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SVAZEK 13 (1968) APLIKACE MATEMATIKY CisLo 6

ON GENERAL FEEDBACK SYSTEMS CONTAINING DELAYERS

VAcLAV DOLEZAL

(Received January 17, 1968)

The paper deals with general nonlinear feedback systems which contain delaying
elements. Theorems concerning the existence of the over-ail transfer operator and
the boundedness and stability of the response are given.

0. Consider a system 2 which has two inputs u and ¥, and two outputs y and .
We shall assume that to each pair of signals (u, ¥) applied to the inputs of 2 there
corresponds a uniquely determined pair of responses (y, @) appearing at the outputs
of A. The signals and responses are usually functions or vector-valued functions
of time. Furthermore, let X be a system having an input & and an output ¥; we shall
again assume that the response ¥ appearing at the output of X is uniquely determined
by the signal & acting on the

input. If we form an intercon- £
nection of A and X described
by the block-diagram in Fig. 1, 5 17;

i.e. if we impose the constraints
¢=J and T:?’, we obtain a

. ¢ g
new system which is usually re-
ferred to as a feedback system.
Its part consisting of the system . a ———L>—
X is then called the feedback-
loop. (Cf. [1], p. 614.) Observe
that the new system has in fact Fig. 1.
a single input u and a single
output y, because the introduced feedback-loop imposes a constraint on @ and Y.

Having built up a feedback system, we face the following problems:

1. whether the new system is meaningful at all, i.e. if for every signal u there exist
uniquely determined quantities y, @ and ¥ which satisfy the equations governing
the subsystems 2 and X;

2. whether the response y is bounded in a certain sense for any bounded signal u,
i.e. the system does not blow up for some signal;
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3. whether the response y is insensitive to small changes of the corresponding
signal u, i.¢. a small change of u gives raise to a small change of y.

If the requirement 1 is satisfied we will say that the system has an over-all transfer
operator. (This terminology is borrowed from the network-theory.) If 2 is met,
we will say that we have an input-output boundedness. Finally, if requirement 3
is satisfied, the feedback system will be called input-output stable.

In the sequel we are going to discuss such feedback systems, where either X or 2
delays signals (in a certain generalized sense). Engineering applications of such
linear systems may be found in [2].

1. Let us now turn to the exact treatment.

Let € be a linear set and let F be a non-empty system of mappings from the interval
[0, o) into €. For the sake of simplicity, the elements of F will be called functions.

Observe that taking particularly € = E (set of all real numbers), we obtain a set
of ordinary functions defined on [0, o) for F; similarly, putting € = E”, we obtain
a set of n-vector-valued functions defined on [0, o).

Referring to the introduction, F will play the role of the set of all possible signals
and responses.

Remark 1. In practice the signals and responses are usually vector-valued func-
tions, but it may happen that v, y, & and ¥ have distinct dimensions. However,
augmenting the considered feedback system by fictitious feedback-loops with zero
transmission or fictitious inputs and outputs, we can always adopt the fact that all
entities are from a single space F.

For the time being, no other assumptions on the system F but the following axiom
AT* are needed.

AI*. If v is a mapping from [0, o) into € such that, for every p > 0, there exists
a function v,e F with v(t) = v,(t) on [0, p), then ve F.

Now, we are ready for stating the following proposition.

Theorem 1. Let A and B be operators mapping F x F into F, and let X be an
operator mapping F into itself. Furthermore, let the operators A and X satisfy
the following conditions:

1. For any ueF and vy, v, € F such that v (t) = v,(t) on [0, y) (u arbitrary),
we have {A(u, v,)} (t) = {A(u, v,)} (¢t) on [0, p).
2. There exist a fixed number T > 0 and a fixed element a € F such that,

a) if x,(t) = x,(t) on [0, ) for x;,x,€F, then (Xx,)(t) = (Xx,)(t) on
[0, u + T),
b) for any x € F we have (Xx) (t) = a(t) on [0, T).
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Then there exists a unique operator W mapping F into itself such that, for any
u € F, uniquely determined elements &, ¥ € F exist which satisfy the equations

(1) @ = Aluv),
(2 VY =Xo,

(3) y = B(u, ¥)
with y = Wu.

Before turning to the proof, let us make a few comments on the above facts. Refer-
ring to the discussion carried out in the introduction we see that external behaviour
of the system % may be described by the operators A4 and B; obviously, A relates
the response @ to the pair of signals (u, ¥), and B the response y to the same pair
(u, ¥). Analogously, the operator X relates the input and output quantities on the
system X. Then, the equations (1), (2) and (3) govern the feedback interconnection
plotted in Fig. 1. Thus, if the assumptions of Theorem 1 are met, we have exactly
the situation described in problem 1; in particular, any signal u determines uniquely
the response y of the entire feedback system and we have y = Wu. Consequently,
W is called the over-all transfer operator.

Let us still explain the meaning of conditions 1 and 2 stated in Theorem 1. Condi-
tion 1 obviously states that the operator A is unanticipative in variable v; to be more
specific, the values of the response @ in an interval [0, y) are determined only by u
and values of ¥ in [0, p), i.e. at any instant ¢, the response @ is independent of the
future t > t, of V.

