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SVAZEK 13 (1968) APLIKACE MATEMATIKY CisLo 6

PERIODIC SOLUTIONS OF THE FIRST BOUNDARY VALUE
PROBLEM FOR A LINEAR AND WEAKLY NONLINEAR HEAT
EQUATION

iVENCESLAVA STASTNOVA - OTTO VEIVODA

(Received October 17, 1967)

The existence of periodic solutions for a heat equation (even strongly nonlinear)
with some boundary conditions has been studied recently in many papers, cf. [ 1]—[5].
Here, we shall investigate the existence of w-periodic solutions of the problem

(0.1) Uy =ty + cu + g(t, x) + & f(t, x, u, uy €,
(0.2) u(t, 0) = ho(t) + exolt, u(t, 0), u(t, n), €) ,
u(t, m) = hy(t) + exy(t, u(t, 0), u(t, n), €),
where g, f, ho, hy, o, x; are w-periodic in t. Our assumptions differ from those used
in the papers quoted in two directions:

(1) ¢ need not be less than 0,

(ii) there is a limitation on the magnitude of the function f but not on its growth
with respect to u or u,. '

In the sequel we shall apply two theorems of Functional analysis whose proofs
may be found e.g. in [6].

Theorem 0.1. Let the equation
(0.3) P(u,s)(e) = —u + L(s) + = + ¢ R(u) (5) = 0

be given, where z € W and P(u, s) (¢) maps the direct product W x & of B-spaces
U and © into U for every value of the numerical parameter ¢ from € = {0, &),
g9 > 0. Let Le[S — U]. Let R(u)(¢) have a %-derivative R)(u) (8) and R(u) (¢)
together with R,(u) (¢) be continuous in u and ¢ for any ue W and ¢ € €.

Then to every 5€ S there exist numbers 6 > 0 and ¢*, 0 < ¢* < ¢, such that the
equation (0.3) has a unique solution U(s) (¢) € U for each s € S(3; 6) (S(3; &) denotes
the sphere with the center in § and of the radius 8) and ¢ € 0, e*). This solution
has a %-derivative U(s) (¢) continuous in s and .
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Theorem 0.2. Let the equation
(0.4) G(p)(e) =0
be given, where G(p) (8) maps a B-space P into a B-space Q for all ¢ € €. Let the
following assumptions be fulfilled.
(i) The equation G(p,) (0) = 0 has a solution p, = pg e P.
(ii) The operator G(p) (¢) is continuous in p and & and has a 9-derivative G)(p) (¢)
continuous in p and ¢ for p e S(pg, 6), e€ €.

(iii) There exists
H = [Gy(po)(0)] ' e[Q— $].

Then there exists e* > 0 such that the equation (0.4) has for 0 < & < &* a unique
solution p = p*(¢) € P continuous in & such that p*(0) = pg.

1. THE LINEAR CASE

Denote X = (0, n) and T = (0, w).
Let the problem (2,) be given by

(1.1) Uy = Uy + cu + g(t, x),
(1.2) u(t, O) = ho(t) s u(t, n) = h,(t) )
(1.3) u(0, x) = u(w, x),

while the following assumptions are fulfilled:

(1) g(t, x), gu(t, x), ho(t) and h(f) are continuous and bounded for x € X and
ted;

(«7,) g(t, x), ho(r) and h(t) are w-periodic in ¢ for x € X.
First, let us introduce the associated initial-boundary value problem (.#,) given
by (1.1), (1.2) and
(1.4) u(0, x) = o(x)
where (p(x) satisfies the assumption
(73) @(x) is continuous in X.

We shall seek a classical solution of (.#,) (or (2,), respectively) i.e. a function

which is bounded on ¥ x X, continuous on T X E3 except for points [0, O] and
[0, 7], fulfils (1.2) and (1.4) (or (1.3), respectively), has continuous derivatives u,,
u, on T x X and satisfies there the equation (1.1).
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Denote
ow© + o0
—(v+n)?/t

(1.5) Ot v)=1+2Y e ™" cos 2mnv = — Ye ,
n=1 \/(ﬂft) )

. 1 t v-—2_ t v+ ¢
L6 Gt:0 )=~ |o(L. " =) oL, " 8.
(€) (0.0 2n|: <7r2 2n> (nz 2n >]

It may be verified by a standard method that the unique solution of the problem:
M) is given b
0 y

(1.7)
u(t, x) = e”jnG(l; x, ) o(0)dl + e”Jq Jne_“ G(t — 1;x,0) g(r, {)dC dr +
oJo

0

t — —
I B
n 0o 0Ox n? 2n

t
_1 e | ho(r) e““i e i , X\ de ,
T 0 0x n?  2n

u(0, x) = o(x).

