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SVAZEK 13 (1968) A P LIK AC E MATE M ATI KY ČÍSLO 2 

UNIVERSAL ALMOST OPTIMAL FORMULAE FOR SOLUTIONS 
OF BOUNDARY-VALUE PROBLEMS FOR ORDINARY 

DIFFERENTIAL EQUATIONS 

J . MlLOTA 

1. I. BABUSKA has investigated optimal quadrature formulae for periodic functions 
which have been universal for a large class of spaces. (Cf. for example [1]). In this 
note I want to describe the using of some of these ideas for the examination of varia­
tional methods for boundary value problems for ordinary differential equations. 
Optimal and almost optimal formulae (without point of view of universality) for these 
problems were examined in [2], [3]. 

2. I consider the equation 

(1) Ax=f 

where A is the self-adjoint, positive definite differential operator in L2. It is denoted 
by HA the Hilbert space which is obtained by the completion of the domain of A 
by the scalar product 

(2) (x, y)A = (Ax, y)L2. 

I further supposed that the imbedding HA into H is completely continuous mapping. 
This assumption is equivalent (Cf. [4]) to the existence of the complete orthonormal 
(in L2) sequence of the eigenfunctions ($„)„ of -4. In this case the corresponding in­
creasing sequence (kl)n of the eigenvalues of A converges to infinity. This assumption 
is also equivalent to completely continuity of the inverse operator A~l. The operator 
A-1 is inverse to the operator A in the sence of the weak solution, i.e. the equality 

(3) (A-1fx)A = (fx)L2 

holds for every / e L2, x e HA. 

3. Let <P = ((Pn)n be a complete orthonormal sequence in L2 and let K be a set of 
all sequences ^ = tyn)n such that 0 < ^1 ^ ^2 S ... and lim ^ = -f-oo. There is the 

n -* + oo 

mapping from K onto the set of the Hilbert spaces Hn which are obtained by the 
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completion of the linear hull of <I> by the scalar product 

(4) (<?,,, 9m)n = vl^m > 

I .Є. 

( 5 ) л" = Z (л> <P«Ь ç>„ є Я„ <=> | |x | | 2 = X l(x> ^ Ы 2 *ľ« < + 00 . 

For $ and any j] e K can be defined the self-adjoint, positive definite operator Bn and 
Hn = H# according to the preceding definition. I call the sequence $ to be the 
admissible sequence for the equation (1) if there exists fj e K such that BtJ and A are 
similar in the sence of the following definition (Cf. [2], [3]): 

Definition 1. Let A, B be the self-adjoint, positive definite operators in L2. They are 
said to be similar if 

(i) HA = HB in the sence of the set and the topological theory, i.e. there exist two 
positive constans a, p such that inequalities 

( 6 ) 4x\U = \\x\\B g p\\x\\A 

hold for every x e HA. 

(ii) There exist the linear, continuous operators Cu C2 which map L2 into L2 such 
that 

(7) A"1 - B"1 . Cx , B"1 = A"1 . C2. 

Remark. In the case that the operators A and B are taken as the differential 
expressions — (px')' + qx and ~(Px')' + Qx under the boundary conditions for 
example in the form x(0) = x(l) = 0 and p'(t), P'(t), q(t), Q(t) are continuous 
function on <0, 1> and for any t e <0, 1> inequalities 

p(t)^po>0, P(t)^P0>0, q(t) = 0, Q(t) = 0 

hold then it can be simply proved that A, B are similar in the sence of preceding 
definition. 

Definition 2. Let L(cpu ..., <pn) denote the subspace of HA which is generated 
by (pu ...,cpn and 

(8) Q(cpu..., cpn) = sup min \A~xf - y\A 

H/11^2^1 yeL(<pi$...,<pn) 

and 

(9) dn= inf Q(q>l9...,<pn). 
L((pi,...,q>n) 
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The sequence $> is said to form an almost optimal sequence for the equation (1) if 

(10) lira sup g f r ' ' ' " • • * " ' < + 0 0 . 
n~* + oo un 

The best (in HA) the n-dimensional approximation of the weak solution A_1f is 
obtained by the first eigenfunctions \j/l9 ..., \j/n of operator A, i.e. 

dn = Qtyu . . . ,^„ ) . 

(Cf. for eaxmple [2], [3], [5]). 

For the operator A in the form of the remark it can be proved (Cf. [5]) that 

n 

The reason of admissible sequences is stated in the following theorem (Cf. [2], [3]): 

Theorem 1. Let <P be the admissible sequence for the equation (1). Then <P is 
almost optimal sequence for this equation. 

4. If $ is the admissible sequence for (l), i.e. there exists fj e K such that Bn and A 
are similar. I denote by K(<t>) such subset of K that rj e K(<£) if and only if the 
inequalities 

(11) 1 ^ ^ ^ ... 

hold. The element x(n)(f) e L(cpu ..., cpn) is said to be the optimal approximation of 
the weak solution A~ lf of the equation (1) if the equality 

(12) Q{f;<Pu...,<Pn\n)= | j ^ - V - x^( / ) lU= min \\A-lf-y\\n 
yeL((pi,...,(pn) 

holds. 

It can be proved that the optimal approximation x{n)(f) does not depend on 
t] e K(<P) which fact is stated in the following lemma: 

Lemma. Let <P be the admissible sequence for the equation (1). Then there exists 

the sequence (cpn)n cz HA such that 

(13) (x, <pn\ = rj2
n(x, cpn)A 

holds for every n e K(<P) and x e Hn. 
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Corollary. If A. 1feHnfor ^eK(<P) then the optimal approximation x(w)(f) is 
obtained in the form 

(14) ^w-icf.fow 
k=i 

and 
+ 00 

(15) e(t;9>i....,^;»j) = [ I KL^WI2^2]172-
fc = n + l 

Further I denote by x(n)(f) the optimal approximation of the weak solution A"1/ 
with respect to L(cpu ..., cpn) and HA, i.e. if 

x<"\f) = txk<Pk 
fc=l 

then the coefficients x l 5 ..., xn are the solutions of the system 
n 

Z xk(<pk, (pt)A = ( / , <J0|)L2 , i = 1 , . . . , n , 
fc=i 

i.e. x(w)(/) is the Ritz's approximation of A~ if by <pt, ..., cpn. 

The main result which takes place for the optimal approximation xSn)(f) is stated 
in the following theorem: 

Theorem 2. Let <I> be the admissible sequence for the equation (l). Then the optimal 
approximation x(n)(f) of the weak solution A~lf with respect to L((pu ..., cpn) and HA 

is the universal almost optimal approximation with respect to the set of the spaces 
(Hn)neK(0), i.e. if A~1fe Hnfor Y\ E K(<P) then the inequality 

(16) lim sup l^—l *-iL!M < + oo 
»- + «> Q(f;<pu..., <p„;»?) 

holds. 

Corollary 1. Let A~lf be an element of Hnfor ^ e K(<P). Then 

(17) \\A-lf-x*\f)\\A = o(^\ 

valids for the asymptotic behaviour of the error of x{n)(f). 

Corollary 2. Let the right-hand side of the equation (\) in which A is in the form 
of the remark have all derivatives and let its closed support lie in (0, 1). Then 

( II f(»+Dll \ 
M_J!f) 

valids for the asymptotic behaviour of the error of x(n)(f). 
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