As for condition 2, it is a generalization of the delaying property of the system X;
in other words, X is a generalized shifting operator. It can be easily verified that
an example of such operator is furnished by the operator P, defined by (PTx) O =
= x(t — T) for t = Tand (P;x) (t) = © (zero element of F) for 0<t < T, xeF.

Proof of Theorem 1. Choose a fixed ¢lement u € F and for any mteger n=1,
define the ¢lement @, by

4) @, = A, Xb,_,),

The definition is clearly meaningful, since @, € F for any n. We are going to show
that

(5) ®,.4(t) = B(t) on [0,nT).

Actually, (5) is evidently true for n = 1. We have @, = A(u, Xa)and @, = A(u, XP,)
however, (Xa)(f) = a(t) = (X®,) () on [0 T) by 2b), and consequently, by I,
®,(t) = ®,(t) on [0, T). Next, suppose that (5) is tru¢ for some n. Then, by 2a),
(X®,, 1) (1) = (X®,) (1) on [0,(n + 1) T); consequently, by 1, {A(u, X&,,,)} (t) =
= {A(u, X®,)} (t) on [0,(n + 1) T), i.e. @,,,(t) = &,,,(t) on the same interval
and (5) is proved.
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Due to (5), define a mapping @ from [0, o0) into € by &(f) = @,(1), where nT > t.
Since for any u > 0 the mapping ¢ coincides with @, with m > u/T on [0 u),
we have ¢ € F by the axiom AI*; hence the value X® is defined and belongs to F.

Let us now show that @ satisfies the equation

(6) O = A(u, XP) .

Actually choose a t* = 0. Then we can find an integer n = 1 such that t* € [0, nT),
and @, ,(t) = ®,(t) = &(t) on [0, nT); hence, B(1*) = ¥, (*). On the other hand,
by (4) we have &,,, = A(u, X®,); however, (X®,) (1) = (X®) (¢) on [0, (n + 1) T)
by 2a), so that, by 1, {A(u, X®,)} (t) = {A(u, X&)} (¢) on [0, (n + 1) T). Conse-
quently, @,,,(t) = {A(u, X®)} (1) on [0, (n + 1) T), and particularly, ®,,(t*) =
= {A(u, X®)} (*); hence ®(t*) = {A(u, XP)} (*), i.e. (6) holds.

As a next step show that the function @ is the unique solution of (6). Thus, suppose
that a @ € F exists such that

(7) & = A(u. XB).

Then, due to 2b), both X and X& are equal to a € F on [0, T), and consequently,
by 1, ®(t) = &(1) on [0, T). Assume that, for some n = 1, &(t) = &(t) on [0, nT);
then (X@)(t) = (X&) (1) on [0, (n + 1) T) by 2a), so that, by 1, &(t) = ¢(t) on
[0, (n + 1) T). Hence &(t) = &() on [0, kT) with any k = 1 ie. & = .

Thus, equation (6) defines an operator Q mapping F into itself, i.e., for any u € F
there exists a unique @ € F denoted by Qu which satisfies (6). However, since the
equations (1) and (2) are equivalent to (6), it suffices to set W = B(., XQ.), ie.,
Wu = B(u, XQu) for any u € F and the proof is completed.

Theorem 2. Let the conditions of Theorem | be satisfied, and, in addition, let the
operators A and B satisfy the assumptions:

3. For any ve F and any uy, uy € F such that u,(t) = u,(t) on [0, 1), we have
{A(uy, v)} (1) = {A(uy, v)} (1) on [0, p).

4. For any uy, uy, vy, v;€F such that u,(t) = uy(t) and vy(t) = vy(r) on [0, p)
we have {B(u, v,)} (1) = {B(u,, v,)} (t) on [0, p).
Then the operator W is unanticipative, i.e., uy, u, € F, uy(t) = u,(t) on [0, p)

implies that (Wuy) (1) = (Wuy) (t) on [0, )

The interpretation of Theorem 2 is straightforward; if the system 2 is unantici-
pative, i.e. both A and B are unanticipative in both variables, then the over-all transfer
operator of the feedback system is unanticipative, too.

Proof of Theorem 2. First observe that conditions 1 and 3 imply the validity
of condition 4 for the operator 4. Thus, let u;, u, € F be such that u,(f) = u,(¢)
on [0, p); denote @, and @, the corresponding solutions of (6), i.e., we have &, =
= A(u,, XP,) and ¢, = A(u,, XP,). Let m be the largest integer such that mT < p.
Without loss of generality we may assume that m > 0.
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Since (X®,) (1) = (X®,) (1) = a(t) on [0, T), it follows by the above observation
that @ ,(t) = @,(1) on [0, T). Suppose that ®,(t) = ®,(t) on [0, kT) with | < k < m;
then (X@,) (1) = (X®,)(t)on [0, (k + 1) T) by 2a), and consequently, { A(u, X P,)} (t) =
= {A(uy, X®,)} (1) on [0,(k 4 1) T), ie., ®(t) = P,(t) on the same interval.
Hence, @,(1) = ®,(t) on [0, mT). Then, (X®,)(t) = (XP,) (1) on [0, (m + 1) T),
ie. also on [0, ), so that, ®,(f) = {A(u;, XP,)} (1) = {A(u,, XP,)} (1) = (1)
on [0, ).

