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CONTRIBUTION TO THE REISSNERIAN ALGORITHMI
IN THE THEORY OF BENDING OF ELASTIC PLATES

ALEXANDER HANUSKA

(Received January 3, 1967.)

In the recent years great attention has been given to the refined theories of plates.
It is known that Kirchhoff’s classical theory has originated by introducing simplifying
assumptions. It appears, however, that in some cases (e.g. plates of greater thickness,
regions in the vicinity of concentrated loads, discontinuous loads, boundaries with
corner points, holes whose dimensions are comparable with the thickness of the plate
etc.) this theory is no longer suitable, and some simplifying assumptions have to be
given up. The endeavour for refinement has resulted in a series of new theories con-
cerning the beding of plates, generally known as the refined theories. Without analys-
ing these theories more deeply, they can be divided in two groups: The first group
starts from some statical or kinematical assumptions, of course, from a smaller
number than in the case of Kirchhoff’s theory. The second group starts from the
threedimensional elasticity equations, under the assumption that the sought solution
can be developed into an infinite series according to the variable z (Fig. 1), and that
thus a dimensional reduction of the problem can be obtained. Though this method
makes an analysis of higher approximations possible, however, because of numerical
difficulties usually only two terms of the series are taken into account, which then
leads to an equation of the sixth order.

When using only a finite number of terms in the series, the question arises, how to
introduce the individual approximations in order to obtain the best approach to the
exact threedimensional solution [1], [2], [3]. One of the possible proceedings starts
from the variational principle, and determines the coefficients of the individual
approximations from the condition that the solution for a given load should fulfil
Lagrange’s or Castigliano’s principle. In such a case, though an optimum solution is
obtained, however, this depends on the load. For each load the solution has to be
repeated. That is why an approach would be desirable looking for an optimum solu-
tion not for a single load only, but for a whole class of loads.

Starting from this idea, BABUSKA and PRAGER have derived the method of the so
called Reissnerian algorithmus [1]. They have shown that there exists such optimum
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sequence of functions ¢@{(z/h), y9(z/h), where, when the displacements are given in
the form of series

N
iiy(x, v, h{) =’;(— 1) h2 a(x, y) 93(0) ,

N

(1a, b, ¢) On(x, v, hO) =Y (=1)""P B2 h(x, ) @3(0),
i1
M+t

Dl v, hE) = 3 (= 1)1 B2 (x, y) YO(0)

i=1

the energetic error for the whole class of loads will be asymptotically (for h — 0)
minimum (a;, b;, ¢; are the solutions of a system of differential equations resulting
from Lagrange’s variational principle). Further they have shown that the asymptotic
behaviour of the series (1) do not change, provided that instead of the independent
functions a;, b, ¢;, we introduce d4'w/dx, d4'w[dy, A'w. It is important that in
equation (1c) there should be one member more than in the series (1a) and (1b),
ie. N = M.

In this paper several variants resulting from the assumption of approximation of
the displacements according to the equations (1) are derived using Lagrange’s
variational principle. The corresponding differential equations, together with the
boundary conditions are analysed. In the conclusion some variants of the Reissnerian
algorithmi are compared with some known refined theories using the example of
a square plate.

DERIVATION OF DIFFERENTIAL EQUATIONS AND BOUNDARY
CONDITIONS FOR SOME VARIANTS OF THE REISSNERIAN ALGORITHMI

Let us consider the expression (1) of the displacements #, §, W, where the so called
optimum functions ¢3({), ¥9({) are according to [1]

0y = =y, ¥y =7,
100—-3y, y+2 104+3y y—-2
0 y 3 0 2
= c C B Yoy = ————— + — ’
¢z 0 6 V2 10 2t
157y — 140, 4 — 3y y+ 4
2 (0 = C + C?, - Csv
@ o 4200 60 120
157y + 140 —4
= - BB A e 7R
4200 20 24
569y — 1020 174 — 157 3y —2 ., —6
l/lg — Y + ng + Y C4 + Y CG,
252000 8400 240 720
where
A+ 2u
3 y = A2 oy,
( ) . A+ ( )
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In the equations (2) and (3) A and p are Lamé’s constants, v is Poisson’s ratio, { is the
reduced coordinate z/h, when the plate thickness is equal to 2h (Fig. 1). Further we
shall consider that the loading of the plate is

