 0 we can 

find a. v^e Lp with vM(t) = v(t) on [0, /L) and | |vJ :g A. Then we have 

KONt = woi'dt g WON* = IMIP = ^p; 
o Jo Jo 

consequently, J J |v(f)|p dt ^ Ap, i.e. i ' e L p and ||v|| g A. Hence, the axiom A2* 

is satisfied. 

A similar reasoning will persuade us that the space L^, consisting of all essentially 

bounded vector functions x with the norm ||x|| = ess sup \x(t)\, also satisfies A2*. 
[0,oo) 

Now, we can state a proposition on boundedness. 

Theorem 4. Let the operators A, B and X satisfy the conditions of Theorem 1 

and be such that A and B map F* x F* into F* and X maps F* into itself. Further­

more, let constants Cl9 C2 exist such that 

(8) 14(11, Vl) - A{u,v2)\\ S C i | K - v2\\ 

for any u, vu v2 e F*, and 

(9) \\Xvx - Xv2\\ ^ C2\\vx - v2|| 

for any vt> v2 e F*. 

For every integer n ^ 1 denote 

/m\ i |U(w, vi) - yl(w, v2)|| 
(10) Xn = sup " V 1 ; - r : — 2 Z J L 9 

(u,vuv2)eSn Hvj — v2|| 

where 

(11) S„ = {(ti, v1? v2) : w, v1? v2 e F* , ^ i * t ? 2 , Vi{t) = v2(t) on [0,nT)}9 

and 

(12) , „ = sup 1 1 ^ - ^ 1 
(fi,v2)e-?„ | | v i — v2|| 

where 

(13) S„ = {(i7lf v2) : vl9 v2 e F* , v!#v2, v1(t) = v2(t) on [0, nT)} 

T/zen, if lim A„ . lim jun < 1, t/ie operator W maps F* into itself 
П-+O0 П-+00 
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Moreover, if a nonnegative function /?(£, n) nondecreasing in n exists such that 

(14) D-%0)|s(|«|.H) 
for all u, v e F*, then, for any u e F*, 

(15) IIWul g £(||u | |,M||A(u,X<9)|| + \\XG\\), 

where M > 0 depends only on A and X, and 0 is the zero element of F*. 

Proof. First, from (11) and (13) it follows that Sn => Sn+1 and Sn =) Sn+1 for 
any integer n ^ 1; consequently, Xn ^ Xn + 1 and \in ̂  fin+1. Moreover, due to (8) 
and (9) we have Cx ^ X1 and C2 ^ \ix so that the proper limits lim Xn and lim \in 

actually exist. 
Next, choose a / i e F * ; referring to the proof of Theorem 1, let us construct the 

functions $ n by #n = A(u,X$n-^), n = 1, 2, 3, ... , # 0 = 0 (zero element of F*). 
Observe that here we take advantageously 0 for $ 0 ; it is clear that all properties 
of functions $ n discussed in the proof of Theorem 1 are preserved and, in particular, 
the sequence <J>n defines the solution $ of the equation # = A(u, X<P) in the same 
way as before. 

In view of the assumptions made above we have $n e F* for every n ^ 0. Next, 
put 

(16) vn = <2>n- <!>„_!, n = 1 ,2 ,3 , . . . 

By (5) we have vn(t) = 0 on [0, (n - 1) T); moreover, vn e F* and 

(17) *„ = ! > , , n = 1 ,2 ,3 , . . . 
i = l 

On the other hand, we can easily verify that 

(18) | |vj = C M - V i W -.. tt.-2||*i|| > n = 2, 3, . . . 

with $ ! = A(u, X0) and jLt0 = 1. Actually, (18) is true for n = 2 because ||v2 | = 
= | |#2 - #,.11 = \\A(u9X$i) - A(u,X0)\\; however, since X$1 = X0 = a on 
[0, T) by 2b), we have by (10), 

| |v2 | | = ^1X0, - X0\\ g X&W*! - 0|| = Ai^U^H . 

Next, assume that (18) is true for some n ^ 2; then we have 

h + i l = 1*-, + ! - *„|| - \\A(u,X$n) - A(u9X*B^)\\ . 