Thus, due to (2) and 2a), ¥,(t) = ¥,(¢) on [0, p); finally, by (3) and condition 4,
y1(t) = y,(t) on [0, ). Hence, the proof.

Using the pattern of proof of Theorem 1, we can easily prove the following pro-
position.

Theorem 3. Let A and B be operators mapping F x F into F and let X be an
operator mapping F into itself. Furthermore, let the following conditions be
satisfied :

1*. There exists a fixed number T > 0 such that,
a) for any u, vy, v, € F we have {A(u, v,)} () = {A(u, v,)} (¢) on [0, T),
b) for any u, vy, v, € F such that v,(t) = v,(1) on [0, u) we have {A(u, v,)} () =
= {A(u, v)} (t) on [0, + T).
2%, If vy, v, € F and v,(t) = v,(t) on [0, p), then (Xv,) (t) = (Xv,) (¢) on [0, p).

Then a unique operator W mapping F into itself exists such that, for any u e F,
uniquely determined elements ®, ¥ € F exist which satisfy the equations (1), (2)
and (3) with y = Wu.

Movreover, if in addition the operator A is unanticipative in variable u and B
is unanticipative in both variables u and v (i.e. if conditions 3 and 4 hold), then W
is also unanticipative.

(The proof is left to the reader.)

The theorem just stated clearly concerns such feedback systems whose part A
delays signals ¥, and part X is unanticipative.
Let us now present two actual feedback systems as examples.

Example 1. Consider the classical feedback configuration plotted in Fig. 2.
Assume that F, in addition to axiom AT¥, is a linear set, that the operator N mapping
F into itself is unanticipative and X satisfies the condition 2. From Fig. 2 it is apparent
that we have here

o=Nu+%¥), y=®=Nu+Y¥):; ¥=X0o.
Hence, in the language of Theorem 1,
A(u, v) = B(u,v) = N(u + v) forany (u,v)eF x F.
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Due to the unanticipativity of N, the operator A satisfies the conditions 1 and 3,
and B the condition 4. Consequently, the considered system has an unanticipative
over-all transfer operator.

Fig. 2.

Example 2. Let F be the set of all n-vector-valued functions defined on [0, c0)
which are locally integrable. It is obvious that F satisfies the axiom AI*. Let
P(¢y, &5y &), R(ny, 12, -.my) and T(Cy, &s, -5 {,) be n-vector-valued functions
of n-vector arguments &, n; and ¢, such that, for any choice of £,(t), n(1), {,(t) € F,
i=1,2,..,k j=12,..,1, p=12,...,m, we have

P, oo 8(0) s RO, oo D), T(C1(0), - Enlt)) € F -

Furthermore, let Ht, u,v), i = 1,2,...,k, Mt,u), j = 1,2,..., 1 and S,(t, u, v),
p=1,2,..., mbe defined for t = 0 and u, v e E" and be such that

Hit, u(®), o(t)), Mt,u(®)), Syt u(t),v(t)eF

for any u(t), v(t) € F. Finally, let K{(t, r,u, v), i = 1,2, ..., k, N{t, r,u), j = 1,2, ...
...land Q,t, 7, u,v), p=1,2,..., m be defined for 0 £ v <t < o0 and u, ve E"
and be such that

j;Ki(t, 7, u(r), (7)) dr, J.;Nj(t, 7, u(x)) dt, J;Q,,(t, 7, u(c), o(z)) dr e F

for any choice of u(r), v() € F.
Let the feedback system be described by operators A, B and X, which are defined
by

{4, 0)} (1) = P6(1), &a(0), - &) 5

494



where

&) = Hy(t, u?), o(t)) + jtKi(t, t,u(t), v(r))dr, t=0, u,veF,
{B(u, 0)} (1) = T(L,(2), (1), - GulD))

where .
Cp(t) = S,,(I, u(t), U(l)) +J Qp(t, T, u(t), U(‘L’)) dt, t=20, u,veF,
and
{Xv} (t) = R(”Il(t)a ’12(‘7): e Wl(f)) >
where

m®=MMGme+£M@M%M®Nn

t=>0,veF and Tj, j=1,2,..., 1 are fixed positive numbers. (As above, P; denotes
the shifting operator.)

It is obvious that, due to assumptions made above, the operators A4 and B actually
map F x F into F and X maps F into itself. Moreover, it can be easily verified that
operators A, B and X satisfy the conditions 1 through 4 given in Theorems 1 and 2.
(Note that 2 is satisfied with T = min T; and a = R(#(t), 7i,(1), ..., 7,(t)), where

1 1

i) = M(t,0) + fi N(t, 7, 0)dr.) Hence, the considered system has an unantici-
pative over-all transfer operator.

Let us now turn to the discussion of the input-output boundedness and stability.
Since here it is necessary to measure somehow the size of a signal or response, we
have to introduce a metric or a norm into a subset of F. Thus, let us state the fol-
lowing requirement.