4 o(x, y, £ h)
(X, y, £ h)

Then in the case when on the cylindrical surface of the plate homogeneous boundary
conditions, expressed either in displacements or in stresses, are given, the potential
energy of the system is expressed by the quadratic functional [4]

h 2\ 2 2\ 2 2
(5) V=1 207 + 2 (1) +(0) + ()] +
—h 0x dy 0z
2 2
+ u @_}_a_v +QE+€! +§E+aw dxdydz —
dy  0Ox oz  0Ox 0z 0Oy

- ”[w(x, v, h) + w(x, y, —h)]3p(x, y)dxdy < o,

+ ip(x, y),
(X, y, £ h) =0.

where ¢

A Y n
(6) @:_—_(’3_1'14_@_;_6_‘1) 4" o

ox dy oz

On the basis of Lagrange’s varia- |

tional principle we obtain Lamé’s Cex,gp = O
differential equations and the boun-

dary conditions. When substituting

the approximative values #, ¥, W, O;A_‘ . %
expressed by means of (1) into (5), Loy

using Lagrange’s principle we can 2

derive the differential equations and O — X
boundary conditions corresponding ; LVWWW_—I

to the N-th approximation. Starting
from equation (1) we shall gradually
increase the number of members in Fig. 1.

the series. For the sake of complet-

ness we shall begin with the simplest assumption N = 1, M = 0, i.e. expect the R
eissnerian algorithmi

(7a, b, ) ii(x, y, h) = 3(0) h —
| #(x, y, h() = ¢3(0) b a—w
> Vs ?1 dy >
Ww(x, y, h0) = YO w .
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When substituting (7abc) into equation (5) the latter can be integrated according to {.
We obtain

(8) 7=D ?ill__:zvv)jﬂ{vuw)z + (1= 2v) [(%)z +
+ 2(5‘:(;;)2 + <%”>2]} dxdy — 2(1 — v)ﬂwp dxdy,
where
©) p— 2EF_
3(1 =2

is the flexural rigidity of the plate, E is Young’s modulus and 4 the Laplace operator
4 = 9*[ox* + 0*[0y*. After Lagrange’s principle

(10) o = D‘.‘Qﬂﬂ[mwam + (1 -2 )(‘2_):1’ LN

1 —2v x>

2 2 2
2ﬂ56—w+awaaw dxdy — 2(1 = v) | | pdw dx dy = 0.
0x dy 0xdy dy* oy?
By an integration per partes it is
1—-2v p [ 4w
11 1—v) 4w — —— Z | dwdxdy — (1 — v — owds +
I e | L 7
2
+ (1 —2v) —a—w@ s + vAw+(1—2v)6—w aé—wds=0.
. Ondt Ot . on* | on
With regard to the arbitrariness of w we obtain the resulting differential equation

(12) pop = 122 P

20-v)* D

When realizing that in the line integrals in (11) dw/dt = dw[ds and 0%w/[dn 0t =

= 0%w[0n 0s — (0u|0s) (Ow[0s) can be substituted, we obtain the homogeneous
boundary conditions

' 4w *w 6a8w
13a,b 1—v——+1~—2 —)=0,
( ) ( ) ( )% <6n(35 as 6s>

o%w
vadw + (1 — 2v) — =0,
( ) on?
where Aw = d*w[on® + 0*w[0r* = *w[on® + 0*w[0s* + (0u[0s) (Ow[on) and Ox[ds
is the curvature of the boundary C. When comparing the differential equation (12)
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with the classical theory of thin plates, and when considering that Ww(x, y, 0) =
= 2(1 — v) w(x, »°, we see that we can obtain Sophie Germain’s equation only in
the case v = 0. The two obtained boundary conditions represents two conditions,
that both the bending moment M,(s) and the generalized shear force Q,(s) vanish.
However the boundary conditions will be discussed in full detail later.

