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SVAZEK 12 (1967) APLIKACE MATEMATIKY CisLo 6

VARIATIONAL PRINCIPLES IN THE LINEAR THEORY
OF ELASTICITY FOR GENERAL BOUNDARY CONDITIONS

IvAN HLAVACEK

(Received March 6, 1967.)

INTRODUCTION. NOTATIONS AND ASSUMPTIONS,
DEFINITION OF THE PROBLEM

Nearly in all monographs on mathematical theory of elasticity, theory of plates and
shells, in structural analysis etc., some chapters are devoted to variational principles.
However, the principles given there rarely correspond to boundary conditions of the
general type, when, for example, on parts of the boundary of the given region (surface
of the body) not only displacements and surface tractions are prescribed, but also
contact conditions and conditions of elastic supports are given separately in the
normal and tangential directions to the surface.!) The present paper aims both to fill
in this gap and to offer a deeper mathematical view on classical variational principles
with use of the methods of functional analysis, especially of the theory of Hilbert
space. In this sense the paper extends the ideas contained e.g. in books of C. T.
Muxjaun [3], [4]

Although all this study is restricted only to the spatial problems of linear elasto-
statics, in the same spirit it is possible to establish and apply analogous principles in
the structural theories for beams, plates and shells, if we replace the three-dimensional
fields of displacements, strains and stresses by the corresponding two- or one-
dimensional fields of deflections, tangential displacements, extensions and curvature
changes of the middle surface or middle curve respectively and fields of generalized
stresses, such as force and moments resultants across a section of the element under
consideration (see [2] for an example).

In the following we deal with the principle of virtual work (section 1), principle of
virtual displacements and the definition of the weak (generalized) solution to the
problem (section 2), the principle of minimum potential energy (section 3), the
principle of minimum complementary energy and that of virtual changes of stresses

1) Exceptions are presented e.g. in the works of E. REISSNER [1] or K. ®. UepHusix [2].
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(section 4), cases of “free bodies™ (section 5), generalized principles of Hu HAI-CHANG
and WasHIzu, HELLINGER and REISSNER (section 6) and the estimates of errors of
approximate solutions (section 7).

Let the elastic body occupy an open bounded region Q of the three-dimensional
Euclidean space with a fixed rectangular Cartesian coordinate system (xy, x,, X3) =
= X. We suppose that?)

a) 2=ve,

where each region Q, is starlike with respect to some sphere K, (that means in each
region Q, such sphere K, = Q, exists, that each half-line, going out from any point
of this sphere, intersects the boundary of Q, only at one point);

b) the boundary I' of @ has the form
A
=y sk >
k=1

where each part S, can be described by the relation

xlk = Wk(xmk’ x,,k >
where y, is continuous, with first derivatives piecewise continuous for X; = (X, Xn,) €
€ g, g being a closed two-dimensional region, the projection of Sy;

c) if we define the open cylinders G;(5) and Gy(6) as the regions

Gl'c(a) = {XkEQk’ W — 0 < x, < l//k} ,
62(5) = {Xkegb Ve < xp, < Y + 5} s

then one of them belongs to Q for sufficiently small § > 0. This cylinder will be
denoted by Gy(9);

d) there exist closed regions §i» < g, k = 1,2, ... A such that the region
A
G(d) = U G(9)
k=1

(where G{¥)(9) is the part of G,(8), which has g{* as its projection), includes a bound-
ary layer of Q, that means the set of all points X € @, the distances of which from the
boundary I' are less than a fixed n > 0.

Note that from the latter condition it follows, that the neighbouring parts of
surfaces S, may not meet only on curves, but their interiors must have a non-vacuous
intersection.

In the following sections some function spaces will be used, which we introduce
now through the preliminary definitions.

2) These assumptions are taken over from the book [3], but they can be replaced by the
definition of so called region with Lipschitz-like boundary (see e.g. [9]).
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Let L,() be the space of real functions f(X), X € Q, square-integrable in Q in the
Lebesgue sense, with the norm

e = j F(X) dxX .
[

[L,(2)]? is the space of vector-functions f(X), X € Q with every component f; € L,(2)
and with the norm

3
|f|[2Lz(Q)]3 = ‘21|f|' iz(.Q) .
i=

Wi(Q) denotes the space of functions of L,(2), which have all first derivatives in
the generalized sense and these also belong to LZ(Q). The norm is given through

