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CONVERGENCE OF A METHOD FOR SOLVING THE MAGNETOSTATIC
FIELD IN NONLINEAR MEDIA

Jozer KACUR, JINDRICH NECAS, JOSEF POLAK, JIRI SOUCEK

(Received October 10, 1967)

For a stationary magnetic field at the points of a domain which does not contain
the boundary of various media we have a set of Maxwell equations in differential
form:

(1) rot H = J
) divB =0

where B is the magnetic plane-density vector of magnitude B, H is the magnetic
field-intensity vector of magnitude H, J is the current-density vector of magnitude J.
For magnetic isotropic medium we have

(3) B = uH

where p is a scalar quantity called permeability of the medium. u is constant with
respect to H in magnetic linear media; for the vacuum and approximately for the
air the permeability is uo = 4n.10"7Hm~'. In magnetic nonlinear media (fer-
romagnetics) 1 is a function of H:

(4) w = u(H)

The introduced set of Maxwell equations in differential form is completed by the
boundary conditions at the points of a boundary:

(5) le = HZ:
(6) wHy, = pHs,

where t denotes the projection of the vector H into a tangent and v denotes its
projection into a normal of the boundary at a point considered.

To this purpose we shall restrict ourselves to solving a stationary magnetic
field in a two-dimensional simply connected domain Q of a ferromagnetic of the
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permeability p(H) assuming the current-density J to be zero at all points of the
domain Q. Let (x, y) denote the cartesian coordinates in Q. Then according to (1)
we can suppose

() = —grad ¢

where the scalar function ¢ is called the scalar magnetic potential. Applying (3)
and (5) to the equation (2) we obtain

(8a) divpgrado =0,

i.e. in given cartesian coordinates (x, y),

d a 0 0
(3) Z(wV+ L (u?) =0
0x \ 0ox ay \ dy
or
1
(8b) Adp = = Hgrad p,
U

where the symbol 4 denotes the two-dimensional Laplace operator and the symbol
grad denotes the two-dimensional gradient.

For solving this nonlinear partial differential equation with the mixed boundary
conditions on the boundary I' of the domain Q:

) o =f(x,y) on I,
0
L =g(x,y) on I,
ov

where f(x, ), g(x, y) are given functions, I'y U I', = I'" (I'; having non-zero length),
it is possible to use a linearization based on the successive approximations as follows:

(10) ‘ 4, =0,

Adp, = ! Hygrad o, , k=2,3,...
A Hi—1

for mixed boundary conditions on I':

(11) o = f(x, ») onT,
0
Hy—y L 9(»‘5, )’) onrl,
ov

Application of this method needs, however, to make clear the question concerning
the condition of a solution of linear boundary problem (10), (11) and convergence
to a solution of the boundary problem (8), (9). As far as we know, this question

457



was not fully theoretically solved, because of its difficulty. The answer depends
obviously on the properties of function y(H) which are given by physical conditions
under which the above mentioned method of successive approximations comes
true. Practically the dependence B(H) given by a hysteresis loop is approximated
by average course B(H), (Fig. 1), so that

(12) p(H) is non-increasing,

(13) u(H) is bounded:
0<py<pu<K

= ulH)

o
H
Fig. 1.
where p, is permeability of vacuum, K is a constant,
dB du .
14 = —=u+H—>0, limpy; =p,.
(14) M=o =ntH o Jim 1y = o

The purpose of this paper is to prove that under these physical conditions the
convergence of the introduced successive approximations for the solution of boundary
problem (8), (9) is always ensured.

For simplicity let us denote |m(oc) = u(\/o), @€ €0, 00) and assume that m(x)
is from C* 0, 00) and, in accordance with {12)—(14) fulfils the following condi-
tions

(15) m(e) is non-increasing
(16) O<pp<mbo)<K<ow, 0Za< o

(17) there exists a constant ¢ > 0 such that 2o m'(a) + m(x) > c.

(18) Let us denote M(a) = fam(ﬁ) dg.
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(19) Let @ be a bounded domain in E, with Lipschitzian boundary 09Q. Let
Q=TI vIl,UN, I'ynI, =0 where I'y, I', are open sets i 02 and
the one-dimensional measure of I'; is positive and the measure of N is zero.