Let us consider further the first approximation of the Reissnerian algoritmus, with
one function w(x, y) [N = M = 1/

(14a, b, c) i = %h 6_w
ox
ow

~ 0
= (/) h N
1 ay

W= ydw — YIntdw.

By substituting (14) into (5) and integrating by {, and by applying Green’s theorem,
we obtain again V. Thus it follows that

24 — 28v 4+ 9? 1
15 APw - A3 = —— — 4h24
(13) 25(1 — v) 2(1—v)D(p thidp)
and the three boundary conditions are
(16a, b, c) 0w _ 0,
on
2 2
-1 —v)—-L—Qféﬁ +L~(24—28v+9v2) -
onds ds Os 25(1 = v) on
_2_ P
5(1-vDaom
2 2 o v 2
vdu + (1 — v)? Tw —h#(24 — 28v + %) A%w — g—h—
on* 251 —v) : 5(1 - v)D

Lets remark that equation (15) was derived in a slightly different way in [S].
Further instead of (14a, b, ¢} we consider two free function w(x, y) and #(x, y), see
also [6] ‘ :

at

(17a, b, ¢) i = @lh —
ox’

7= @l _ai

dy’

W= y0w — Y.
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After performing the calculation with regard to the arbitrariness of éw or 6t we obtain )
a system of two equations

- — )2
(18a,b) A(w —1) + hzgqut — h? —l-u\ﬂ—Azw=0,
31 -2y 15(1 — v (1 — 2v)
— 2 — y )2
Cdw gy e L2 R 2 2 e
15 (1 —v)(1 = 2v) 15 (1 = v)(1 —2v)
2 )
VRIS R B E A T SRS
150 (1 —v)? 2 Eh(1 - v) 5

or after elimination of ¢

2 40 , 2 43 454 2
(19) At — —h_ 48 124v + 77v 2y A + %h_ 24 — 28v + 9v S —
30 (=) -2y 75 1—2v

1 — _
_ (P_ghzn PN VS LIy
2(1—-v)D 15 1 —2v 15 1 —2v

It is obvious, that by introducing two functions, the equations become rather com-
plicated, and that’s why we don’t give here the corresponding boundary conditions.

Let’s consider further two members in the series (1), i.e. again like in the case (7)
except the Reissnerian algorithmi (N = 2, M = 1)

(20a, b, c) i = ¢% w _ oSh® fiA_W,
x 0x
o a4
i = (p(l’ha—w — % 2
dy dy
W= ydw — y3h%dw.

The corresponding differential equation will be
4 — 2
(21) 4w — 4 h2A3w + 4= v+ 85 h*A*w = 1 p— ithp .
5 525 2(1-v)D 5
The line integrals can be arranged in a form, from which we can determine four
boundary conditions

odw 4 042w 2w
22 —2D(1 —v) =— + D= h*(1 — v) =—=|ow + | D2(1 — v)2 — +
@) [ ( ) on 5 ( ) 611] I: ( ) On 0t
2 2 2
+ D 2wt =) TA P Ty — (2 4 TE) -
5 onadt| os on? ot?

4 4 4 w
—DIR*(1 —v)2 2w+ D-h*(1 —v — —D-h*(v -2 Adw +
5 ( ) 5 ( ) on® | on 5 ( ) on

2 2 2
+ DY pa(1 =) D QAW (T WY 0AO% L ohe) — 0.
5 ot s s \aw> o) on

0%4 w] 0ow %_
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We have abstained here from giving the higher powers of h, neither will the equations
be analysed now. The further approximation of the Reissnerian algorithmi will be
(N=M=2)