3
|f |70 = f frdx Jrkz1 j f2dx, where f, = dffox,.
Q = 2

[WiD(@)]? is the space of vector-functions f(X), X € Q, with every component
fi€ Wi(Q) and with the norm

3
|f,[2W2“)]3 =_21 [filfvw :
i=

Let I'" < I be a part of the boundary I', containing a set ¢, which is openin I' — i.e.
for each point X° e 0 such positive ¢(X°) exists, that also each point X € I', for which
the distance

(3,65 = 327)" < o(x")

belongs to 0. We define L,(I'") as the space of real functions f(X), X € I'", with the
norm

A
Uty = X | £3(0 vi(X0) 4%, < e0
=1Ja

where g; means the projection of the intersection I'" N S,. Note that g; may be even
vacuous for some k.

Let us state the mixed boundary-value problem in the linear quasi-static theory of
élasticity. Suppose that the strain-displacement relations

(0.1) en = (Ui + ),

stress-strain relations (generalized Hooke’s law)

(0.2) Tik = CigimEim  OF (inverse)
€ik = AikimTim

respectively and the stress equations of equilibrium

(03) Tik,k + Ki = 0

427



hold on Q. Here u;, ¢, t; and K; denote the cartesian components of the displace-

ment vector u, strain tensor, stress tensor and body force vector respectively. We

use the convention that a repeated suffix implies summation over the range 1, 2, 3.

The elastic coefficients ¢;,(X), @;,(X) satisfy the well-known symmetry relations
Ciktm = Ckitm = Cimik > Aikim = Aiitm = Aimik

and the inequality

3

~ 2

(0-4) Cikim€ik€im = Ho Z Cik
ik=1

for every symmetric tensor ¢;, at each point X € Q, u, being a positive constant.

On the boundary I' of the region Q the boundary conditions are prescribed in the
form of linear combinations of the displacements and surface tractions components
(0.5) Au, + B, T,=C,,

Au, + BT, =C,,
where the suffixes n or t denote the normal or tangential components of vectors u;

and T; = t,n, into the direction of the unit outward normal n, or of the tangential
plane to I' respectively, defined through

(0.6) u, = Uny, (u); = (u— u,n); =u; —unn;,
T, = tunn . (T); = Tpne — Tanmn; .

A,, A, are piecewise constant functions on I', the values of which arc 0 or 1 only.
B, and B, are such bounded measurable functions on I, that

B,z2f,>0 or B,=0,
B,zf#,>0 or B, =0.
For every point X € I we have
(0.7) A, + B, >0, A, +B,>0.
Let us denote the following sets of points on r:
o, ={Xel, B, =0},
o, ={Xel, B, =0},
#,={Xel, B,>0}, I,={Xerl, A,B,> 0},
#,={Xel, B,>0}, I',={Xel, AB, > 0}.

Il

Suppose that the sets o/, B, ', # ~ I (diﬁ'erence of the sets) with subscripts n or t
are either vacuous or contain an open set in I' (see the definition of L,(I")).
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Let a vector-function u e [W5D(2)]® be given, which defines functions C, € L,(7,)
and (C,); € L,(o#,) on o/, and &/, by means of the relations

n,=C, on &, u=C,. on <,

as the linear combinations (0.6) of the traces of its components.

Let C,/B, = P, € Ly(4,) and (C,);/B, = (P,); € Ly(%,), (j = 1,2,3), Ke [L(Q %,
Cixim and @y, be bounded measurable functions on @ = QU TI. P, and P, are
prescribed components of surface tractions.

Moreover, we suppose that ifu=0, through the boundary conditions on &7, U .,
and v, = 0 on I',, v, = 0 on I', any rigid body displacements and small rotations are
eliminated. Then in the linear manifold M of vector-functions v, which have continu-
ously differentiable components on Q and satisfy the above-mentioned hon ogeneous
boundary conditions one/, U &/,, the generalized Korn’s inequality (see [12])

1,

3
0.8 Y j (v + v ) dX + f i v2ds + J 1 vidS = Cv|2, e
k=1 r.B r. B

i Q n t

holds. If these assumptions about the properties of &, o7, I',, I', are not fulfilled,
then further conditions, relating the loads P,, P, and the body forces K and some rela-
tions for the functions u of displacements and v € M are needed to guarantee the total
equilibrium of the body, the uniqueness of solution and the validity of inequality of
Korn (0.8). Cases of this type will be called cases of “free bodies” and some of
them dealt with in section 5.