A2*. Let F satisfy the axiom AI* and, in addition to it, let F contain a subset F*
which is a linear normed space possessing the property:
If, for a function ve F, a number A > 0 exists such that for any p > 0
there exists a v, € F* with v,(t) = v(t) on [0, p) and |v,| £ A, then ve F*
and uv” < A
Observe that the commonly used linear normed spaces satisfy the axiom A2%,
Actually, let F be the set of all measurable n-vector functions defined on [0, o0).
a) Let # = F consist of all n-vector functions x such that the norm |x(¢)| is bound-
ed in [0, ), and let x| = sup Ix(t)l, (here, |cl signifies a norm of a constant
te[0,0)

vector c); then, clearly, 4 is a linear normed space. Next, let v € F and let a number
A > 0 exist such that, for any p > 0, we can find a v,e # with v,(t) = v(r) on
[0, u) and |v,| £ A. Then

sup [o(0)] = sup [0,()] = sup o, (0] = [,] < 4
[0,n) [0,u) [0,0)

thus, sup |o(1)] < 4, i.e. ve Z and |[v]| £ A. Hence, A satisfies the axiom A2*.
[0,00)
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The situation is the same in the case of the space C = Z consisting of all continuous
vector functions with the above norm.

b) Let p> 1 and let L, = F consist of all vector functions x such that ¢ |x(¢)|? dt <
< oo; putting ||x| = (§§ [x(¢)|? d7)*/? for x € L,, then, as known, L, is a linear
normed space with the usual operations of addition and multiplication by a constant.
Thus, let again v e F be such that a fixed A > 0 exists and for any p > 0 we can
find a v, € L, with v,(t) = v(t) on [0, p) and ||v,|| < A. Then we have

j:lv(t)lp dt = j:\”u(t)lp dt < f‘“u(t)\” at = o, = A7

consequently, ¢ [o(f)|"dt < A7, i.e. ve L, and |v| £ A. Hence, the axiom A2*
is satisfied.

A similar reasoning will persuade us that the space L, consisting of all essentially
bounded vector functions x with the norm ||x| = ess sup |x(¢)|, also satisfies A2*.

Now, we can state a proposition on boundedness.
Theorem 4. Let the operators A, B and X satisfy the conditions of Theorem 1

and be such that A and B map F* x F* into F* and X maps F* into itself. Further-
more, let constants C,, C, exist such that

(8) 14(u, v) = A, v2)]| = Cifloy = s
for any u, vy, v, € F*, and
©) | X0, = Xv,|| £ Cofloy = s

for any vy, v, € F*.
For every integer n = 1 denote

(10) Ay = sup 4w, v,) = Au, vs)] ,
(4,01,02)€Sn ”01 - ”2”

Where

|

(11) S, = {(u, vy, v5) tu, v, 0, € F*, Yoy £ 0,, vy(f) = vy(t) on [0,nT)},
and
1) = sy = Xul

3
(v1,v2)e8n nl’l - UZ”
where

(13) S, ={(vpv) v, v,€F*, vy %0y, vy(t)=0,(f) on [0,nT)}.

Then, if lim A, .lim p, < 1, the operator W maps F* into itself.

n—*oo n— oo
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Moreover, if a nonnegative function P(&, n) nondecreasing in n exists such that
(14) |2(u, 0)|| < ([ul. [o])
for all u, ve F*, then, for any u € F*,

(15) [wul| < p(Jul, M| A(w. XO)] + X0

i

)

where M > 0 depends only on A and X, and O is the zero element of F*.

Proof. First, from (11) and (13) it follows that S, > S,,, and S, > §,,, for
any integer n = 1; consequently, A, = 4,4+, and g, 2 p,.;. Moreover, due to (8)
and (9) we have C; = A, and C, = p, so that the proper limits lim 2, and lim g,
actually exist. e nme

Next, choose a p e F*; referring to the proof of Theorem 1, let us construct the
functions @, by @, = A(u, X®,_;), n =1,2,3,..., P, = O (zero element of F¥).
Observe that here we take advantageously O for @,; it is clear that all properties
of functions @, discussed in the proof of Theorem 1 are preserved and, in particular,
the sequence @, defines the solution @ of the equation ¢ = A(u, X®) in the same
way as before.

In view of the assumptions made above we have @, e F* for every n = 0. Next,
put

(16) - V=0, —®,_,, n=1,273,..
By (5) we have v,(t) = @ on [0, (n — 1) T); moreover, v, € F* and
(17) ¢"=.z"v,., n=123,...
On the other hand, we can easlii; verify that
(18) [l < CotaZ o Aebtstty ot | @] = 2.3, ...

with @, = A(u, XO) and p, = 1. Actually, (18) is true for n = 2 because |v,| =
= |®, — @, = |A(u, X®,) — A(u, XO)||; however, since X®, = XO =a on
[0, T) by 2b), we have by (10),

lv.]l = 4| x®, - X0 < e [ o) = WG|y -

Next, assume that (18) is true for some n > 2; then we have
vl = @001 = @4l = 1A X0,) — A X0, ).