(23a, b, ¢) i = o 2 _ o 94
0x ox

5 = @%h ow _ @%h3 ?ﬁ'ﬂ'

dy dy

W= y0w — YOh2Aw + YIh*A?w

After laborious calculations we obtain

(24) LPw — ‘g‘hmsw +

2
I U PR E A S (R PP I LRy
648 21— D 5 175

When introducing a further approximation, again outside the Reissnerian algorithmi
(N=3,M=2)

27 s, 3 [76519 — 146738y + 585992
16(1 — v) 2205000

ow oAw 0A*w
25a, b, ¢ = % — — @Sh® == + @Jh® ——
( ) % 0x P2 ox ox
5 = o0 ow oo 04w odw o33 4w 042 w
dy ay ay

W= ydw — yoh2Aw + Y3h*A%w,

and when substituting these terms into (5), we can see that the obtained differential
equation will have at the powers h°, h%, h* the same coefficients as in (24), and only
the member with the highest derivative will have a changed coefficient. The boundary
conditions are determined from the condition, that the expression in the line integral
equals to zero

(26)
2(1——v){ 2(1~v)Da—A—W5< if thA) [2(1_‘,)2[)_61_

on ot
2
A=y Z 5 2 (2 e — [ =20 — b (2 &
5 On 0t Os 51 —v on®
82

?Aw 0 2 v
—vl~v Dh? S—(w+ = haw)+ohHl =0.
62> (=) azz] an< 51—v. ) ( )}
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In this equation we again do not give the members with higher powers of h. Further
the stressess are expressed trough the differentiation of the displacements given by
equation (25a, b, ¢). It is easy to prove, that the equation (26) can be written in the
form

(26" 2(1 —v)| Q.6 w—g%;vthw —M,,séE w-i-%—v—hzdw -
51 as 51

— —v

— M3 i(w L2 thw> + O(h“):l -0,

on 51 —v
where
(27a, b, ¢) Q, = —2(1-v)D af]ﬂ’ ,
. on
2 ) 2
MnS= —2(] _V)ZD a_“i __Q,a_(i‘f _év(l_\))th aAW_%Q.A_M) 5
onds 0s Os 5 onds 0s Os
2 2 2
M,,=*2(]—V)D .(,77,"24.»» f)_LV_}_('{O_C?LV +ﬂv(]_v)]121) (’}_AVX.*_%QA_W .
on* 0s*  0s on 5 0s? 0s On

The introducing of further members in series (1) does not influence the coefficients of
the powers h° and h?* in the equation (26).

Should we want to obtain more accurate results, it would be necessary to involve
more members and to introduce, apart from the moments and the shear forces,
moments and forces of higher orders. Since the numerical solution of equation (24)
is rather laborious we shall abstain here from further refinements.

In our paper we shall deal with relatively thin plates, where the expresions of the
order h*|a* [a is one of the plane dimensions of the plate] can be neglected. We
shall analyse the so called internal problem and the boundary effect will be disre-
garded [7], [8]. Further when we neglect the members containing h*" for n = 2 the
equation (24) can be written

(28) A*w — %hZAE’w— w-—-1-—\—<p _4 hZAp>.

21 -v)D 5

The statical boundary conditions corresponding to equation (28) can be obtained
from (26)

Qn =0?
(292, b, ¢) M, =0,
M, =0.

It can be seen that if the members are maintained up to the power h2, we receive the
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three Poisson’s boundary conditions for the unloaded free edge. For the kinematical
boundary conditions of a clamped plate it holds that

22 —v

(30a, b, ¢) w— - h?4Aw = 0,
51—v
Ilw+2 " paw)=o,
Js 51 —v
0 \
w2 n2aw)=o.
on 51—

For the sake of completness, let us further mention that when deriving the differen-
tial equations and the natural boundary conditions, corresponding to the case of
a free edge, we had started from the Lagrange variational principle without using
further subsidiary conditions. The introduction of approximations for #, &, W in the
form of finite series (1) results approximate solutions, that do not fulfil exactly the
boundary conditions on the surfaces z = +h. Thus e.g. only the second Reissnerian
approximation (23) satisfies the condition o.(x, y, +h) = +1p(x, y), however, only
with an accuracy to h°, and the member with h? gives an error. Similarly in t,,(x, y,
i—h) the members with 4° and h? vanish, but in the case of h* there remains a non-zero
value. Should we also want to satisfy exactly the boundary conditions on the surfaces
z = 4h, it would be necessary to introduce these conditions as subsidiary conditions
of our variational problem.