Since <Pn(t) = $ „ . ±(t) on [0, (n - l) T), it follows by 2a) that (X<Pn) (t) = (K<2>n_ x) (*) 
on [0, HT) , and consequently, by (10) and (12), 

||vn+1|| fg An||X^ - X0n^\\ S KHn-l\\$n - * . - l | | £ 

^ C2AjA2 . . . A ^ ^ ... ^ - i l ^ i l • 

Hence, the estimate (18) holds for any n ;> 2. 
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Now, by (17), we have for any n > 19 

(19) n*»n < i |v,i < (i + C2"x n V n V ) i*ii • 
- = - fc=2j=lp=l 

However, due to the assumption lim Xn . lim /L,. < 1, 
«-*oo n->oo 

oo fc-1 k - 2 

(20) M'= i + c2V; Y[XJX\»P<K. 
fc = 2 j=l p = l 

Consequently, for any n = 1, 

(2i) K N M ' | * . B . 

On the other hand, for any % > 0 we have <P(t) = <Pn(t) on [0, x) whenever nT > x; 
hence, by the axiom A2*, $ e F* and | |$| | ^ M'H^iU- Thus, summarizing our results, 
for any u e F* we have <P e F*9 and consequently, Wi* = B(u, X<P) e F* by the 
above assumptions. Hence, the first assertion of Theorem 4 is proved. 

As for the second assertion, it suffices to realize that ||X#|| ;= ||X# — X&\\ + 
+ IIXOH S C2\\$\\ + \\X0\\ and introduce this inequality into (14). 

If in Theorem 4 the assumption "A, B and X satisfy the conditions of Theorem 1" 
is replaced by "A, B and X satisfy the conditions of Theorem 3", the assertion 
remains true without any change; the proof is the same except for some slight modific­
ations and is left to the reader. 

R e m a r k 2. The proof just carried out suggests that the axiom A2* may be replaced 
by the following requirement: 
A3*. The set F contains a complete linear normed space F*. 

Actually, define the elements $n as before and v„ by (16); then in view of (19) and 
OO 00 

(20), the series ]T v̂  converges in the space F*, because ]T ||vf|| < oo. (Cf. [3].) 
i = i i = i 

Hence, there exists an element <P e F* such that | |$ — <Pn\\ -> 0 as n -> oo. However, 
we can easily show that $ is a solution of (6); indeed, by (8) and (9) we 
have \\A(u, X&) - A(u, X<Pn)\\ S CXC2\\<P - <3>M|| -> 0 as n -> oo. Thus , A(u, X$n) -> 

~> A(u, X$) in F*; the relation (4) concludes then the proof. 
Note also that the particular spaces J1, Lp and L^ mentioned above are complete. 
Let us now state a proposition on the input-output stability; to this purpose, 

we will require F to satisfy the axiom A3*. 

Theorem 5. Let the conditions of Theorem 4 be satisfied with the exception 0/(8), 
which is replaced by. Constants C, Ct exist such that 

(22) ||-4(w1? vi) - A(u2, v2)\\ S C\\ul - u2\\ + C1\\vl - v2\\ 

for any ul9 u2, vl9 v2 e F*. Furthermore, let the operator B be continuous at every 
point (u, v) e F* x F*; then the operator Wis continuous at every point u e F*. 

498 



If, in addition, there exist an H > 0 and h e F* such that 

(23) \\A(u, b)\\ __ H 

for every u e F* and B is uniformly continuous, then W is uniformly continuous, 
too. 

Proof . We will use the notation and results of the preceding proofs Let u e F* 
and let <P be the corresponding solution of the equation <P = A(u, X$>). Then, due 

to Remark 2, | * - *„|| -* 0 as n -* oo, i.e. *„ -* * in F*. Thus, by (17), <P = )_ v, 
and " * 

GO 

(24) * - * „ = I v.; 
i = n+ 1 

consequently, by (18) 
CO 

(25) | | * - * , | | g ( X ^ H ^ l l , 
i = » + l " 

i - 1 i - 2 

where _f - C2 f ] ^ [ ] /i/(. Observe that the g£'s are independent of a. 
/ = 1 / c = l 

Analogously, if u E F* and $ is defined by $ ^ ^(#? x$), we have 

(26) ||* -$,11 ._( X 9.)||£J. 
i = « + i H ii 

However, # x == A(u,K<9) and $ x = A(w, X@) s o t^ a t < ^y t22), 

II^JI __ \\A(u,X0) - A(u,XG)\\ + ||-4(*,*0)| _ cljg _ M|| + \\A(u,xe)\\. 

Hence, by (25) and (26), 

CO 

(27) ||* - *„|| + I* - *„|| _ ( J C ^ i ) {2||4(u. ̂ f l + C|M _ 5||} . 