(The uniqueness follows readily from the maximum principle.)

Hence, a solution of (2,) exists if and only if there exists a function ¢ (fulfilling
(#73)) such that the solution of (.#,) satisfies (1.3) i.e. if and only if there exists ¢
such that the equation

(1.8) .
o(x) = JRG(w; x, () @(0) dl + Jwec(“’_”)jnG(w —1;x,0) g(r, ) d{ dr —

0 0 0

L[ co-1 0 w—-1T X
——| e ho(t) — @ , — | dt +
J 0()(7x 2 ' on

T Jo T
-l—1 ec(“’—t)hl(‘t)ﬁ@ a)—‘c’n—x dr
TJo 0x n? 2n

holds.

This equation represents the Fredholm integral equation of the second kind,
whose kernel and the right-hand side are of class C* for x, { € (0, =) and are bounded
for x, { €0, n). By the third Fredholm’s theorem this equation has a solution
if and only if the right-hand side is orthogonal to each solution i of the adjoint
integral equation i.e.

(1.9) W(x) — e f Glo: x, ) Y(0) dC = 0.
0
(We write G(w; x, {) instead of G(w; {, x) as the kernel is symmetric.)
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Note that the integral in (1.9) tends to 0 for x — 0 and x — n. Thus, for every
continuous solution it is Y(0) = y(x) = 0. Further in view of G(w; x, {) € C* every
continuous solution of (1.9) is of class C2. Hence, it may be sought in the form
of a uniformly convergent series

(1.10) #(x) = Y.y sin k.

Because of

'_]-_ + o0
2 )] .

inserting (1.10) into (1 9) we get

e gin k(x + n)dn = e sin kx

(1.11) Yl — ™)y =0, k=12,...

We have to distinguish two cases.

(1) ¢ + k* for all integers k,

(ii) ¢ = I* for some integer [.

First, let us consider the case (i). Then the only solution of (1.9) is the trivial
solution and hence the equation (1.8) has a unique solution for any right-hand side.

According to properties of the integrals in (1.8) for x — 0 and x — =, this solution
fulfils the conditions ¢(0) = ho(0), ¢(n) = h,(0). (Hence, the solution u(t, x) of
(2,) is even continuous on T x X.) Thus, the following theorem holds.

Theorem 1.1. Let the problem (2,) be given, let the assumptions (/) and ()
are fulfilled. Let ¢ # k*, k = 1,2, ... Then the problem (2?,) has a unique classical
solution u(t, x) = U(¢) (¢, x) defined by (1.7), where ¢ is determined as the unique
solution of (1.8).

Now let us return to the case (i), when ¢ = [2. Then (1.9) has precisely one linearly
independent solution Y(x) = sin Ix. Making use of it we find after some arrangements
the condition of solvability of (1.7) in the form

(1.12) lj [ho(t) + (= 1)"* ' hy(r)] de + j j g(r, ) sin I d{ dr = 0.
0 oJo
This condition being satisfied, all solutions of (1.8) are given by

(1.13) o(x) = dsinIx + ¢(x),

where d is an arbitrary real constant and ¢(x) is a particular solution of (1.8). Hence,
the following theorem takes place.
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Theorem 1.2. Let the problem (2,) be given. Let the assumptions (</;) and (Z,)
be fulfilled. Let ¢ = 12, | is an integer. Then there exists a solution of (Po) if and
only if (1.12) holds. This condition being satisfied, the solution U(p) (1, x) of (2,)
is defined by (1.7) where ¢ is determined by (1.13).