COMPARISONS OF SOME VARIANTS OF REISSNERIAN
ALGORITHMI WITH SOME KNOWN REFINED THEORIES

Let us consider a square plate with sides a, and loaded in the following manner:

(31) p = posin =sin ™Y (n=1,2,3..).
a a

We suppose further that the boundary conditions are fulfilled by the choice of the
solution in the form

(32) W = w, sin X sin 7Y (n=123..).
a a

The unknown constant w, can be found by applying Navier’s method substituting
(31) and (32) into the corresponding equation. For comparison let us present here
first Kirchhoft’s theory. It holds, that

’

(33) A*w =

Ol
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and we receive the solution

Pod . ATX . nmy
(34) WKirch = **ZT sin —— s —— .
4n*n*D a a

We consider the assumptions concerning the displacements after equations (7). By
substituting into (12) for v = 3/10 it will be

poa* 200
WO = -, N
4n*n*D 343
and the mean vertical deflection is

7 200
Wmean = —— Wireh = 0,8Wkireh -

57343
When the first approximation of the Reissnerian algorithmi (N = M = 1) with one
function is considered according to (14), we receive from (15)
_ 5 poa* 1 + 2/57%? .5 poa* _ T ok
74n*n*D 1 + 1641[3140n%2  74n*n*D\ 628 ) ’

(35) Wo

where we have denoted

(36) £ = rzz—h.
a

The fraction in (35) has been divided and since we are interested in the accuracy of the
order &2, the members of higher powers could be neglected. Further when comparing
the vertical deflections, according to various theories, one has to decide upon a uni-
form basis. As we are considering relatively thin plates, we shall start from the average
value of deflection along the height 2h. From (14c) we obtain (v = 3/10)

(37) Bean = 21+ 2 2262w
70

5

By substituting (32) and (35) into (37) and taking into accont (34) we obtain

(38) Wmean = WKirch <1 + 11 697 TCZGZ) = Wirch <1 + 2;1(;6 752£2> .

35628

Assuming the first approximation of the Reissnerian algorithmi with two free
functions according to (17), we obtain after cumbersome calculations

1691 28,2
39 Wmean = irc 1 + — n2£2 = WKire 1 + = 7[282 .
( ) WKirch ( 4200 > K h( 70 )
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The assumption of equation (20) and the differential equation (21) leads to
" 33
(40) Wnean = WKirch (1 + =0 n282> .

When considering after (23) the second Reissnerian algorithm (N = M = 2) with

one free function w we see, that W,,.,, Will be determined with the accuracy of &2 by

the equation (40), and even the further members do not change the coefficient 23 2.
Let it be added that the bending moment M, with an accuracy of &2 will be

3
(41) M, = M, xiren <1 + P nzaz).

We compare these results with the values obtained after some well known refined
theories.
In an older variant [9] A. J. LURIE received the equation

_8—3vh_2A3w:£
1—v 10 D

(42) A%w

(all the other equations will be given in our notation). By integrating W(x, y, z) we
obtain the average value

_ 2
(43) Wmean =W - ! ' 'h‘* Aw
14+v6
When substituting, we obtain
1421 27,2
44 Wmean = WKirc 1+ — n?e? ) = w irc 1+ == n2e? ).
9 « "( 3672 ) « “( 70

In the later formulation of LURJE’S theory it is

w— - w= =,
45 a2y = Lty = P
| 5 D

and the avarage value of the deflection can be obtained by integrating the equations
given in [10]
(46) I L Y

31 —v

By substituting and rearrangement it will be

' 33

47 Winean = Wkiren | 1 + — 122 ).
(@) (1435
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According to the well known Reissnerian theory it is [11]