N Observe that if (23) is satisfied, then 

\\A(u,X0)\\ _ \\A(u,X0) - A(u, 6)|| + ||4(U] ft)| <; C i | ^ _ _ fr|| + H > 

and consequently, 

OO 

(28) ||* - *„|| + I* - *„|| _ ( J ^ «,) {2Ci||*0 - 6|| + 2ff + C||« - fi|} . 

On the other hand, we can write 

(29) 1* - *|| ^ ||*„ - *.|| + ||# - $ n | + ^ _ ^1 . 
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however, using repeatedly (22), (9) and the equations <Pk = A(u,X4>k^1) and $k = 
— A(u,X$k-i), we obtain 

(30) II*. - $n\\ = \\A(u, __*._.) - A(M~, _-*„_.)fl :_ 

«2 Cflu - „fl + CxflX*.-! - X$n^\\ S C\\u - fifl + C.C.fl*... - #._x|| g 

:<;... ^ C||M - ufl {i + c,c2 + c\c\ + . . . + C"r2Cr2} + Cr'Cr'IK - - M . 

Since ||<P, - *,|| = \\A(u,X0) - A(fi,X<9)|| g C||u - fifl, we have finally, 

(31) | |#, -$„\\^C{1 +Y C[C2} flM - fifl . 

00 

Now, let u e F* be a fixed element, and let s > 0. Since the series £ #f converges, 
i = l 

then, by (27), we can find u so large that, for any u with ||u — u|| < 1, we will have 
n- 1 

J|<f>-<_>B|| + \$- $n\ <ije. If, for this n, we let ||u - u\\ <ie.C~1{l + £ c i c 2 } ~ 1 -
i = i 

then we will have ||<_> — 5>|| < s by (29). Hence, the operator Q assigning to each 
u e F* the solution <£ e F* of <P = A(u9 X&) is continuous at u. Since X is continuous 
by (9), then the operator W defined by Wu = B(u, XQu) is continuous, too. Hence, 
the proof, 

Finally, if (23) holds and B is uniformly continuous, then, according to (28), 
for an e > 0 we can find n > 0 such that ||<t> — &n\\ + ||<£> — $„\\ < \e for any 
pair, u, ueF* with ||u — u|| < 1. Then |J<2>„ — <f>,.|| can again be made less than 
\B for any u, u e F* with ||u — u|| < <5, where O* is sufficiently small. Hence, 
\\<P — $\\ < e whenever ||u — u|| < min [1, <5]; the rest of the proof is obvious. 

Remark 3. Theorem 5 obviously remains true if the operators A, B and X satisfy 
the assumptions of Theorem 3 instead of those of Theorem 1. 

Let us now discuss the interpretation of the above results in the language of feed­
back systems. The meaning of Theorem 4 is certainly straightforward; if the parts 
91 and X of a feedback system satisfy the conditions of Theorem 4 and if, for example, 
F* = _#, then every bounded signal u produces a bounded response y. If even condi­
tion (14) is satisfied, a boundary for \\y\\ is available. As for the conditions imposed 
on lim Xn and lim /L„, they express the fact that, crudely speaking, both systems s2l 

K-^oo 

and X attenuate the signals sufficiently as t -» co. (To be more accurate, $1 attenuates 
the signals in the path input W — output 4>.) 

Next, it is obvious that the concept of continuity of the operator W grasps the idea 
about the input —output stability; actually, if u e F* is a signal acting on a feedback 
system, which satisfies the conditions of Theorem 5, and y = Wu is the corresponding 
response, then for every e > 0 a d > 0 exists such that ||y — y|| = || Wu-Wu! < s when­
ever ||u — u|| < 6, i.e. a small change of u affects y only slightly. If, in particular, 
F* = 36, then we have the input —output stability of Liapunov's type. 
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Observe also that if condition (23) is satisfied, we have a uniform stability, i.e. 
the responses y are uniformly insensitive to small changes of the corresponding 
input signals. 

Let us make the following observation. Referring to the classical feedback configur­
ation discussed in Example 1, we see that if the operator N describing the system % 
satisfies the condition ||NXi — Nx2\\ ^ a||xx — x2|| for any xl9 x2 e F* with a fixed 
a > 0, then condition (22) (and consequently, (8) too), is satisfied. The number Xn 

in (10) may then be defined by 

, ||Nv! - Nv2|| 
K = sup -L f±-

(vi,v2)eSn | |v ! — v2|| 

with Sn given by (13). Hence, under the above condition on N we have the input-
output boundedness and stability provided the assumptions on X are met. 

