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SVAZEK 13 (1968) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

NUMERICAL STABILITY IN SOLUTION 
OF ORDINARY DIFFERENTIAL EQUATIONS 

E . VlTASEK 

l. INTRODUCTION 

In this paper, I will deal with the problems of the numerical stability in solution of 
an initial-value problem for a special-type ordinary differential equation of higher 
order which right-hand term does not depend on the derivatives of the function 
sought. The numerical stability will be understood in the sense of [1] and [2], i.e., 
the dependence of the accumulated roundoff error on the number of subintervals on 
which the interval in which the solution is saught is divided will be investigated. 
Particularly, we will deal with the multistep difference method and, especially, we 
will be interested in the manner how the properties of the stability of this method can 
be influenced in positive direction. We also mention very briefly the above problems 
for the Runge-Kutta-type methods. 

For the sake of brevity, we restrict ourselves in what follows only on the second-
order differential equation of the above mentioned type, i.e., on the equation 

(1) y"=f(x,y), xe<a,b> 

with initial conditions 

(2) y(a) = rj0 , y'(a) = ц 

This restriction is only formal and all essential what will be said in what follows can 

be directly generalized on the general case. 

2. MULTISTEP DIFFERENCE METHOD 

The general multistep difference formula for the solution of the equation (1) can 

be written in the following form: 

k k 

Zavy/t + v = h2J] 
v = 0 v = 0 

(3) Z avyn + v = h2 X pvfn+v, cck 4= 0 , /„ = f(xn9 yn) 
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or symbolically, 

(4) Q{E) y„ = h a(E)f„ 

where E is the translation operator (Eyn = yn + i), Q(£) and cr(C) are polynomials 
defined by 

(5) <?(0 = i>vC\ cr(o = i /? v r 
v = 0 v = 0 

h = (b — a)JN, yn is the approximate solution in the point xn = a + nh and N is 
the number of subintervals of the interval <a, b>. Without any loose of gnerality, it 
can be assumed that the polynomials (5) have no common factors for, in the opposite 
case, the difference equation (3) can be reduced on the equation of lower order. 
Note that for using of (3), k initial values of yn must be available and they must be 
obtained by some other method. We will assume in what follows that these values 
are known. The following two definitions will be useful in further investigation: 

Definition 1. The formula (3) (or, briefly, the polynomial Q(£)) will be said to be 
r-stable in the sense of Dahlquist if the polynomial Q(£) does not have zeros outside 
the unit circle and if all roots lying on unit circumference are at most of the multipli­
city r. 

Definition 2. The formula (3) will be said to be r-consisient if 

(6) e ( l ) = e ' ( l ) = .. . = <?('-1}(l) = 0 , e ( r )(l) = r! cr(l) . 

It is well known (cf., for example, [3]) that under the above assumptions the 
2-stability and 2-consistency are necessary and sufficient conditions for the con­
vergence. It is therefore natural to assume that the formula (3) is 2-stable and 2-
consistent. 

Denote now by yn the solution of 

(7) Q(E) yn = h2 o(E) fn, fn = f(xn, yn) . 

Then it is possible to prove (analogical problems cf., e.g., [1], [2]). 

Theorem 1. Let the formula (4) be 2-stable in the sense of Dahlquist. Further, let 
the right-hand term of (l) be continuous and satisfying the Lipschitz condition 
with respect to y in the domain a r g x ^ g b , — oo < j ; < oo. Finally, let yn be the 
solution of (4) and yn of (l) with the same initial values. Then 

(8) \yn - yn\ S Kt - i 

hz 

where 3 = max \Sn\ and Kx is a constant not depending on h. 
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Consequently, in terms of [2], this theorem expresses that the numerical process 
defined by (4) has B2-solution (with N as parameter). It is clear that under the natural 
assumption of 2-consistency, the assumptions of Theorem 1 cannot be modified in 
such a manner to gain the numerical process with Bs-solution with s < 2. (It is, 
however, useful to note here that the 2-consistency is not essential for the assertion 
of Theorem 1.) This result is not satisfactory in comparison with the numerical 
stability of the method arising when the given differential equation is replaced by 
a system of first-order equations and this system is then solved by some difference 
method for solution of first-order equations. Such numerical processes lead to 
Bi-solutions. It is therefore natural to ask if it is not better to use always the last 
method and to omit formulae (4). But the positive answer on this question would 
mean that one resignes on an advantage of the methods of the type (4) which consists 
in that fact that these formulae have the local truncation errors of higher orders than 
the methods arising by solving (l) as a system and using the same number of points 
(cf., for example, [3] and [4]). Let us investigate therefore if it is not possible to profit 
by the more favourable properties of the stability of difference formulae for solution 
of first-order equations in some other way. One possibility is to change the equation 
(4) leading to evaluation of yn in such a manner that the new equations will be formaly 
of the form of difference equations for solution of first-order systems. We will deal 
therefore with the possibility of replacing of (4) by 