1 22—y
48 Hwy=—(p-= h24p).
(“8) 4 D(p 51—v p)

We should like to point out that in equation (48) w, may be comprehended as weight-
ed average deflection, resulting from the energetic balance

h
(49) J Tnzw dz = anA >
~h
where Q,, is the shear force
h
(50) 0, = j 7,,dz .
~h

By substituting into (48) we obtain for v = 3/10
34
(51) W4 = WKirch (1 + 7—0 71282> .
Let us note that according the latter theory, the bending moment M, is

(52) M, = M Kiren (1 + 63? nzaz) .

Another theory was presented by HeNcky [12]. According to this theory, the
vertical deflection is not dependent on z, and for our case it is enough to consider only
one differential equation

1 2
53 A’y = = — Z h%4p).
(53) D(ﬁ 3 P)

After substituting the loading (3 1), the deflection can be easily established

33,3
54 Wiean = Wkiren | 1 +—- 122 ).
(54) K h( - )

After MUSTARI’s refined theory it is [ 13]

h? 1 22 —v

55 A%w + —MBw==(p—-="—"h2%4
( ) 1—-v10 D(p 51 —v p)
and

2

vz
56 . wix, y,z)=w+ Aw .
(56) (x, 3,2) 21— v)
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After integrating, substituting and rearranging we obtain
34

(57 Winean = Wiiren | 1 + — 72e% ).

(57 o (143

In AMBARCUMIAN’s book [14] we can find several alternative methods for the case

of anisotropic plates. One of these theories in the case of an isotropic plate leads to
the equation (p. 332)

1 22 —v 4+
58 My =~ |p— 22TV EV oy
( ) D[p 5 1-—v p]

and in the case of the assumed independence of w on z it will be

4
(59) Wmenn = WKirch (1 + '112—7 7'[282> = WKirch (1 + 37(,)5 n282> .

3500

Further ([14] p. 338) the results of the solutions corresponding to different supposed
forms of the distribution of the shear stress 7,,, and the shear strain y,, along the height
of the plate are given, and the slight sensibility of the solutions on the form of the
assumed distribution has been found. For the coefficients of 72¢? the values 40/70,
38,1/70 and 33,3/70 were obtained ([14], eq. 6.19).

After RAYMONDI’s theory [15] we obtain the equations

; s L[ h?
” T AR

1
61 A*t= ———— Ap,
(61) i—wp "’

where the deflection W(x, y, z) is
(62) W(x, y, z) = w(x, y) + 22%1(x, y).
When substituting and rearranging, we obtain

‘ . 33,33
(63) Winean = WKirch (l + P~ TE282> .

After RAYMONDY’s simplified theory it is

2
(64) AZW = ’1— [ - 4h AP] s

D 5(1 —v)

where it is assumed that

(65) W(x, ¥, 2) = w(x, ).
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By a substitution we get

40
66 Wmean = WKirdl 1 + — 7'[282 .
(66) e (1450 )

The variant of the refined theory, presented by KHACATURIAN [16] leads to two
differential equations, of which it is sufficient to take into consideration only one

’

(67) A’w =

o=

and the deflection along the height will be

_ 2 2
(68) W=w—(8 vy z)Aw.

1—-v 10 - 1—v2
By a substitution and rearrangement the average deflection will be
33
69 Wimean = Wkiren | 1 + = nzaz) .
(®) o (1475

The further theory of KHACATURIAN [17] is a little different. It also leads to a system
of two equations, of which, in the given case, one is sufficient

1 2 v
70 A*w = — + - h24p),
( ) v D(p 51 —v p)

and along the height the average deflection Wye,, can be determined from the equation ™

2 2
(71) Wmea,,:ocw—ghh———Aw+i———v—«h—p.
31 —v 15(1—=v)?*D
In the last equation the coefficient o is in connection with the assumption of a non-
linear distribution of the displacements # and ¥ along the height of the plate. For
a linear distribution « = 1. Khacaturjan suggests to find the the constant « experi-
mantally. The resulting equation will be