The proofs of Korn’s inequality and of (0.8) are published for example in the book
[3] of C. I'. Muxurun for various cases of “fixed” and “free” bodies as well. General
results concerning these problems were reached by J. Ne¢as ([9], [10]).%)

1. THE PRINCIPLE OF VIRTUAL WORK

Let W be the set of such symmetric tensor-functions of stress T X) with components
Ty = T € WEP(Q), which meet the equations of equilibrium (0.3) (in the sense of
elements of L,(2)) and the “pure static” boundary conditions (0.5) on the parts
B, ~T,=2,and #, ~ I', = 9, (in the sense of L,(2,) and L,(2,) respectively).
W will be called the set of statically admissible stress-fields.

Let U be the set of vector-functions of displacement ue [W;"(Q ], which satisfy
the “pure geometric”” boundary conditions on .2, U &, (in the sense of traces) and
moreover, if I', u I', is non-vacuous, the conditions of elastic supports on I', U I',
in the form (0.5) as well, where T, = T,(u) and T, = T,(u) represent the components

3) Starting with the theorems of [10], J. NECAs and the author attempted to create a more
systematic work on this field (see [12]).
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of surface tractions, derived from u on the base of (0.6) and (0.1), (0.2) (in the sense
of elements of L,(I',) and L,(I',) respectively). Therefore, if I', U I', is non-vacuous,
we must suppose, that the corresponding stresses r,-k(u) € W{“(Q). U will be called the
set of geometrically admissible displacement-fields.

If Te Wand ue U, by virtue of divergence theorem

f (tax + K)u; dX = — f Tl X +J Ku; dX + J Tyuet; dS =0
o 0 Q2

r

and using decompositions

r=<o«9v9,vr,, £,0n2,=A,nlr,=92,nI,=90,
r=e,v9,0vr,, Z,0n9, =4l =92, =90,

we derive

(1.1) f Tyea(u) dX =j Ku,dX +J. T,i, dS +J‘ T,.u,dsS +
Q 2 n A

+ j P.u,dS +f P,.u,ds +j (C, — B, Ty(u)) T,dS +f (C,—B,T(u).T,ds.
Dn De r, I
This relation represents the principle of virtual work, which is often interpreted
in the following way: “the virtual work of internal forces

(12) ‘f een(u) X + J B,T, T,(u) dS + J B.T,.T(u)ds
(2] T,

n I

is equal to the virtual work of external forces”
(1.3) fKiuidX—i—f T,,ﬁ,,dS+J‘ T,.u,dS +J P,,u,,dS+J P,.u,dS +
e n o D, @,

+J C,T, dS +f C,.T.dS.
I, I

Consequently, the work of “elastic supports” is comprised by the work of internal
forces and the work of “yielding of supports” u, C,, C, by the work of external forces.
Sometimes, the virtual work of internal forces is defined with negative sign, so
that the principle asserts: “the sum of virtual works of internal and external forces is
equal to zero”.

Let us emphasize that in (1.1) the statically admissible stress field and the geome-
trically admissible displacement field are in general mutually independent. Any of
them may be replaced by the real stress field and real displacement field respectively
(provided the assumptions of definitions of W and U respectively are satisfied) and
the other field remains virtual, hypothetic. Such an application of the principle is
usual in structural analysis.

The principle of virtual work in the above-mentioned physical interpretation holds
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only within the range of infinitesimal deformations, when the strain-displacement
relations are given through (0.1).

In case that the elastic coefficients c,-k,,,,(X ) are piecewise continuous with jump
discontinuities on a finite number of surfaces, then T e W will be defined as such
stress-tensor, which satisfies (0.3) only in a piecewise manner on every subregion Q;
with continuous ¢, in the sense of L,(€2;), consequently 7, € Wi'X(€Q;). Further-
more, let tj,n; = —1jn; on the surfaces of discontinuities. Then integrating by parts
we obtain again (1.1), because the corresponding surface integrals cancel out.

Similarly, in this case u € U means only t,(u) € W{"(Q,) instead of 7,(u) € Wi (Q),
for I', U I', non-vacuous.

In order to illustrate the general form of the principle, we apply it to several
examples of mixed boundary-value problems.