Since @,(t) = &,_,(¢) on [0, (n — 1) T), it follows by 2a) that (X®,) (t) = (X&,—,) (£)
on [0, nT), and consequently, by (10) and (12),

H"n*—l“ g in”X(pn - XQH‘!” é lnl“ln—lﬂgpn - (Dn—1|| é
< Codydy oo gy . /ln-1”¢1” .

Hence, the estimate (18) holds for any n > 2.
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Now, by (17), we have for any n > 1,

n n—1 k=2 k-1
(19) |2 = Elvl =+ % T14,1Tw) 94
i=1 k=2 j=1 "p=1
However, due to the assumption lim A, . lim p, < 1,
o ket ko2
(20) M =1+Cy TI4Tu, <.
k=2 j=1 ‘p=1

Consequently, for any n = 1,
(21) |2.] = Mm@,

On the other hand, for any % > 0 we have @(t) = ®,(¢) on [0, x) whenever nT > x;
hence, by the axiom A2*, @ € F* and ||®|| < M’|®,||. Thus, summarizing our results,
for any ue F* we have ® e F*, and consequently, Wu = B(u, X®) € F* by the
above assumptions. Hence, the first assertion of Theorem 4 is proved.

As for the second assertion, it suffices to realize that |X®| £ |[X& — XO| +
+ |x0O| £ C,|®| + |X©]| and introduce this inequality into (14).

If in Theorem 4 the assumption “A, B and X satisfy the conditions of Theorem 1”
is replaced by “A4, B and X satisfy the conditions of Theorem 3°°, the assertion
remains true without any change; the proof is the same except for some slight modific-
ations and is left to the reader.

Remark 2. The proof just carried out suggests that the axiom A2* may be replaced
by the following requirement:
A3*, The set F contains a complete linear normed space F*.

Actually, define the elements &, as before and v, by (16); then in view of (19) and

(20), the series ) v; converges in the space F*, because Y |[v;]| < oo. (Cf. [3].)
i=1 i=1

Hence, there exists an element @ € F* such that |® — &,|| — 0 as n - co. However,
we can easily show that @ is a solution of (6); indeed, by (8) and (9) we
have || A(u, X®) — A(u, X®,)| £ C,C,|P — &,| - Oasn — oo. Thus, A(u, XP,) —
— A(u, X®) in F*; the relation (4) concludes then the proof.
Note also that the particular spaces 4, L, and L, mentioned above are complete.
Let us now state a proposition on the input-output stability; to this purpose,
we will require F to satisfy the axiom A3*.

Theorem 5. Let the conditions of Theorem 4 be satisfied with the exception of (8),
which is replaced by: Constants C, C, exist such that

(22) [AQu 1, v1) = A(uz, v2)]| £ Clluy — s + CyfJoy = v,

or any u,, u,, vy, v, € F*. Furthermore, let the operator B be continuous at every
Yy Uy, Uy, Uy
point (u, v) € F* x F*; then the operator W is continuous at every point u € F*.
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If, in addition, there exist an H > 0 and b e F* such that
(23) A, b)) < 1

for every u e F* and B is uniformly continuous, then W is uniformlr continuous,
too.

Proof. We will use the notation and results of the preceding procis Let u € F*
and let @ be the corresponding solution of the equation ® = A(u. X@). Then, due

to Remark 2, I’d) - ID"” —0asn— w,ie &, > @in F* Thus, by (17, ¢ = :)_: Vi
and b
(24) b - @, = 2 Vi

i=nt1

consequently, by (18)

>

(3) lo =l =( 3 a)la

i—1 i—2

where ¢; = C, []4; [] . Observe that the ¢.’s are independent of .
ji=1 k=1

Analogously, if # € F* and & is defined by & = 4(i7, X&), we hav=

(26) 18- 8l <( 3 a)|a,).

However, @, = A(u, X0) and &, = A(#, XO) o that, by (22).

[2,] = |A(@ x0) ~ A(u, X0)| + HA(u,X@)

5 Ol - uf < (A x)].
Hence, by (25) and (26),
@) =]+ 18- & = 2 a) Raw, x6)| + clu - af}.
. Observe that if (23) is satisfied, then
|4, XO)| < A X0) = Aw, B)]| + 4G, b)| < c.|x0 - 2] + H,

and consequently,
@8) Je—o]+[F-8]=( % ) 2C|xe - p| - 211 + Cfu - a]}.

On the other hand, we can write

(29) |6 - Bl < |20= @]+ |2~y 15 -3,

|
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however, using repeatedly (22), (9) and the equations &, = A(u, X&,_,) and &, =
= A(#, X&,-,), we obtain

(30) |2, = &, = [A(w, XP,-1) — A(@ X&,-)| =

< Clu ~ @ + C|X,_, ~ X&,_,| = Clu— i + C,Cyll -, — &, <
S SClu—-a|{l+CC+CiICs+ ...+ CTPCy + ey o, - By
Since |®, — &,| = |A4(u, XO) — A(d, XO)| < , we have finally,

(1) |#, = ] = CU+ZCCHW—W

Now, let u € F* be a fixed element, and let ¢ > 0. Since the series Z q; converges,
=1
then, by (27), we can find n so large that, for any @ with |u — @] < 1, we will have
-1
|# -, +|®— B, <ife If, for this n, we let [lu — a| < Je.C™ {1 + Z cici},
i=1

then we will have || — (5[[ < & by (29). Hence, the operator Q assigning to each
i: € F* the solution ® € F* of @ = A(u, X(b) is continuous at u. Since X is continuous
by (9), then the operator W defined by Wu = B(u, X Qu) is continuous, too. Hence,
the proof.