2. WEAKLY NONLINEAR INITIAL-BOUNDARY VALUE PROBLEM

Let us consider the problem (/%l) given by

(2.1) Uy =ty + cu + g(t, x) + e f(t, x, u, uy ),
(2.2) u(t, 0) = ho(1) + & xo(t, u(1, 0), u(t, ), ),

u(t, ) = hy(t) + € x,(t, u(t, 0), u(t, n), €) .
(2:3) u(0, x) = ¢(x).

Let besides the assumptions (7, ), (%) the assumption
(o 4) The functions f(t, x, u, v, &) and y (1, o, B,£) (j = 0, 1) together with their deriv-
atives of [0x, of [ou, Of [0v, 0*f |ou ox, 0*f[ov ox, dy;/dw, Ox,[0p are continuous
and bounded forte T, x € X, u,v,0, fe R = (— 0, +o0)andee € = <0, &),
gy > 0;
hold.

Theorem 2.1. Let the problem (M) be given. Let the assumptions (o), ()
and (o4 ) be fulfilled. Then to every @ e C (0, n)) there exist numbers > 0 and
e*,0 < e* < &, such that for all e € €0, &*) and all ¢ € S(@, ) there exists a unique
classical solution u*(t, x) = U(e) (t, x) (¢). For ¢ e S(¢,8) the linear operator
U(o) (¢) has a %-derivative Uy(¢) (¢), which is together with U(e) (¢) continuous
in @ and e.

Proof. It may be easily verified that the problem (.#) is equivalent to the integro-
differential equation '

(2.4) P(u, ) (¢) (t, x) = —u(t, x) + Q"jnG(t; x,{) o(0)d +

0

+ J‘t jnec(‘“‘) G(t — 5 x, 0) [9(r, ) + e f(x, {, u(z, ©), uy(z, §), e)] d¢ dt —

0JO

1" -
— _J Pl 13_ @(i . T , 21) [ho('c) + ¢ XO(T, u(r, O), u(r, n), 8)] dr +
b1

nJ)o o0x n

1 t—1T mw—X

N _J"eccz-o 2 @< S >[h,(r) + & y(z, u(t, 0), u(z, 7). )] dr = 0 .

T Jo 0x n
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It is readily seen that any solution u of (2.4) which is together with u, and u,, conti-
nuous and bounded on T x X possesses u, continuous and bounded on T x X
at the same time. Therefore it suffices to seek a solution of (2.4) in the B-space
of functions u(t, x) continuous and bounded together with u, and u,, on T x X
and with the norm

|u]l = sup |u| + sup |u,| + sup Ju.].
TxX IxX TxX

Denote

u@@ﬂsz%@namaa,

R(u)e) (1, x) = f jue‘('_') G(t — ;x,0) f(r, L u(r, 0), uf(t, {), &) d{ dt —

t —
L et 2 o =" , X xo(t, u(z, 0), u(z, n), &) dt +
TJo o0x n?  2n
t —_ —
+ L ect™™ i (2] il s G x1(t, u(z, 0), u(z, n), €) dr,
TJo 0x n? 2n

z(t,x) = J-t Jnec(‘_') G(t — t;x,0) g(r, () d¢ dr —

0Jo
t po—
e gy Lot X e v
T Jo ox n?  2n
t — o
+ L ec('_')hl(r)ie t—-—T, T~ X4
T Jo 0x n? 2n

The operator P maps U x C (€0, 7)) into 2 and L is a linear operator. By (/)
there exists a ¥-derivative

RO @ (9 = [ [ 60w,

. [Q (t, G uyuy, e) (e, §) + o (1, &uy uy, &) i, g)] d¢ dr —
Ju Ou,

) _! tef('—f)i@ -t x\
mJo ox n*  2n

. [%X—O (1, u(z, 0), u(t, m), &) i(x, 0) + %XBO (7, u(z, 0), u(z, m), &) a(x, n):l dr +
o
+1_tec(t°t)i@ I—T’n—‘x.
7)o ox n? 2n

. [%% (z, u(z, 0), u(z, m), €) u(, 0) + %Xﬂ‘— (7, u(t, 0), u(t, m), &) (x, n)] dr
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which is with R(u) (¢) continuous in u and ¢ for u € U, ¢ € €. From here by Theorem
(0.1) the assertion of Theorem (2.1) follows readily.