(9) Qi(E) yn = h G,(E) zn, Q2(E) zn = h a2(E)fn 

where the degrees of O"i(() and cr2(C) are not greater than the degrees of £i(C) and O2((), 
respectively. It is ovious, that the equations (4) and (9) will be equivalent if 

(io) e(C) = ei(0(?2(C), (7(0 = ^ ( 0 ^ ( 0 

and if it will be possible to choose the initial values of the auxiliary variable zn so that 

(11) a1(E)zy = \Ql(E)yv9 v = 0, ..., k2 - 1 
h 

Q2(E)zv = ha2(E)fy9 v = 0 , . . . ,k i - 1 

where kx and k2 are the degrees of OA(C) and £2((), respectively. But the determinant 
of this system of linear algebraic equations is the resultant of the polynomials a^C) 
and Q2(C) and, consequently, different of zero (O(£) and o(() have no common factors). 

Let now yn be the solution of 

(12) Ql(E) yn = h ax(E) zn + <5<1}, 

Q2(E) zn = h a2(E)fn + Sn
2) , fn = f(xn9 j>„) . 

Then the following theorem holds: 
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Theorem 2. Let the polynomials Q(L) and o(Q have no common factors. Further, 
let it be possible to write Q(£) and o(Q in the form (10) and let Qt(£) and <r.(£) satisfy 

(i) Qt(C) and Oi(£) have real coefficients; 
(ii) the degree of ot(C) is not greater than the degree of Qt(C); 

(iii) Qi(Q is 1-stable in the sense of Dahlquist. Let yn be the solution of (4) and 
yn of (12) where j>v = yv, v = ,b, ..., k — 1 and zv are determined from (11). Fi­
nally, let the right-hand term of (1) satisfy the assumptions of Theorem 1. Then 

(13) \y„-9.\£K2j, 
h 

where S = max (|^1} |, \o„2)\) and K2 is a constant not depending on h. 

Thus, the equations (9) define a new numerical process having Brsolution. The 
only thing which is still to be discussed is the existence of the decomposition of O(£) 
and o(C) with the properties (i), (ii), (iii) from Theorem 2. About this problem, it can 
be proved the following 

Theorem 3. Let the formula characterized by O(£) and o(C) be 2-stable in the sense 
of Dahlquist and 2-consistent. Denote further by a and 2b the number of real zeros 
different from the unity and the number of complex zeros of Q(Q, respectively. 
Finally, denote by 2c the number of complex zeros of o(Q. (Each zero is computed 
so many times as it is its multiplicity.) Then if a ^ 1, the decomposition (10) 
°f Q(0 and o(() with properties (I), (ii), and, (iii) always exists, and if a = 0 it 
exists if and only if c rg b. 

This theorem thus answers the question when it is possible modifying the algorithm 
(4) to achieve more convenient properties of the numerical stability. Note that the 
above described construction of the decomposition of Q(£) and o(C) generally does 
not lead to 1-consistent polynomials Of(£) and ot(C) and, consequently, these poly­
nomials cannot be used for the solution of general systems of differential equations 
of the first order. 

3. RUNGE-KUTTA-TYPE FORMULAE 

The general Runge-Kutta-type formula for the solution of (l) can be written as 
follows (cf., e.g., [5]): 

m 

(14) yn+1 = yn + hzn + h2 £ ws(l - as) ks(xn, yn, zn9 h) , 
s = 0 

m 

0$) 2fl + 1 = z „ + / i Z w ^ ( x N j „ , z „ , / i ) , y0 = r}0, yl=nl, 
s = 0 

s-\ 

K(*m yn> Zn* h) = /(*« + asK yn + ashzn + h2 £ bsik{xn, yn, zn, h) , 

206 



and as, s — 0, ..., m, bsh s -= 0 , . . . , m, i = 0, ..., s — 1, ws, s = 0 , . . . , m are con­
stants, a0 = 0. The convenience of this formula in comparison with standard formulae 
using the corresponding system is based on that fact that this formula saves one 
evaluation of the right-hand term retaining the same degree of truncation error (cf., 
e.g. [6]). From the point of view of the numerical stability, the situation is here more 
convenient than above. It holds 

Theorem 4. Under the same assumptions as above about the function / (x , y), the 
equations (14) and (15) define a numerical process with B^solution. 

This more convenient result is caused by the fact that (14) is one-step formula and, 
we are here, as a matter of fact, obliged to compute the approximation of the deriva­
tive of the function saught. 
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