Finally, if (23) holds and B is uniformly continuous, then, according to (28),
for an £ > 0 we can find n > 0 such that |[¢ — &,| + |& — &,| < 1e for any
pair, u, i € F* with |lu — d|| < 1. Then |®, — &, can again be made less than
e for any u, @i € F* with |Ju — @] < 8, where § is sufficiently small. Hence,
|| — #| < e whenever |u — @] < min [1, §]; the rest of the proof is obvious.

Remark 3. Theorem 5 obviously remains true if the operators 4, B and X satisfy
the assumptions of Theorem 3 instead of those of Theorem 1.

Let us now discuss the interpretation of the above results in the language of feed-
‘back systems. The meaning of Theorem 4 is certainly straightforward; if the parts
9 and X of a feedback system satisfy the conditions of Theorem 4 and if, for example,
F* = 4, then every bounded signal u produces a bounded response y. If even condi-
tion (14) is satisfied, a boundary for |y| is available. As for the conditions imposed
on lim 4, and lim p,, they express the fact that, crudely speaking, both systems 2

n— o n- o
and X attenuate the signals sufficiently as t — co. (To be more accurate,  attenuates
the signals in the path input ¥ —output @.)

Next, it is obvious that the concept of continuity of the operator W grasps the idea
about the input — output stability; actually, if u € F* is a signal acting on a feedback
system, which satisfies the conditions of Theorem 5, and y = Wu is the corresponding
response, then for every & > 0 a 6 > 0 exists such that |y — || = | Wu-Wii| < ¢ when-
ever |u — d|| < 4, ie. a small change of u affects y only slightly. If, in particular,
F* = 28, then we have the input—output stability of Liapunov’s type.
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Observe also that if condition (23) is satisfied, we have a uniform stability, i.¢.
the responses y are uniformly insensitive to small changes of the corresponding
input signals.

Let us make the following observation. Referring to the classical feedback configur-
ation discussed in Example 1, we see that if the operator N describing the system <
satisfies the condition |[Nx; — Nx,| < afx, — x,| for any x,, x, € F* with a fixed
a > 0, then condition (22) (and consequently, (8) too), is satisfied. The number 4,
in (10) may then be defined by

2= sup INvi = Nus|
(v1,02)e8n “01 - vZH

with S, given by (13). Hence, under the above condition on N we have the input-
output boundedness and stability provided the assumptions on X are met.

Due to its major importance in practice, let us also briefly discuss the case of
a linear feedback system, i.e. if the behaviour of U and X is governed by linear
operators defined on F.

Thus, for the present purposes, assume that F is a linear set and that. for any u,
veF,

(32) A(u,v) = Ayu + A,v, B(u,v) = Byu + By,

where A,, 4,, By, B, and X are linear operators on F. If (4,u) (f) = @ on [0, )
whenever u(f) = @ on [0, p), and if the same is true for 4,, B,, B,, then clearly
conditions 1, 3 and 4 in Theorems 1 and 2 are satisfied. As for condition 2, it is
equivalent to the requirement: if v(f) = © on [0, p), then (Xv) (1) = @ on [0, u + T).
(Observe that here we necessarily have a = 6.)

Thus, under the mentioned requirements, the feedback system has an unantici-
pative over-all transfer operator W. A little thought will persuade us that W is linear,
too. Moreover, we can give an explicit formula for W. Actually, by (32) and (1),
(2), (3) we have

(33) ® = Au + A, X0, y= Wu=Bu + B,XP.

‘Using a similar method of proof as in proving Theorem 1, we can easily verify that
the first equation (33) yields

(34) & = (I + ) (4,X))Au,

i=1
where [ is the identity operator on F. Note that the infinite sum in (34) is to be
understood in the following sense (no convergence concept is defined in F!): for any

vandt = 0,

(3 (4005} () = (£ (400} ().

501



where mT = t Indeed, it is clear that, due to the conditions imposed on X and 4,,
{(4,X)* v} (t) = © on [0, kT) for any ve F, and consequantly, the infinite sum
reduces in fact to a finite sum for any finite ¢t = 0.

Substituting “rom (34) into the second equation (33), we obtain the sought formula
for W, ie.,

(35) Wu = {B; + B,X(I + 3 (4,X))) A,} u.
i=1

Mext, let ws discuss the input-output boundedness and stability. Assume that
the operators A4,. A,, B,. B, and X are continuous on F*, and consequently, bounded.
Then the conditions (8). (9) and (22) are obviously satisfied; moreover, the numbers
2, and p, given by (10) and (12), may be defined by

(36) = sup HAZXH i, = sup M ,
xekn x| xR ||x]|
where R, = [ 1 xe F*. x % 0, x(t) = © on [0, nT)}. (The proof is obvious.)