Remark 2.1. From the proof of Theorem (2.1) it is readily seen that it suffices
to suppose that the functions f(t, x, u, u,, &) and y(t, u(t,0), u(t, n),¢) (j = 0,1)
have the stated properties only for |u — u|| < r. Then it is only necessary to ensure
by a suitable choice of ¢* that the found solution of the problem (.#) lies in S(uq, r),

3. PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR HEAT EQUATION

Let the problem () be given by

(3.1) U, = g + cu + g(t, x) + ef (1, X, u, uy, &),
(3.2) u(t, 0) = ho(t) + exo(t, u(t, 0), u(t, n), €) ,

u(t, m) = hy(t) + exy(t, u(t, 0), u(t, n), £),
(3.3) u(w, x) — u(0,x) = 0.

Let besides the assumptions (), (&,), (/4) the assumption

(o5) The functions f and x; (j = 0, 1) are w-periodic in ¢

be fulfilled. By Theorem (2.1) for any function ¢ e C (<0, n)) there exists &,
0 < &, < &, such that for all £ € (0, £,) there exists a classical solution U(¢) (¢) (¢, x)
of the problem (.#).

This function is a solution of the problem (g’) if and only if the function ¢ satisfies
the following equation

(3.4) 6(0) () () = —o(x) + & f 0 G(w,x,0) . o(0) dL +

v e[ oo wx0) [0 0+ offe w4 g -
0 (4]

- -I—J. @™ ° e} <a) _2 ! i) [ho(z) + exo(t, u(t, 0), u(t, n), )] dr +
n \

° ox n* 2=

+ 1 efle™™ 9 o(2=" Tz X, [hi(z) + exi(t, u(z,0), u(z, 7),e)] dr = 0.
nJo ox n? 2n

Let ¢ + k% k= 1,2,... Then applying Theorem (0.2) the following theorem
may be proved.

Theorem 3.1. Let the problem (2) be given. Let the assumptions (/,), (o£,),
(o£4), (o5) be fulfilled. Let ¢ & k*, k = 1,2,... Then there exists e*, 0 < &* < g,
such that for all ¢ € 0, &*) the problem (%) has a unique classical solution.
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Proof. The operator G(¢) () maps C(<0, 7)) into C(<0, n)) for all &€ €. For
e = 0 the equation (3.4) has by Theorem (1.1) a unique solution ¢g e C (€0, n)).
By Theorem (2.1) there exist numbers 6 > 0 and &,, 0 < &, < ¢, such that for
ee{0,&,> and ¢ e S(¢y, §) the solution U(p) (e) of (/) is %-differentiable and
U(e) (¢) and U,(¢) () are continuous in ¢ and e. Hence, the operator G(¢) (e)
is @-differentiable and G(¢) (¢) together with G,(¢) (¢) are continuous in ¢ and &
for ¢ € S(¢g, §) and ¢ € €0, £,). Finally by the proof of Theorem (1.1) the equation

(35 GeH O @) () = —a(x) + f "e0G(w, x, ) 3(0) AL = p(x)

0

where p is an arbitrary element of C((O, n)), has under the assumption ¢ # k2,
k =1,2,... a unique solution @ € C(<0, 7)) such that |@|: < K||p|c. Thus, putting
P =Q = C(K0, 7)) and € = (0, &,), all assumptions of Theorem (0.2) are satisfied
and our assertion follows readily.

In the case ¢ = [, | an integer, a somewhat another procedure has to be applied.
The problem (2) is equivalent to the system of equations (2.4) and (3.4). Suppose
that this system has a solution for ¢ = 0. For this it is necessary and sufficient that
the condition (1.12) holds. Let us seck the function ¢ in the form

(3.6) o(x) = psinlx + ¢(x) + o(x),

where p is an arbitrary constant, ¢(x) is a particular solution of (1.8) and o(x) e
€ C(40, ©)) fulfils for the sake of uniqueness the condition

(3.7) JnQ(C) sinl{d{ = 0.