Due to its major importance in practice, let us also briefly discuss the case of 
a linear feedback system, i.e. if the behaviour of $1 and X is governed by linear 
operators defined on F. 

Thus, for the present purposes, assume that F is a linear set and that, for any u, 
veF, 

(32) A(u, v) — Axu + A2v , B(u9 v) = Bju + B2v , 

where Al9 A2, Bl9 B2 and X are linear operators on F. If (Axu) (t) — 0 on [0, /i) 
whenever u(t) = 0 on [0, ft), and if the same is true for Al9 Bl9 Bl9 then clearly 
conditions 1, 3 and 4 in Theorems 1 and 2 are satisfied. As for condition 2, it is 
equivalent to the requirement: if v(t) = 0 on [0, \x)9 then (Xv) (t) = 0 on [0, /j + T). 
(Observe that here we necessarily have a = 0.) 

Thus, under the mentioned requirements, the feedback system has an unantici-
pative over-all transfer operator W. A little thought will persuade us that W is linear, 
too. Moreover, we can give an explicit formula for W. Actually, by (32) and (1), 
(2), (3) we have 

(33) <£ = Axu + A2X<P , y = Wu = Bxu + B2X<P . 

Using a similar method of proof as in proving Theorem 1, we can easily verify that 
the first equation (33) yields 

00 

(34) 4> = (J +Y(A2X)i)Aiu, 
i=l 

where I is the identity operator on F. Note that the infinite sum in (34) is to be 
understood in the following sense (no convergence concept is defined in F!): for any 
v and t ^ 0, 

oo m 

{(Z(A2xy)v}(t) = {(iz(A2xyv)}(t), 
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where mT> t Indeed, it is clear that, due to the conditions imposed on X and A2, 
{(A2X)k v} (t) = 0 on [0, kT) for any v e F, and consequantly, the infinite sum 
reduces in fact to a finite sum for any finite t ^ 0. 

Substituting from (34) into the second equation (33), we obtain the sought formula 
for W, i.e., 

CO 

(35) Wu = [Bi + B2X(I + £ (A2X)1) AJ u . 
i= 1 

Next, let x> discuss the input-output boundedness and stability. Assume that 
the operators A t, A2, £-, B2 and X are continuous on F*, and consequently, bounded. 
Then the conditions (8), (9) and (22) are obviously satisfied; moreover, the numbers 
kn and fin given by (10) and (12), may be defined by 

(1C\ 1 11^2*1 11**11 
(36) An = sup " - , fjin = sup xeRn \\X\\ xeRn \\X\\ 

where Rn = [x : x e F*. x + 6?, x(t) = ( 9 o n [0, nT)}. (The proof is obvious.) 
Thus, let /!.. -* A, /iw -+ /L as n —> oo and let /i/L < 1; then, as shown in the proof 

of Theorem £, the solution <P of the equation <P = A(u, K#) satisfies the condition 
j|<f>jj = M' | |0 t | | , where Mr > 0 is a constant independent of u. However, by (32), 
| |#i | | = \\A(u,"X0)\\ = ||A!u + A2KO|| = H^tull = llXtl ||u||; hence, | |$| | ^ 
^ M' IIAjJI | |M|. On the other hand, the second equation in (32) yields 

(37) \\Wu\\ = ||v|| = ||B!u + B2K<2>|| < HBJI . ||u|| + ||B2|| . HXII . ||#|| -̂  
V / II II I I - 7 II II x -- ll — II L II II II II -- II II II II ll — 

g f l f i i j + M ' | | A 1 | | . [ | B 2 | | . | X | | ) | | u j | . 

Hence, Wis i bounded operator on F*, and consequently, is uniformly continuous. 
This means that we have input-output boundedness and uniform stability. 

Finally, let as present two simple examples clarifying the application of Theorems 4 
and 5. 

E x a m p l e 3 Consider a simplified version of Example 2, i.e. let P = £,, K = j ^ , 
T = Ci, and let the functions H, M, S and K, N, Q (we drop the index for obvious 
reason) have properties stated there. Thus, the operators A, B and X are defined 
by \ 

(38) {A(u, v)} (t) = H(t, u(t), v(t)) + I K(t, T, U(T), V(T)) d t , 

{B(u, v)} (t) = S(t, u(t), v(t)) + I Q(t, T, U(T), V(T)) dT , 
Jo 

{Xv} (t) = M(t, (PTv) (t)) + fN(t , T, (Prv) (T)) dT , 

u,veF, t^O, T> 0 . 
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Let F* = £& and assume that the following conditions are fulfilled: 
Cx: Nonnegative functions h2(t), m(t) and constants hu sl9 s2 exist such that 