A set of real functions having continuous partial derivatives of any order in £ will
be denoted by &(Q).

Let supp ¥ be the closure of the set {x; x€Q, ¥(x) # 0}, where Y(x) is éefined on Q.

] —— \/j <1¢|2+|a*”;+} >d0

Let us write B = {y € &(Q); o(supp ¥, I'y) > 0} where o(x, 1) is a distance of the
points x, y.

Let ¥ be the closure of B in the norm W{"(Q).

Let f(s), g(s) be the functions from L,(02) and suppose that there exists ¢* ¢
€ W(”(Q) such that ¢*|,, = f. (Whenever f satisfies Lipschitz condition on 0Q,
o* ex1sts)

We shall look for the weak solution of the boundary value problem (8), (9) i.c.
ue Wi(Q) is a solution of the problem I if (20) u — ¢* € V and for each Y € ¥,

f m(u? + ul) (uy, + uy,)dQ —j Ygds =0

where u, = du[ox e.t.c.
For simplicity we shall write m(u) = m(u? + u}),

M) = M(ui+ u2), m'(u)=m'(u} +ul), uew(Q).

Furthermore, because of the properties of m(a), the following relations are also
satisfied:

(21) Im(e) o] = Ko, |m(e) 0] < Klo,|
(22) Am(e) o) _ Am(e) 9y)
a(p)’ aq)x

A functional ®(u) defined on E (E being a Banach space) has a linea: Gateaux’
differential D cb(u, v) at a point u, if for each v € E there exists

lim D(u + ) — d(u)

t-0 t

and this limit is linear with respect to v.

According to the work of M. M. VAINBERG [3] and J. NECas [2] it jollows —
using the fact that m(ax)e C'<0, ) and that (21), (22) hold — that there exists
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a corresponding functional to the problem I and has the form

j‘d' j {mlp* + t(u — ¢*) [(o% + (s — 07)) (ux = @7) + (05 +

° £ iy — 07) (u, — o]} Q.

Because of (18) this functional can be rewritten in the form

EJ‘ M(u) dQ — lj M(p*) dQ —j gu ds + J go* ds
2)a 2J)a I r
and adding a suitable constant we obtain
23) (P(u)=le(u)dQ—j‘ guds, u—g*cV.
2 Q r,

From the construction of the functional (23) it is clear that
(24) D ®(u,y) =0,
i.e. just the same as (20).

Let us compute the second Gateaux differential D ®(u, h, h) for u — ¢* €V,
h e V. Using (18), (15), (17) and Schwarz’s inequality we obtain:

D? &(u, h, ) = J [m(u) (R + h2) + 200 (u) (ughy + u,hy)?] dQ =

> J [m(u) + 2m'(u) (u2 + u2)] (2 + 12)dQ = J 02+ n2)de,

Q

(25) | Ug(hi +h2) dgzir'

forms an equivalent norm in ¥ with respect to (19) (see e.g. J. Necas [1]).
Therefore there exists a constant ¢; > 0 such that

(26) D? di(u, h, h) > cluhﬂfylm .

In accordance with the results of J. Ne¢as [2] and (21), (22), (26) being fulfilled,
there exists only one solution u, of problem I, for which

(27) min &(u) = P(uy) .

“u—@*eV

Now let us consider the linearization of the problem I. Let v e W§"(Q), v — ¢p*e V

be fixed. Then u e W(Q) is a solution of the problem II if u — ¢* € V and for
each yeV

(28) j m(v) (uh, + uy,) dQ — J‘rzn//g ds =0

o
holds.
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The corresponding functional to the problem II — obtained similarly as in the
problem I — is the following (the additive constant being omitted):

(29)  Pyu) = % f M) = ) @+ 1) + () 02+ )] 02

—fguds, ue WS(Q), u— o*eV.
R

5

By the same argument as in I one can see that the problem II has only one solution
for which the functional P, attains its minimum.

Let us take an arbitrary u, € Wi(Q), u; — ¢* e V and let us define a sequence
ug, k= 2,3,... in the following way

(30) u, is a solution of problem II for v = u,_y, k = 2,3, ...