Then the system (2.4), (3.4) may be rewritten as
(3.8) Gy(u, 0, 1) () (t, x) = —u(t, x) + psin lx +

+ e { j :G(t; x, ) ¢(0) d¢ + J':G(t; x, {) o(£) d¢ +

+ Jﬂ J.ne_’Z‘G(t — 1% 0) [9(r. ) + &f (5, {, u, uy, €)] dldr +
0Jo

. 1; f [_ £@<t = 2_> - (ho(t) + exo(x, u(z, 0), u(z, ), &) +
N % 0 (t SR x> (1(®) + exs(e, u(z, 0)  u(z, 7, s))] df} o,
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(39  Gawon) () = —o(x) + e { j "G(0, x, 1) of0) d¢ +

+ .BJ‘(DJ"e_'Zt G(o — 1, x,0) f(t, {, u, uy, €) dl dr +

0JO

1 w..z a - -
+8‘J ¢ HI:—“—@(t ZT’l>X°(T’“(T’O)’u(T,ﬂ)’8)+
0

T ox 7 2n

0x n

t — —
+ 9 2] ( 5 tr 5 x) 21(7, u(z, 0), u(x, n), s)] dt} =0.
2n
By the third Fredholm theorem the equation (3.9) has a solution if and only if

(3-10) Gy(u, 0, 1) (¢) = f J sin I f(z, £, u, uy, &) d{ dt +
0Jo

+ lJ‘: [xo(z. u(z, 0), u(r, m), &) + (= 1)"*' y4(t, u(t, 0), u(r, ), &) dr = 0.

To prove the existence of a solution of the equations (3.8, 3.9, 3.10) we shall make
use of Theorem (0.2). Put p = (u, 0, u), P = (U, A, R) where A is the subspace
of functions from C(<0, n)) satisfying the condition (3.7). Define the norm in the
B-space P by

[Pl = lullw + flelle + [ul-

Clearly, the operator G = (G, G,, G3) maps ‘B into P.

Theorem 3.2. Let the problem (2) be given. Let besides the assumptions (o),
(o2,), (4), (#5), ¢ = I?, 1 an integer, the following assumptions be fulfilled.

(i) the condition (1.12) holds,
(ii) the equation

(3.11)  Ga(po sin Ix + vy(t, x), 0, o) (0) = J‘ j sin I f(t, &, po sin I +
0

0
+ vo(7, £), ol cos I + vy (1, ), 0) dt d{ + lJ Lxo(z, vo(z, 0),
0

vo(t, 1), 0) + (= 1)1 x4(x, vo(x, 0), vo(7, 1), 0)]dr =0

where

vo(t, x) — ez:,.rG(t, X, C) @(C) d¢ + f J.nen(:—f) G(t - T,X, C) .
0

0JO
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0 t—1 n—x
+ —0—, — =) hy(7) | dT,
0x < n? 2n > ( ):]

has a real solution uy = ugy;

(iii) the condition
(3.12) a= J‘ j sin I{ [@: (1, &, g sin 18+ vo(z, £), gl cos I +
0J0 ou
+ o1, {), 0) sin I + ;OL (7, &, wg sin 1 + vo(x, ¢), ugl cos I +
ou,

+ vox(1, £), 0) cos IC)] d{dt £ 0

is satisfied.
Then there exists €3, 0 < &, < &, such that for all € € 0, &3) the problem (2)

has a unique classical solution u*(e)(t, x) such that u*(0)(t, x) = p§ sin Ix +
+ vo(t, x).

Proof. The assumption (i) of Theorem (0.2) is satisfied since we may put
pe = (g sin Ix + vo(t, x), 0, pg) -

We may also verify easily that in every sphere with the center pg in virtue of (#4)
the assumption (i) of Theorem (0.2) holds. To prove that the assumption (iii) of
Theorem (0.2) is also satisfied let us show that the system