(39) |H(t, flf ffO - H(t, £2, n2)\ g ft-J^ - f 2| + h2(t) | ^ - iy2| , 

]S(f, Si, ni) ~ S(t, £2, rj2)\ S Si|<Si ~ f 2 | + ^ i ~ -7a| > 

| M ( U i ) - M{t,e2)\ ^ m(t) \Zt - £2| 

for every £l5 £2, f/1? w2 e E", £ e [0, oo) and 

h2 = sup /z2(f) < oo , m° = sup m(t) < oo , 
[0,oo) [O.co) 

sup |H(t, 0, 0)| < oo , sup \S(t, 0, 0)| < oo , sup |M(t, 0)| < oo . 
[O.oo) [0,oo) [O.oo) 

C2: Nonnegative functions kl5 k2, ql9 q2 and nx of arguments t, T exist such that 

(40) |K(t, T, £1? nx) - K(t, T, f 2, n2)\ g k,(t, T) | ^ - £2| + k2(t, T) \rll - n2\ , 

|Q(t, T, f t, f|x) - Q(r, T, f2, iy2)| g ^( t , T) \ZX - £2| + q2(t, T) ^ - "2 | , 

\N(t, T, {-) - N(t, T, £2)| g „,(*, T) 1^ - £2| 

for every £l9 £2, f/1? f/2 e F", 0 = T g t < oo, and 

kt = sup kf(t, T) dT < oo , ^ = sup #.(í, T) 
[ 0 , o o ) J 0 [ 0 , c o ) J 0 

ň = sup nx(ř, T) dT < oo , sup |K(t, T, O, 0)| dT 
[ 0 , o o ) J 0 [ 0 , o o ) J 0 

sup \Q(t, T, O, 0| dT < oo , sup |N(t, T, O)] 
[ 0 , o o ) J 0 [0»oo)Jo 

dт < oo , i = 1, 2 , 

< oo , 

dт < oo . 

First, we can easily verify that the operators A and B map 38 x J1 into J1 and X 
maps @ into itself. Actually, by (39) we have 

(41) \H{t,Lri)\^h^\ + h°2\r,\ + \H(t,Q,0)\, 

and by (40) 

(42) \K(t, T, fc i,)| 5S fc.(r, T) |«,| + fc2(t, r) ^l + |K(t, r, 0, 0)| . 
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Hence, for any u, v e $ and t = 0, (38) yields 

(43) \{A(u, -)} (0| á *!|u(í)| + fcSKOI + III(ř' 0. 0)| + 
r ř r ř r ř 

+ k,(t, T) |W(T)| dT + k2(t, T) |v(r)| dT + \K(t, T, 0, 0)| dT = 

Jo Jo Jo 
= ht\\u\\ + h2|H| + sup |II(t, 0, 0)1 + k^luH + k2|v|| + 

[O,oo) 

+ 
- sup j |K(t, т, 0, 0)| dт , 

[O,oo)J0 

i.e. \{A(u, V)} (0 | is bounded on [0, oo). In the same manner the boundedness of 
\{B(u, v)} (t)\ and |{Xv} (t)\ can be verified. 

Furthermore, if ul9 u2, vl9 v2 e & and t = 0, we obtain by (38), (39) and (40), 

\{A(ux, vx)} (0 ~ {A(u2, v2)} ( 0 | = h1\u1 - w2|| + h\\vx - v2|| + 

+ £ l | | W l ~~ W 2 | | + ^2 ||V1 ~~ v l \ » 

and consequently, 

(44) | |A(u l 9 v.) - A(u2, v2)|| = (fet + k,)|| ux - u2 | | + (h 2 + k2) ||v! - v2|| . 

Analogously we get 

(45) ||B(tils vx) - B(u2, v2)|| = (s, + ft) \\ux - II2 | | + (s2 + q2) \\vx - v2|| , 

and 

\\Xvt - Xv2|| = (m° + n) ||v! - v2|| . 

Hence, the conditions (22), (8) and (9) in Theorems 5 and 4 are satisfied, and B is 
a continuous operator. 