By the properties of P, it follows
(31) min P, _ (u) = P, _ (u).

u--gp*eV

Theorem 1. The sequence of u,, k = 1,2, ... from (30) which solves the linear
problem II converges in the space WS(Q) to a function u, which solves the non-
linear problem I.

Proof. From (29) and (23) we easily find that
(32) P(u) = o(u)

holds for each u — p*e V.
We shall prove the following inequality

(33) P, (tysq) = P(uyyq), n=12,..
From (15), (18) one can see that M is concave and therefore for a, b = 0,
(34) M(a) — M(b) = m(a)(a — b).
Table 1
296-8
287-5 290-6 |
270-2 2733 2813 j
2450 247-8 254-2 267-8 !
212:8 2152 2203 294 | 2479 |
1751 177-0 180-8 187-2 | 1977 ‘ 2139
133-8 1350 1376 141-6 147-0 152-5
90-1 90-8 92-4 94-7 97-3 t 99:5 ‘
452 456 463 i 47-4 | 485 ", 49-3 |
\ 5 | |
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Then we substitute a = u? () ¥ u7 (2), b= uii1(2) + uzsy(2) for ecach
z & Q. Considering the expression P"n(un+1) — ®(u,4+,) with respect to (23), (29)
and using (34) we find that (33) holds-

[f we put together relations (31), (32) and (33) we obtain

(35) D(u,) = P, () = Pullns)) = Duppy), n=1,2...
Now we substitute v = u,, u = #n+1 and §f = u,,, — u, € Vinto relation (28)

(36) jmw (e + W) 42 — j Gty ds =

I

= j (1) (U4 1 xtnez F Uni g yiny) 42 — j gu, ds.
Q

Ira

From (36). (23) and (29) we obtain

(37) j m("") [(“n+1.x - un,x)z + (”n+1,y - “n.v)z] dQ =

= 2[@(u,) — P (tns1)] < 2[D(u,) — P(uns1] -

In accordance with (16), (25) and (37) there exists a constant ¢, > 0 such that
Clltnrr — 4lliar < D(u,) — D(ups1). Using (35) and (27) we have

(38) ““nH - “n“wzu;—’ 0, n— o0.

From the definition of u, and (24), D ®(ug, u, — uo) = 0. Using Lagrange’s
theorem and {26) there exists 9 € (0, 1) such that

(39) D &(u,, u, — up) = D ®(u,, u, — ug) — D P(ug, u, — Uo) =

= D? ‘p(“o + 9(”:- - “o)» U, — Ug, Uy — “o) = clH“n - ”0“%2(1) .

For h e V" we have according to (24), (28) and (16)

\

D &(u,,, h) =J m(u,) (u, che + Uy ,)dQ — j‘ ghds —
o I3

—J‘ m(u") (un+1,xhx + u,,+],yhy) dQ +J\ gh ds =
Q

r;
= [ ) (=t s = 1) ] 06 2
2
= K“un ~— “n+1HW2(1) ”h”Wz(” .
Let us substitute h = u, — uy. From (39) we obtain
crlte = ol S Kty =ty it = ol

462



Thus we have with respect to (24)
”u,, - “o”wzm -0 for n— o g.e.d.

From the results of De GIorGI [4] and according to (16) it is possible to change
function u, and u, on a set of measure zero and then u,, u, will be uniformly Holderian
with coefficients 7, « on each inner subset C of domain @, i.e.

[un(xy) = w(x5)| S 2fxy — x,*, (¥, x,€C,0<a<l,n=12..)
|uo(x1) = uo(x2)] = 7lxy — x,f*
where a depends on C = Q and on the number K[u,. © depends on sup [u ] and
sup [o]-
Followmg J. Necas [1] the numbers sup |u,|, sup |uo| are bounded from above
by some constant depending only on C. €

Theorem 2. u, — u, on every closed domain C, which is an inner subset of Q.