1. LetI' = I', U I'p U I'g be the mutually disjoint decomposition of the boundary,
where each part involves an open set (according to the definition of L,(I"")). Moreover
prescribe by u, P and u, = 0, T, = 0 the displacements on I',, the surface tractions
on I'p, and the conditions of contact support on I'g, respectively. Therefore on I'y B, =
C,=0,4,=0,C, =0, o4, =T, 0l A, =T, B,=1p, B, =1TpuIly,

I', = I', = 0. The principle of virtual work takes the form

Il

j Taca(u) dX = J‘ Ku;dX + J‘ (T, +T,.u)dS +-[ (Pyu, + P,.u)dS.
2 2 r.

re

2. LetI' = I', u I'p U I';, be the mutually disjoint decomposition of I', where on I'y,
the conditions, corresponding to the torsion problem of a cylinder on its end are
prescribed: T, = 0, u, = u,. Consequently A, =C,=B,=0, &, =T, o, =
=r,vly,#8,=Ipuly, B, =TI, I, =1TI,=0and the principle takes the form

-[ Tyea(u) dX =f Ku,dX +f Tunl; dS + J Pu,dS + f T,.u,dS.
Q [o} Iy rp Iy

3. Let I' = I', U I'p U I'y be the mutually disjoint decomposition, where on I'y
the conditions of elastic supports

u, = —B,T,, u, = —B,T,
are prescribed. Consequently
¢,=0, ¢,=0 on Iy, ,=TI,, &, =1I,, I'N=TI,=T,,
D, =2, =1Tp,

and the principle takes the form
J Taen(u) dX =f Ku;,dX +J Tyl dS +J Pu;dS —
Q Q2 Iy Irp

- J (B,T, T,(u) + BT, . T(u))dS.
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If I, U I',is non-vacuous, we can state the principle of virtual work with alternative
definitions of the sets W and U. Thus let W be the set of such symmetric tensor-
functions of stress T(X) with components t;, = 1,; € WiP(Q) (or W{')(€,) in case of
jump discontinuities of ¢;,(X) — see the definition of W), which meet the equations
of equilibrium (0.3) (in the sense of L,(2) or L,(£;) respectively), the “pure statical”
boundary conditions (0.5) on 9, U 2, (in L,(2,) and L,(2,)) and the conditions of
“elastic supports” in the form (0.5) on I', and I', in the following manner: such vector-
function u'e [W;"(Q,]* exists, that

T(u) = (C, — @,)/B, (in Ly(T,))
Tt(a) =(C, - ﬁ,)/B, (in Lo(Iy))

where T,(u) and T(u) are derived from u on the base of (0.6) and (0.1), (0.2). Again,
W will be reffered to as the set of statically admissible stress fields.

Let U be the set of vector-functions of displacements u € [ W§P(Q)]°, which satisfy
the “pure geometric” boundary conditions of the form (0.5) on o/, U o/, (in the
sense of traces, i.e. in L,(#,) and Ly(oZ,) respectively). Again, U will be reffered to as
the set of geometrically admissible displacement field.

If Te W and ue U, the principle of virtual work (see the derivation of (1.1))
holds in the form

T,
T,

(1.1’) Jrikgi,c(u) dx =j Ku,dX +J T,i, dS +J' T,.u,dS +
Q2 2 n e

+| Pu,dS+| P,.uds+ | (C,— an)un9§ +1 (¢, - 5,).u,d—s
Dn De I Bn I, B

t

which allows the following interpretation: “the virtual work of internal forces

(12) J U} dX + J L, ds + j Ly, . 5,ds
2 I‘,.B Iy

n t

is equal to the virtual work of external forces”
(1.3’)-[Kiu,.dX+J T,,ﬁ,,dS—i—J‘ T,.E,dS+j P,,u,,dS+J P,.u,dS.
Q o ¢ oA Bn Be

Here again the work of “elastic supports” is involved in the work of internal forces
and the work of “yielding of supports” u and that of surface tractions C,,/B,, onrl,
and C,/B, on I, in the work of external forces.