\

33,33 — 6 n282)’

72 Wmean = irc o« +
(72) WKirch ( 70

which for « = 1 yields a relatively low value. The Surocki arrangement of Lurje’s
equations [18] for the technical theory of plates acquires the relation (33) and the
deflection W is the same as that in Lurje’s equation (43). We receive then

40
73 . Wmean =W irc 1 + _n282 .
(13) | e (14 507
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When considering the average weighted value according to (49), the Sutocki arrange-
ment of Lurje’s equations yields

41
(74) W4 = Wiiren (1 + 0 nzsz>.

In the given case the theories of V. Panc [19], M. SEremMETIEV and B. L. PELEKH
[20] Iead, also to the equation (64) which holds along with equation (65). That’s
why we obtain identical results with (66).

In conclusion let us present here the exact solution of the discussed case, when
starting from the threedimensional equations of Lamé. On the basic of the equations
given by B. F. VLAsov [21] after some rearrangements one may arrive to the equation

) w(x zZ)=w X (\/(2) ”8)3
(75) W ¥, 2) = Wicire(%> ¥) - 12(1 = v) (sinh \/(2) =& — {/(2) 7e)

{— |:2(v — 1) . cosh \/(2) g V(@)me sinh \/(2) m:l cosh J(2) me z +
2 2 2 h

+ AZ_)_ne \/(2) " sinh \/(2) e z} .
h 2

— z cosh
h

‘When integrating according to z, we may obtain the exact value of the average deflection

(76) Wonean = Wicivn- (/(2) me)? 1 — (3 — 2v) (sinh /(2) 7e)\/(2) e
T 6(sinh /(2) me — /(2) m) 21 =) '

When we expand the individual terms in (76) into series, we obtain for v = 3/10

33
77 Winean = Wkiren | 1 + — 122 ).
( ) Wk h< 70 )

The equation represents the exact solution of the threedimensional problem with an
accuracy up to the quadratic term in &. A comparison of the ratio 33/70, as that of an
exact value, with the other coefficients, shows the accuracy of the various approxima-
tive theories (see table 1). This comparison shows that the Reissnerian algorithmi
make it possible to obtain exact results up to the power ¢ and a good agreement can
be expected for other loadings as well.

Further it becomes obvious, that those theories that take into consideration the
influence of the shear forces only, are less accurate than those that involve in their
calculations also the stress 7, or the strain ¢,. The difference is about ¢? and it becomes
more pronounced for thicker plates.

The analysis of stresses could be carried out in a similar way, but this is not the
scope of the present paper.

Acknowledgement. The author is indebted to Dr. I. BABUSKA and Dr. M. PRAGER
(Mathematical Institute of the Czechoslovak Academy of Sciences) for suggesting
this problem and for their valuable advices.
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Table 1.

Comparison of the results obtained from the solution of a square plate by various refined theories

. 2.2 2h
Wre == WKirch(l + @n7¢”) e=n ;

Author Reference Equation 1+ ansz
Reissnerian One free funct.
algorithmi N=1,M=0 ™, (12) 0.8
[N= Mland |— e _Vﬁz,‘rw_ _
related cases (I)\;le_ﬁ:/;iur;ct. 14), (15) 142 g2
N + M] M= oon
two free funct. 282 5, ,
N=M=1 (17), (19) 1+7(T
one free funct. 33 ,,
Ne2 M= 1 (20), (21) l-}—%ng
one free funct. 33 ,,
Ne M=2 (23), (24) 1-+%ns
. 272 ,,
Lurje — 1936 [91 (42), (43) 14 o e
. 33 ,,
Lurje — 1942 [10] (45), (46) 14 7 e
. 4 ,,
Reissner — 1944 [11] (48) 14 % e
333 ,,
Hencky — 1947 [12] (53) 14 ETS e
. 34 ,,
Mustari — 1959 [13] (55), (56) i
. 345 5,
Ambarcumjan — 1961 [14] ' (58) 14 ETS n
40 , ,
[14] 6.19 pp. 338 1+ —=n¢
70
38,1
[14] 6.19 pp. 338 L+ =5 n2e?
33,3
[14] 6.19 pp. 338 L n2e?
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Table 1 (continued)