Thus, let ©, —= A4, p, » pwas n —> oo and let Ap < 1; then, as shown in the proof
of Theorem ¢, the solution @ of the equation @ = A(u, X®) satisfies the condition
|@!l < M| . where M’ > 0 is a constant independent of u. However, by (32),
0.1 = lCs. XO)] = [y + 4:X6] = ] £ [4,] [uf: hence, || <
< M’ |A,]| | . On the other hand, the second equation in (32) yields

G7) Wl = [y = [Biu + BoX| < B - [u] + [B.] - [X] - [ 2] =
< (1B:] + Ml - 1Bo]] - [ X]D) [u] -

Hence, Wis 1 hounded operator on F*, and consequently, is uniformly continuous.
This means that we have input-output boundedness and uniform stability.

Finally, let 115 present two simple examples clarifying the application of Theorems 4
and 5.

Ezample 3. Consider a simplified version of Example 2, i.e. let P = &, R = y,,
T -= {,, and (et the functions H, M, S and K, N, Q (we drop the index for obvious
reason) have properties stated there. Thus, the operators A, B and X are defined
by \

(38) {A(u, v)} (1) = H(t, u(t), v()) + JMK(t, 7, u(t), v(7)) dt
(B(u, o)) (1) = S(t, u(t), of0)) +Jf 0(t, 7, u(x), o(2)) dr |

0

(X0} (1) = M5, (Pyo) (1) + f N(t, 7, (Prv) (1)) de »
. u,veF, t=0, T>0.
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Let F* = 7 and assume that the following conditions are fulfilled:
C,: Nonnegative functions h,(t), m(t) and constants h,, s,, s, exist such that

(39) [H(t, &3smi) — H(t Eosm)| S W&y = &) + ho(t) |ny = ma] 5
S(t, &1, 1) = S(t Eaoma)] S 54y — & + 8oy — ma
IM(z, &) — M(t, &) = m(t) &, — &)
for every &,, &5, 1y, 1, € E", 1€ [0, o0) and

h3 = sup hy(t) < oo, m® =supm(t) < o,
[0,) [0,c0)

sup [H(1,0,0)| < oo, sup |S(1,0,0)| < oo, sup|M(t,0)| < oo .

[0, ) [0,0) [0,)
C,: Nonnegative functions ky, k3, 41, g, and n; of arguments ¢, T exist such that
(40) IK(ta T, 619 7’1) - K(t9 T, 62’ rll)l g kl(ta T) lél - EZI + k2(t9 T) ['71 - ’12‘ ’

[0t 7, & my) = Q7 Ea )| < g1, ) €, — & + qa(t, 1) |1y — 12
IN(t, 7, &) = N(t, 7 &)| < ny(t,7) [, = &

IA

for every &, &5, 14,1, € E", 0 £ 1 £ ¢ < o0, and

t t
Ei=supj k{t,7)dt < o0, qi=supf g{t,7)dt < o0, i=1,2,
0 [0,2)J o

t t
fi = sup j ny(t,7)dt < o, sup J |K(I, 7,0, 0)[ dt < 0,
[0,) J o

t t
sup f [Q(t, 17,0,0/dr < o0, sup J IN(t, =, 0)] dr < © .
[0,0) ) o

[0,2) Jo

First, we can easily verify that the operators 4 and B map # x £ into # and X
maps # into itself. Actually, by (39) we have

(41) |H(1, & n)| < hulé] + hSJn| + |H(t, 0, 0)],
and by (40)
(42) |K(t, 7, & )| < ka(t,9) €] + k(2 7) [n] + [K(2, 7, 0, 0)] .
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Hence, for any u, ve % and t 2 0, (38) yields
(43) [{AQw, o)} (O] < hyJu(t)] + BYJo(e)] + |H(1. 0, 0)] +

+ Jﬂ ky(t, 7) Ju(z)| dr + J: ky(t, 7) Iv(r)‘ dr + J” |K(t, <, 0, 0)| dr <

0

< il + ] + sup 111 0.0) + o fu] + Ko +

t
+ sup J |K(t, 1, 0, 0)‘ dr,
0

[0,00)

ie. [{A(u, v)} ()| is bounded on [0, c0). In the same manner the boundedness of
[{B(u, v)} (1)| and |[{Xv} (1)] can be verified.
Furthermore, if uy, u,, vy, v, € # and t = 0, we obtain by (38), (39) and (40),

A, o)} (1) = {A(uz, 02)} (O] = hluy = wa]| + h2flo, — vz +
+ l;lﬂu, - “2” + lzsz1 -0,

)

and consequently,

(44) 4@ v1) = Az, v3)]| < (b + k)| uy = wa]| + (b3 + ko) o, = vs .
Analogously we get

(45) |B(us. v1) = Bluz, va)|| < (51 + dy) Juy = w2 + (52 + 32) JJor — 02,

and
[Xv, — Xv,| £ (m° + A) [Jo, — v, -

Hence, the conditions (22), (8) and (9) in Theorems 5 and 4 are satisfied, and B is
a continuous operator.

