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QUASI-STATIC THERMAL DEFLECTION IN A SOLID CIRCULAR PLATE
IN THE AXISYMMETRIC CASE

S. K. SARKAR

(Received April 18, 1967)

1. INTRODUCTION

The problem of the determination of thermal stresses and deflections in plates
of different contours has got wide considerations as it has practical applications
in air-craft structures. Forray and Newmann (1960), Forray (1958) and Forray and
Zaid (1958) have discussed the problem of thermal stresses and vibrations in various
papers. In the first mentioned paper [2], the authors have obtained thermal stresses
in a circular plate with various edge conditions for a particular temperature
distribution in the axisymmetric case by solving the differential equation directly. In
the second [3] and third paper [4], they have introduced a stress function and
obtained the stresses.

In this paper, Forray and Newmann’s method will be followed. It is assumed that
the temperature varies through the thickness and the deflections are small in com-
parison with the thickness. The thermal deflections of the plate for various edge
conditions in a circular plate is obtained in the axisymmetric case. In this case, the
temperature is found to be a function of r and ¢ only and ¢ is considered as a para-
meter.

2. NOMENCLATURE

r3,z — Cylindrical polar co-ordinates

Wy — Quasi-static deflection in the Z-direction

v? v — Laplacian operator

t — time parameter

E — Young’s Modulus

h — thickness of the plate

v — Poisson’s ratio (assumed 0-3 in numerical calculations)
D — Flexural rigidity

KR
|

Coefficient of thermal expansion
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K — thermal conductivity (constant)

k — T hermal diffusivity (constant)

a — radias of the plate

T — Non-dimensional time parameter = kt/a®

T — Temperature

Tp — Temperature difference between the upper and lower surfaces
of the plate

F, — Flux into the plate

n — integers

o, — roots of J,(o,) = 0

C,, C,, Cy, C, — Constants

3. METHOD OF SOLUTION

We take a solid circular plate of thickness h with zero initial temperature and
constant flux F, into the plate, we take the centre of the plate in the middle surface
to be the origin and Z-axis downwards. Since T is a function of r and t only, the
equation of heat conduction is,

N2
(1) TG 1 g oer<ain0
or

with the initial conditions,
oT
2 T=0 when t=0, K-—=F, on r=a

The solution of equation (1) with the given initial conditions is

aZ
exp{ — —
3) T 2F okt + Foa | r? 1 {2 p( a? )J
- = — _ 4 r
Ka K |2¢> 4 51 o2 Jo(e) °

o R

)

where 2, are the positive roots of the transcendental equation
4) Ji() = 0
The equilibrium equation for the deflection of the plate is given by

(5) V4wsl = Q.j;.v_)it VZTD
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where V# in the axisymmetric case is given by

d? 1d d? 1d
ve= (S48 (S8
<dr2 rdr) <drz rdr>

and we take for T, the expression given by equation (3).
The solution of V*w,, = 0 is

2 r
(6) wy=Cy + C, -

r r
— 4+ C3ln= + Cy?1In
a a

a

For a solid plate, the displacement w,, must be finite at r = 0 so that C; and C,
comes out to be zero. Hence, the complete solution becomes,

rZ
(7) Wg = Cl + CZ ;—2

In order to find the general solution of the non-homogeneous equation (5), we must
add to the complete solution, the particular integral of equation (5). Now, we note
that a particular integral of

(8) Vi, = ~——0=~ T,

is necessarily a particular solution of equation (5). This is obtained by integration,
so that,

©)

h 2Ka K

st

kot
f - exp(— J—)
T e T P (CY

.
(10) = Cyt Gy o S

4. CLAMPED PLATE

The boundary condition for a clamped plate is

(11) ws,=(~19i'=0 at r=a.
dr
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Imposing these conditions, we get from equation (10), the values of the constants,

exp  — Kt
(1 + v) o, Foa’ L ) a?
hK 32 n=1 o

_ (1 + v) «,Foa Kt
2hK

(12) ¢ =

C, =

Therefore, the deflection w, for a clamped plate is given by

(13)

o,

kot
exp(— -—-»l’—)
f 2 4 2 0 2 .
_ I+ v)aFoa ‘L(, _ ,> ey V@ {{o_(ﬂ"e/ﬁ) _ ,}

I’lK 32 n=1 JO(C{,I) -

a* N
Introducing the non-dimensional time-parameter 7, we can write equation (13)
in the form,

(‘:) _ (L +v)aFoa [9_2 (, _ r_‘f) P ey e (=) { Jo(rmfa) 1}]