(3.13) Gi(ps) (0) (p) (. ) =

= —i(t, x) + fisin Ix + e”'J‘ G(t; x,0) 0(8) d¢ = q,(1, x),

(3.14) Gy () (p) () =
N = —o(x) + fnelzm G(w; x, ) 8(0) AL = g1(x),
(3.15) G4(p5) (0) (P) = afi = 45,

where ¢ = (41, q,, gs) is an arbitrary point of P, has a unique solution pe P and
it holds |p| = K|q|. By (3.12) the equation (3.15) has a solution fi* = a™'g;.
In virtue of g, € A, the equation (3.14) has a unique solution g* € A. Finally the
equation (3.13) has a unique solution

a*(t, x) = i sin Ix +j e G(1; x, ) a%(0) 4L — 4,(1, %) -
0
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Evidently there exists K; such that |i*| < K,|q,|. Since the operator G3(p3) (0)
is linear, bounded and one-to-one and maps 2 onto A by the Banach theorem the
inverse operator [G5(p§) (0)] ™" € [U — A] is also bounded and hence there exists
a constant K, such that

le*] = Kallaa] -

And as well
la*| = Kulla*] + o*] + 4]

what yields the existence of the constant K and the proof of our theorem is complete.

Example

Let

and
f(t, x, u, uy, €) = sin Ix cos® It + yu®sinlx,y # 0.

Then the equation (3.11) reads 2 + 3yud = 0 and a = 3n’yug. Thus, if y < O there
exist for sufficiently small ¢ two 2n-periodic solutions of the given problem and

u*(0) (1, x) = \/(;—;)sin I or _\/Gf) sin Ix .

On the other hand, if y > 0 there does not exist for small ¢ any 2n-periodic solution
of our problem.
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Souhrn

PERIODICKA RESEN[ PRVE OKRAJOVE ULOHY PRO LINEARNI
A SLABE NELINEARN[ ROVNICI PRO VEDENI TEPLA

VENCESLAVA STASTNOVA - OTTO VEIVODA

V § 1 se predevsim vySetfuje existence w-periodického FeSeni rovnice (1.1) s okra-
jovymi podminkami (1.2) za pfedpokladu, Ze funkce g, ho, hy jsou dostateén& hladké
a w-periodické. V piipadé, Ze ¢ + k2, k prirozené, takové feSeni vZdy existuje.
Naproti tomu, je-li ¢ = I?, 1 piirozené, uloha md feSeni, pravé kdyZ je splnéna
podminka (1.12). V § 3 se obdobn& vySetiuje slab& nelinedrni problém (3.1), (3.2).
TéZz vysledky jsou obdobné. V druhém piipad€ (¢ = I?) Ize existenci w-periodického
feseni pro dostatecné malé ¢ > 0 dokdzat, poZadujeme-li kromé nutnych podminek
(1.12) a (3.11) spIn&ni podminky (3.12).

Pesrome

MMEPUOAUYECKME PEUIEHUS ITEPBOM KPAEBOW 3AJAYU
IJIS1 TAHEWHOTO U CJIIABO HEJIMHENHOI'O YPABHEHUS
TEITJIOITPOBOHOCTU

BEHILIECJIABA IITBACTHOBA, OTTO BEMBO/IA (VENCESLAVA STASTNOVA, OTTO VEIVODA)

B § 1 uccienyercs CyLIeCTBOBAHME (-TIEPUOMYECKOro pelreHust ypaBHenus (1.1)
¢ XpaeBbIMH ycstoBusiME (1.2) B IpeANOIOXeHUH, YTO GYHKIWMY g, hy, by JocTaTOYHO
rIafikie M o-epuoauveckue. B ciyyae ¢ # k% k HaTypajibHOE, Takoe peleHHe
Beerga cymectByeT. Hao6opoT, eciiu ¢ = I2, [ HaTypasibHOe, 3a/1a9a UIMEET PeLIeHNe
TOTJa U TOJILKO TOTAQ, Koraa ucroiieno yeiosue (1.12). B § 3 m3yuaeTcst cooTser-
cTByloIas cynabo Henuueiinas mpobiaemma (3.1), (3.2). PesymbTaThl aHAaJIOrH4HBL
TeM u3 § 1. Tobko B cityyae ¢ = [? BO3MOXHO CYLIECTBOBAHUE (-TIE PHOIUYECKOTO
pelleHuss Ul OCTaTo4HO Majioro & > 0 mokasaTh, €clii KpoMe HeOoOXOIUMBIX
yerosuii (1.12) u (3.11) TpeGoBats ucnoyHeHUE yeuoBust 3.12.

Author’s addresses: Vénceslava Stastnovd, Doc. Dr. Otto Vejvoda CSc., Matematicky ustav
CSAV, Praha 1, Zitn4 25.
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