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ON NECESSARY CONDITIONS FOR A CLASS OF SYSTEMS OF LINEAR
INEQUALITIES
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(Received April 24, 1967.)

In this note a class of convex polyhedral sets of functions is studied. The set of
considered class is non-empty if it satisfies certain conditions (Theorem 1). Using
Theorem 1 in the case of multi-index transportation problem ([ 1]) we obtain necessary
conditions for the existence of a feasible solution to this problem. It is shown that
these conditions imply the conditions stated in [1] and [2].

1° Let X + O be a finite set and let «(A4), f(4) be real functions defined on the
family of all subsets of X and suppose

—0 = ofd) < 40, —o0 < p(4) = +o0
«0) =0, B®) =0.
The problem is to find such an additive') function ¢ that the inequalities
(1) AA4) < ¢(4) = p(4)

hold for any 4 < X.
We find necessary conditions for the existence of a solution to this problem.
For A =« X we define

(2) m(O)(A) - ,B(A) , M(O)(A) = a(A4),
m*(4) = min [n"*V(4), p"*V(4)],
MC*1(4) = max [NT*D(4), P(’“)(A)] , r=20,1,...

where
n*U(4) = min (mO(4) + mO(A) | A Y A" = 4, A 0 A" = 0},
P (4) = min {mO(4 U A;) — MP(4,)| 4, = X — 4},
NC*D(4) = max (MO(4') + MO(A4") | A/ Y A" = A, A nA" =0},

MT*D(4) = max {(MP(4 U 4,) — mP(4,) | 4, = X — 4}.

1) A finite real function ¢(4) (4 = X) is said to be an additive function if
Ajc X, 4, C X, AN Ay = 0=>¢(A1 U Ay)= o(Ay) + 9(A4,)
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Theorem 1. If there exists such an additive function that the conditions (1) are
satisfied then for each A, A = X there exist the limits

B(A) = lim m®(4), 4(4) = lim M©(A)

and
(3) a(A) < p(4).

At the same time the functions 6(A), B(A) satisfy the inequalities

A

4 (404, =0)= [8(4,) + 3(4,) < (A, U 4;) < 8(4,) + f(4,) £
= /3(A1 U A, < B(Ax) + B(Az)] .
Proof. Let ¢ be an additive function satisfying (1). It is not difficult to verify
by induction with respect to r that

M©(A) = MP(4) < ... = o(4) = ... £ mD(4) £ m©(4)

for any subset A of X. The first half of the theorem is evident now and relations (4)
follow from the definitions of the functions m®(4), M®(A).

The functions &(4), P(A) have certain extremal properties with respect to ine-
qualities (4).

Theorem 2. Let &(A), B(A) satisfy inequalities (4) and moreover
a(A) £ @A), P(A) < p(A).

Then
o 4) = 4(4)

(I/\

#A) = B(4) = p(4) = p(4).
The proof is similar to the proof of Theorem 1.

Remark. The supposition concerning finiteness of X is clearly not essential and
we can consider any algebra A of sets, A = exp X, instead of exp X.

2° Now we apply Theorem 1 to the multi-index transportation problem of the
following type: To minimize the function f of ¢,

m n 14
f((puk = Z z Z Uk(pijk
i=1 j=1k=1
subject to
m n P
(5) Z Dijk = Ajk > z Pij = By, kzl(pijk = Cijs Pijk =20
i=1 i=1 =

where 4, 2 0, B, 2 0, C;
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We define

M={1,2,...,m}, N:{],Z,...,n}, P={l.2,...,p},
X=MxNxP, ¢oR)= Y Piji

(i, j,k)eR

where R = X. Clearly the constraints (5) can be interpreted as relations (1) for the
additive function ¢. Now we are going to show that the necessary conditions stated
in [1] and [2] follow from Theorem 1.

The necessary conditions stated in [2] can be formulated (as it is shown in [3])
in the following way:
(6) A(J,K) < B(LK) + (I, J)

where

A(J,K)=Z ZAjk’ B(I,K)=Z ZB.-k, C(I,J)=Z ZCU’

Jjed keK iel kekK iel jeJ

[cM, JcN, KcP and I =M —1.

It is evident that the conditions (6) occur in the iterative procedure (2) specified
to (5).