K |32 ] 16 S o Jola,)

a .
The maximum deflection is at the centre of the plate and is obtained by substituting
r = 0 in equation (14), so that,

(15) P Gl L [-1- L2y eXp(_“ff){ Lo 1}]

Stmax I’ZK 32 = (x:‘ Jo(an)
For numerical calculations, we write equation (15) in the form,
(16) h_KwS'Ln_"L:,_l_‘in exp(—afr) 1 —1
‘ (1 +v)aFea® 32 4=t ot Jo(,)

The values of [hKw, /[(1 + v)a,Foa®] for different values of = 0-02, 0-04,
0-06, 0:08, 0-10 are presented in Table I (Reference 6).

Table 1

0-02 0-04 0:06 i 0-08 i 0-10

0:017950 ‘ 0-021271 ’ 0-023818

|

|
|
|
|
i
|
|
|

0-:007862 i 0-013557

|

|

l

|

| |

|
4
|
\
|

Curve for the variation of [ hKa, _ ]/[(1 + v) «,Fea*] with respect to 1 is presented
in Figure 1.
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5. SIMPLY — SUPPORTED PLATE

The condition to be satisfied at the edge for a simply-supported plate is that the
deflection and the moment should be zero at the edge, so that,

2 ) )
Wy, = dw"+lg(?i'+gl_t\_)__a'TD =0 at r=a.
drr  r dr h

(17)

—>

thstmax
(1 + va,Fyas

v

Fig. 1.

These conditions determine the constants of equation (10), such that,
exp ko2t
© a2

4
a"

3
18y ¢ =UFVFed)\ 1 k¢
hK 32 a1 +v) =1
c, = (1 = v)a,Foa® kt
2hK a?
Hence, the deflection w,, for a simply supported plate is given by, (introducing

the non-dimensional time parameter)
(1 + v) o, Foa®

19

( ) st hK
34 v 12 r* _ r? +2°O exp (—oa1) Jo(ra,,/a)_l
ot Jo(0t,)

n
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The maximum deflection is at the centre of the plate and is obtained by putting

r = 0 in equation (19), so that,

3 ® -
(20) o, =UFNEF@ LTS e (Cagf L
hK 32 Lt n=1 Ay Jo(dn) .

—

hKwgt,,, o

(1 + va,Fya®

Fig. 2.

For numerical calculations, we write this in the form,
@ _ 2
(21) ths,mL_ _ o N 22 exp (—ag7) o |
(1 +v)oFea®> 32 1 +v #=1 ot Jo(t)

The values of [hKwy,  ]/[(1 + v) o, Foa®] for values of t = 0-02, 0-04, 0-06,
0-08, 0-10, are presented in Table II and the corresponding curve in Figure 2.

Table I1
0-02 0-04 \ 0-06 } 0-08 I 010
| | I
| | |
—-007522 i‘ —-017212 ‘ —-028203 —-040226 i — 053105
|
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6. CONCLUSION

It is to be noted that for a clamped plate with the given temperature distribution,
the maximum quasi—static thermal deflection continually increases, with the time
parameter. In the case of simply supported plates, the maximum quasi-static thermal
deflection continually diminishes as the time parameter increases.

In conclusion, I convey my respectful thanks to Dr. P. Choudhury of Bengal
Engineering College, Howrah, India, whose kind help has enabled me to complete
this paper.
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Vytah

QUASISTATICKE TERMICKE OHYBANI KRUHOVE DESKY
V OSOVE SYMETRICKEM PRiPADE

S. K. SARKAR

Na zdkladé Forray-Newmannovy metody je v Clinku feSena uloha termickych
ohybdni kruhové desky v osové symetrickém piipadé. Teplota je uvazovana jako
funkce soufadnice r a Casu 1.
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Pesrome

MOYTU-CTATUYECKOE TEPMUYECKOE M3Ir'MBAHUE KPYTI'OBOW
JOECKU B CIIVUAE OCEBOM CUMMETPUU

C. K. CAPKAP (S. K. SARKAR)

Ha ocHose Metona ®oppau u HeloManHa B cTaThe pellieHa npobieMa TepMuyec-
KuX U3rHOaHuii KpyroBoi [OCKU B cllydae OceBOM cuMmeTpuu. TemmepaTtypa siBiisi-
eTcst GyHKIMe KOOpAUHATHI F ¥ BPEMEHHOTO NapameTpa 1.

Author’s address: Shri Sujit Kumar Sarkar, Department of Mathematics, B. N. College, Itachuna,
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