On the other hand, if n = 1 is an integer and u, vy, v, € # are such that v,(1) =
= v,(t) on [0, nT), we obtain for any ¢ = 0,

A, 01)} (1) = {A(u, 02)} ()] £ 7o) o4(r) = va(1)] +
+ J't ky(t, 7) [0a(7) \—- vy(7)]dt

nT

< o = vl sup {hz(t) ; J " s, r)dr}. ,

e[nT, ) nT

Hence, we have for the number 4, in (10),

(46) « A, =1,= sup {hz(t) + -r ky(t, ) dr}.

te[nT, ) nT
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Similarly we obtain for y, in (12),

(@) b S = sup {mm " j m(e .

re[nT,oo) n

Consequently, if lim 4, . lim 7, < 1, then the over-all transfer operator W maps #

n—> oo n— oo
into itself and is continuous, i.e. the considered feedback system is input-output
bounded and stable.

u u+y k y

!
g™

R

Fig. 3.

Example 4. Consider the classical feedback configuration whose block-diagram
is plotted in Fig. 3. Let the forward-path be formed by a time-invariant memoryless
gain f in tandem with a time-varying linear system k, and the feedback loop by
a delayor Pr in tandem with a gain g. More specifically, the gain f is governed by
an equation x, = f(x;), (xy, x, is the input and output quantity, respectively),
where f satisfies the Lipschitz condition |f(¢,) — f(&,)| < p|&, — &), the linear
system k by x,(f) = [o k(t, 7) x,(r) dr, where sup §6 |k(t, 7)| dt < o0, and the gain g

[o,
by x, = g(x,), where |g(¢,) — g(&,)| < qlé, — 521 Our task is to find a bound
for p and g guaranteeing the input—-output boundedness and stability of the system

provided our attention is focussed on the behavior in the space 4.
Using our notation, we have

@) (w0} (0 = (B0} )= [ Ko a0 + ofo)
(0} () = a({Pro} ()

forany u,ve Zand t = 0.
Recalling the results of Example 3 we see that the considered system satisfies the
conditions (22), (8) and (9). By (46) we obtain

t
Iy £ sup pf |k(t, 7)| dt,
te[nT,) aT

and similarly, u, < g for every n.
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Hence,

pq<{lim sup J:[k(t,r)|dr}_l

a—- o te[a,o)

is the sought condition for p and g ensuring the boundedness and stability.
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Souhrn

O OBECNYCH ZPETNOVAZEBNICH SYSTEMECH
OBSAHUJICICH ZPOZDOVACI PRVKY

VAcLAV DOLEZAL

V Cldnku jsou vySetfovdny obecné nelinedrni zpétnovazebni soustavy, které
obsahuji zpoZdovaci prvky. Pfedné je ukdzdno, Ze operdtor pfenosu takové soustavy
existuje za pomérné slabych pfedpokladil. Ddle je dokdzdna véta, Ze kdyZ operdtory
popisujici soustavu jsou v jistém smyslu kausdlni, Ze pak operdtor pfenosu je rovnéz
kausdlni. Konecn€ jsou vysloveny véty o stabilité typu vstup—vystup a ohrani-
genosti typu vstup—vystup. Pouziti vyloZené teorie je ilustrovdno na nékolika
konkrétnich ptipadech zpétnovazebnich soustav.

Pe3iome
\

OB OBIINX CUCTEMAX C OBPATHOI CBS3bIO
COOEPXAIUX 3AITA3ABIBAIOMIVE DJIEMEHTHI

BALIJIAB JTOJIEXKAJI (VACLAV DOLEZAL)

B craThe paccMaTpuBaOTCS OOLUME HEJIMHEHHbIE CUCTEMBbI C OOPATHOM CBsI3bIO,
KOTOpbIE CONEPXKAT 3ama3jplBarolve 3IeMeHThl. [IpexiIe BCero MOKa3aHo, 4TO
HEPeIaTOYHBII OMEePaTOp TAKOW CHCTEMBI CYLIECTBYET IIPU JOBOJIBHO CIAOBIX mpen-
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nosoxeHusix. Jlaiee moka3aHa TeopemMa O TOM, YTO €CJTU ONEPATOPHI ONMUCHIBAIOLINE
CHCTEMY Kay3albHbI B OIpEIEJEHHOM CMBbICJIIE, TO M TEPEeJaTOYHBIH OMepaTop
kaysasreH. HakoHell 1atoTcst TeopeMbl 06 yCTOMYUBOCTH THIA BXOJ-—BBIXOA M Orpa-
HHYEHHOCTH THHA BXO()—BbIXOH. [TpUIIOXKEHUS M3JTOXKEHHOH TEOPHU MILTIOCTpPUPY-
FOTCSL HA HECKOJIbKMX KOHKPETHBIX NMpHMeEpax CUCTeM C 06paTHOI CBA3bIO.
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507



		webmaster@dml.cz
	2020-07-02T00:18:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