Author Reference Equation 1+ anzaz
. 333 ,,
Raymondi — 1963 [15] (60), (61), (62) 1+ 70 n
40
[15] - (64) 1+ 2 n2e?
« : 33 5,
Khacaturjan — 1963 [16] (67), (68) 14 % n°e
33,3 — 6a
17 70), (71 4%
[17] (70, (71) o 2o
X g 40 5,
Sutocki — 1964 [18] (33), (43) o 7
[18] (33), (49) 1 42
s -+ 7 ne
40 ,,
Panc — 1964 [19] (64) 1+ 7 ne
< . 40 , ,
Seremetjev-Pelekh — 1964 [201 (64) 14 7 ne
Vlasov B. F. — 1957 — exact 33
solution [21] (75), (16) T+ 25 n2e?
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PRISPEVOK K REISSNEROVSKYM ALGORITMOM V TEORII
OHYBU PRUZNYCH DOSAK

ALEXANDER HANUSKA
.

V &ldnku st Studované niektoré varianty spresnenych tedrii ohybu izotropnych
dosdk, pricom sa vychddza z metddy tzv. Reissnerovskych algoritmov zavedenych
v teorii pruznosti I. Babuskom a M. Pragerom. Na zdklade Lagrangeovho variaéného
principu st odvodené diferencidlne rovnice problému a im zodpovedajuce okrajové
podmienky pre rdozne varianty Reissnerovskych algoritmov. Ako priklad sa vySetruje
Stvorcovd doska, zafaZend symetrickym kopovitym zataZenim. Porovnanie priehybu
podla viacerych varidnt Reissnerovskych algoritmov s vysledkami rieSeni podla
niektorych zndmych spresnenych tedrii ukdzalo velmi dobri zhodu rieSeni podla

o

Reissnerovskych algoritmov vyssich pribliZeni s presnym rieSenim.
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Pesrome

K PEVICHEPOBCKUM AJIFTOPU®MAM B TEOPUU U3TUBA
VIIPYI'UX TTJIACTUHOK

AJIEKCAHIEP FTAHVIIKA (ALEXANDER HANUSKA)

Hcxoas w3 Metona Tak. Ha3. peCHepOBCKUX aiaropudMoB, ObUM B CTATHE UCCIIE-
JIOBAHBI HEKOTOPbIC BAPUAHTHL yTOYHCHHBIX TEOPUI M3r1Hba U30TPOMHBIX TIACTUHOK.
Ha ocnoBe BapuammonHoro npuniuna Jlarpanxa BbiBegeHbl muddepenuuaibHbie
YPaBHEHHSL M COOTBETCTBYIOLIME UM I'PAHKUYHBIE YCIOBUs. B KayecTBe mpumepa GblIia
MCCITe[0BaHA KBaZpaTHasl IIACTUHKA C KOIUICBHIHOM HArPY3KOM U JAaHO CpaBHEHUE
nporuba, onpeesieHHOTO MO Pa3MYHBIM BapHAaHTAM PEHCHEPOBCKHX aropudmos,
C pELICHUSIMK 110 HEKOTOPBIM M3BECTHBIM YTOYHEHHBIM TeopusiM. CpaBHeHUe noka-
3bIBACT, YTO PELICHUSI [0 BBICLIMM TNPUOIMKCHUSIM PEHCHEPOBCKUX ajiropudMon
MPAKTUYECKH COBNANAIOT C TOUYHBIM TPEXMEPHBIM PEIIEHHEM.

Author’s address: Ing. Alexander Hanuska C.Sc., Ustav stavebnictva a architektiry SAYV,
Dubravska cesta 4, P.O.B. 1191, Bratislava.
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