On the other hand, if n = 1 is an integer and u, vl9 v2 e $ are such that vx(t) = 
= v2(t) on [0, nT)9 we obtain for any t ^ 0, 

\{A(u, vt)} (0 - {A(u9 v2)} (0 | < h2(t) \vx(t) - v2(t)| + 

+ f k2(l,T)|v,(T)-v2(T)|dT = 

JnT 

= ||vi - v2|| sup \h2(t) + k2(t9x)dx\. , 
fepiT.oo) ( J n T J 

Hence, we have for the number A„ in (10), 

(46) A„ = A„ = sup \h2(t) + f k2(l, T) d r l . 
fepiT.oo) I JnT J 
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Similarly we obtain for \in in (12), 

(47) \Ln<L fin= sup \m(t) + nt(t91) dt 
telnT,^) I JnT 

Consequently, if lim ln. lim jln < 1, then the over-all transfer operator W maps $ 
n-*oo n-+co 

into itself and is continuous, i.e. the considered feedback system is input output 
bounded and stable. 

^Łф-JL^Ҷ^ 

V 

* * 

+ У 

ң 
Fig. 3. 

E x a m p l e 4. Consider the classical feedback configuration whose block-diagram 
is plotted in Fig. 3. Let the forward-path be formed by a time-invariant memory less 
gain / in tandem with a time-varying linear system k, and the feedback loop by 
a delayor PT in tandem with a gain g. More specifically, the gain / is governed by 
an equation x2 = f(xt), (xl9 x2 is the input and output quantity, respectively), 
where / satisfies the Lipschitz condition | / (£i) — f(£>i)\ = P|£i — ̂ |» t n e linear 
system k by x2(i) = J0 k(t, T) xx(x) dx , where sup J0 |k(t, T)| dT < OO, and the gain g 

[0,oo) 

by *2 = Q(XI)> where |g(£i) — g(^)| = g|£i ~~ £2)- O u r t a s ^ *s t o n n d a bound 
for p and q guaranteeing the input-output boundedness and stability of the system 
provided our attention is focussed on the behavior in the space 3$. 

Using our notation, we have 

(48) {A(u, v)} (t) = {B(u, v)} (t) = f k(t, т)Ды(т) + v(x)) dт , 
Jo 

{Xv}(t) = g({PTv}(t)) 

for any M , D G J and t ^ 0. 

Recalling the results of Example 3 we see that the considered system satisfies the 
conditions (22), (8) and (9). By (46) we obtain 

Ån ^ sup pï \k(t, т)| dт 
řє[fiT,oo) JnT 

and similarly, fin = q for every n. 
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Hence, 

pq < l Пm sup | |k(í, т)| dт[ 
[a->oo tє[a,oo) 

jj*MI 
is the sought condition for p and q ensuring the boundedness and stability. 
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S o u h r n 

O OBECNÝCH ZPĚTNOVAZEBNÍCH SYSTÉMECH 
OBSAHUJÍCÍCH ZPOŽĎOVACÍ PRVKY 

VÁCLAV DOLEŽAL 

V článku jsou vyšetřovány obecné nelineární zpětnovazební soustavy, které 
obsahují zpožďovací prvky. Předně je ukázáno, že operátor přenosu takové soustavy 
existuje za poměrně slabých předpokladů. Dále je dokázána věta, že když operátory 
popisující soustavu jsou v jistém smyslu kausální, že pak operátor přenosu je rovněž 
kausální. Konečně jsou vysloveny věty o stabilitě typu vstup-výstup a ohrani-
čenosti typu vstup —výstup. Použití vyložené teorie je ilustrováno na několika 
konkrétních případech zpětnovazebních soustav. 

Р е з ю м е 

ОБ ОБЩИХ СИСТЕМАХ С ОБРАТНОЙ СВЯЗЬЮ 

СОДЕРЖАЩИХ ЗАПАЗДЫВАЮЩИЕ ЭЛЕМЕНТЫ 

ВАЦЛАВ ДОЛЕЖАЛ (VАС̂ АV ООЕЕХАЕ) 

В статье рассматриваются общие нелинейные системы с обратной связью, 

которые содержат запаздывающие элементы. Прежде всего показано, что 

передаточный оператор такой системы существует при довольно слабых пред-
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положениях. Далее доказана теорема о том, что если операторы описывающие 
систему каузальны в определенном смысле, то и передаточный оператор 
каузален. Наконец даются теоремы об устойчивости типа вход—выход и огра­
ниченности типа вхоф—выход. Приложения изложенной теории иллюстриру­
ются на нескольких конкретных примерах систем с обратной связью. 

АшНог'з аМгезз: \п%. Уас\аю Оо1еш1 Ог8с, МагетаИску й$1ау С8АУ, Й т а 25, Ргапа 1. 
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