Now we turn our attention to the conditions of Haley ([1]). These conditions
can be formulated as follows:

(7) lim M{), < lim m{),
r—-o r— o
where
0 p (0
m% = min (A, By, C;j), MR =0,
(r+1) __ : r) (r) (r)
’nuk = min (Ajk - z Ml}k’ ik z Mu I\’C - z Muk)
IR A N1 JLj'FJ k' k' *
(r+1) _ . (r) (r) (r)
MY = max (45, — Z mi, By — Y m, Ci— Y mi).
iirFi JNi*Fj k' k" *k

To see that the conditions (7) are consequences of Theorem 1 we notice that

B(A) = lim m(4), &(A4) = lim M©(4)

where o
. mO(A4) = p(4), MO(A) = o(4),
mC*Y(4) = min [a*D(4), prrD(4)],
M@+ D(4) = max [NCFD(4), PCED(4)], r=0,1,...
where

AT O(A) = min {AO(A,) + ... + AOA)|U A, = Aio + o’ = A, 0 A, =0},

a=1
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P D(4) = min (R4 U (U B,)) — MO(B,) — ... — MY(B)| B, = X — A;
o=1

6+0 =B,nB, =0},

NC+D(4) = max {(MO(4,) + ... + MO(4)| U A, = A;

o=1

cFo0 =>A,nA, =0},
PC*D(4) = max {(M”(A4 v (U B,)) — m"(B,) — ... — m"”(B,)| B, = X — 4;
=1
o+ 0 =B,nB, =0}.

Now it is evident that the conditions (7) follow from (3). On the contrary it follows
from the example presented in [2] that the conditions (3) do not follow from (7).

Concluding remarks. 1. It seems that the necessary conditions (3) are sufficient
neither in general case nor in the case of general multi-index transportation problem.
On the other hand these conditions are sufficient e.g. in the case of three-index
transportation problem with p = 2 ([3]) It would be interesting to find other cases
in which these conditions are sufficient.

2. The sequences {m"”(A4)}%,, {M®(A)};~, are stationary in the case of rational
numbers a(A), B(A4). In the general case this question is open.
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Vytah

O NUTNYCH PODMINKACH RESITELNOSTI JEDNE TRIDY SOUSTAV
LINEARNICH NEROVNOSTI

JAROSLAV MORAVEK, MILAN VLACH

V této pozndmce se vySetfuje jistd tfida konvexnich polyedrickych mnozZin funkci
definovanych linedrnimi nerovnostmi. K tomu, aby mnoZina z uvazované tfidy byla
neprdzdnd, musi spliiovat jisté nutné podminky (véta 1). PouZitim véty 1 v p¥ipadg
3-indexového dopravniho problému ([1]), dostdvdame nutné podminky existence
pfipustného feSeni této ulohy. Ukazuje se, Ze z téchto podminek jiZ vyplyvaji pod-
minky uvedené v [1] a [2].
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Pesrome

O HEOBXOIUMBIX VCJIIOBUAX PA3PEUIMTEJIBHOCTU
OJJTHOT'O KJIACCA CUCTEM JIMHEMHBIX HEPABEHCTB

SIPOCJIAB MOPABEK (JAROSLAV MORAVEK), MUJIAH BJIAX (MILAN VLACH)

B 3T0if 3aMeTKE paccMaTpuBaeTCs OJUH KJIACC BBIMYKJIbIX MHOMXCCTB (DYHKIMI
OMpEJIeJICHHBIX NPU MOMOLIM JIAHCHHBIX HepaBeHCTB. [l TOro, YTo0bIl MHOXKECTBO
paccMaTpUBAEMOTO KJIacca ObUTO HEMYCTBIM, JOJDKHO yJOBICTBODSTH ONPeIeSIe HHbIM
ycaosusaMm (Teopema 1). IMpumenenune TeopeMbl 1 B ciiydae TPEXUHAEKCHOM TpaHC-
noptHoit 3agaun ([1]) BegeT Kk HEOOXOAMMbBIM YCIOBUSM CYLUECTBOBAHUS OMYCTH-
MOTO pElLUEHHS] U3 KOTOPBIX YKe¢ BBITEKAIOT YCIOBUS MpHBEAcHHbIE B paborax [1]

u [2].
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