Proof. (By contradiction.) Let a € C exist such that u,(a) does not converge
to ug(a). Then there exists £ > 0 and subsequence u,, such that u,(a) = ue(a) + &
(or u,(a) £ ug(a) — €). Functions u,, and u, are uniform by Holderian and there-
fore there exists a number g, such that

XeC\ o) = 0= fun(s) = (@) £ 5. fuo) = uofa)] <

Then |u,(x) — uo(x)| = &2 on the set o = {x e C; o(x, a) < o}

Therefore
j () — uo()|? 42 = j () — uo(x)|? 42 2 ( ) u(o) > 0

where p(o) means the measure of the set o.
However, this means that u, does not converge to u, in L,(®) not even in
WD(Q) and this contradicts Theorem 1. g.e.d.

.hlm

Remark. The method that has been used here can be applied to some other
nonlinear problems. In particular, it can be used for solving a problem similar to that
one (8), (9) with more variables and with a nonzero right-hand side depending only
on the space variables.

The considered process of solving the boundary value problem (8), (9) expressed
by the relations (10), (11) can be numerically realized by using electrical analog
e.g. an electrolytic tank [5; 6] or a computer. The problem will be illustrated by
numerical calculation on the computer ODRA.*)

*) The autors thank for the cooperation in the computation to ing. V. HoLus from VSSE
Plzen.
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The boundary conditions on the boundary of a domain (see Fig. 2) are: ¢ = 0
on AB, ¢ = 600 A on DE (thus ¢ = 300 A on CF) and d¢[0V on the rest of I
The dependence of 1 on H: pu = p(H) for the material in question (tins 2, 6, W/kg)

was approximated to the form

F £ illustrated in Fig. 1. From
AN the practical point of view al-
3 N ready the 3-rd approximation
3 . @3, U3 gave the satisfactory
N result in correspondence with
55 Jgf—} . the results, obtained by mea-
X vl T . surement [6]. With the.neces-
25 N sary accuracy 0-14 in the
2| 27 28 29 D values ¢, the coincidence be-
B0l 2 23 % tWCCI.I thfa 8-th and 9-th ap-
proximation has been reached.
3 17 13 i
SR The resulting values ¢q(4) at
T 9l ol M 12 the points of field which are de-
signated by 1—39 are given in
23 4 5| ¢
the tab. 1 and the correspond-
A ing values pg .10~ (Hm~1)
Fig. 2. in the Tab. 2.
Table 2
1505
864 L 714
61-2 1 58:5 48-4
49-1 | 47-8 43-9 330
42:6 ‘ 41-8 399 355 23:6
39-1 | 38-5 373 350 312 27-4
373 gj 368 36:0 347 . 330 313
364 ’ 361 355 34-6 337 32-9
36°1 | 35-8 353 34-6 339 334
|
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Souhrn

KONVERGENCE JEDNE METODY RESEN{ MAGNETOSTATICKEHO POLE
V NELINEARNIM PROSTREDI]

JozeF KACUR, JINDRICH NECAS, JOSEF POLAK, JIRf SOUCEK

K feSeni okrajového problému pro potencidl rovinného magnetostatického pole
ve feromagnetiku (8), (9) Ize s vyhodou uZit linearizace metodou postupnych apro-
ximaci (10), (11). V ¢ldnku se dokazuje konvergence této metody, jsou-li splnény
podminky (12), (13), (14).

Pesiome

CXOJUMOCTh OJHOI'O METOJA PEUNIEHUSA
CTATUUYECKOI'O MATHUTHOI'O IIOJIY
B HEJIMHEMHOW CPEJE

MOCE® KAUYYP (Joser KAGUR), MUHAPXNX HEUYAC (JINDRICH NECAS),
MOCE® TTOJIAK (Joser PoLAk), MUPXH COYYEK (Jikf SOUCEK)

Jns peureHus KpaeBo#l 3ajaud IS NMOTEHIMAJNA ILIOCKONAPAJUIEIIBHOTO CTaTH-
YeCKOro MarHUTHOTO HoJiA B QeppomardeTuke (8), (9) MOXKHO ¢ ycrexoM HCHOJIb30-
BAaTh JIMHEAPU3AIUIO METOJOM IOCHCHOBATENbHBIX npubmokenuit (10), (11).

B craThe IPHBEICHO NOKA3aTENbCTBO CXOOUMOCTH 3TOTO METOJA IIPH BBITOJIHEHUU
yerosuit (12), (13), (14).
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