The fields T(X) and u(X) are in general independent. The application of the latter
principle, however, is restricted in praxis to the case, when the field T(X) = T(d) is
real field, associated with the real displacement field &#(X), representing the solution
to the problem.
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Among examples 1 till 3 only the expression in example 3 will be changed:

Jrike,-k(u) dx :f Ku;dX +j Tyl dS +J Pu,;dS —
2 2 T re

—f <Uu+ 'i'.ﬁ,>ds.
I'g Bn Bt

A converse of the virtual work principle due to DorN and ScHILD [5] was
generalized by M. E. GURTIN in [6]. We introduce here the Gurtin’s assertion:

let I' =T, v I'p be a disjoint decomposition of I'; let Q be a bounded, simply-
connected region, whose boundary I' is the union of a finite number of regular surfaces,
(the latter term being used in the sense of Kellog [7]}, € convex with respect to I',
(that means: the straight line joining any two points X' e I',, X" € I', intersects I’
only at X" and X"). Let K; = P; = 0, ii, be continuous on I', and let ¢;; be a symmetric
tensor field, which is twice continuously differentiable on Q. Then if

J 764X = J Tahyil; dS
2 ru

holds for every symmetric tensor-function t;;, which is continuously differentiable
arbitrarily often on Q and meets the equilibrium equations (0.3) on Q and 7,1, = 0
on I'p, there exists a vector-function u,, which is continuously differentiable on Q and
satisfies the strain-displacement relations (0.1) and the boundary conditions u; = i,
onl,.

2. THE PRINCIPLE OF VIRTUAL DISPLACEMENT AND THE DEFINITION
OF A WEAK SOLUTION TO THE PROBLEM

Let the real displacement field #; € U and the real stress field T = Citmliy m € W.
Inserting 7, together with both the real displacement field s; and the varied field

%i; + ou; € U in the principle of virtual work (1.1’) and subtracting, we obtain the
principle of virtual displacements

(2.1) f Ty dX +f 1 #,0u, dS +J 1 &,.0u,dS =
0 r,.B I B:

n

=J Kdu, dX +f P,.du,dsS +J P,.6u,dS .
2 Bn B

According to (2.1) the definition of weak (generalized) solution to the
mixed boundary-value problem is formed: let M be the linear manifold of
vector-functions v, continuously differentiable on 5—2, (see the Introduction), which
satisfy the homogeneous boundary conditions (for u = 0) on #, and «7,. The weak
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solution to the mixed boundary-value problem is defined as a vector-function & e U
such that for every ve M

(2.2) Jv Cittmblymi x dX = j Kp;dX + J P, dS + J P,.v,dS —
Q 2 Bn B

1
—f ——ﬁnundS—J lﬁ,.v,ds‘
l'nB'l F,Bt

Note that this definition differs from the definition of the set W by the fact, that the
stress components 7, need not belong to the space Wi(Q) or W{1(Q;), but only
to LZ(Q), and the boundary conditions on %, and %4, have not to be met by the com-
ponents 7, in the sense of Ly(D,), Lo(D,) and L,(I",), L,(I",) respectively.

Let ue U be such a displacement field that T(u)e W. Then (2.1) holds for du =
= ve M and consequently u is a weak solution. Hence (2.2) defines a solution, which
is more general than that of section 1, called “‘real” displacement field, for which the
associated stress field belongs to w.

Next we shall discuss briefly the proof of the existence and uniqueness of
the weak solution. Introduce the scalar product

1
(23) [v.w] = J CiktmVixWi,m dX + f B vw,dS + f l v,.w,dS
o r. B

r, “n t

on the linear manifold M. By means of Korn’s inequality (0.8) and (0.4) we can
prove, that for eachve M

(2.4) [v. v] = Co|v|iw,cropps

and thus the bilinear form (2.3) has all the properties of the scalar product on M
with the norm of [W{"(Q . In order to create a Hilbert (complete) space H,,
from M with this scalar product, in general it is necessary to form the completion
of M in the norm, associated with the product (2.3).

Let us write the solution in the form

G=u+w.
\

The definition (2.2) implies an equivalent definition for w: w, = 0 on «7,, w, = 0
on «Z, (in the sense of traces, i.e. in Ly(s#,) and Ly(s#,) respectively) and for each
v e M it shall hold

(2.5) CirtmWi mbix dX + i w,v, dS + 1 w,.v,dS = | Kp;dX —
0 T B r.B

I'n “n t

- j Ciramil Vi AX + J (P,, _ A 17,,) v, dS +[ (P, g E,) .v,dS.
2] Bn n B t

oo

=
s
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It is possible to form H,, from the elements of [W{V(Q}]* and then the inequality
(2.4) holds in the whole H,,. From this and from the continuity of the immersion of
W3 (Q) into Ly(+#,) and L,(o#,) respectively (see e.g. [3] § 22) it follows that if w € H,,,
then w, = 0 on &7, and w, = 0 on «Z, in the sense of traces. Therefore it is sufficient
to find w in H,,. By virtue of (2.4) on H,, and the continuity of immersion of W;"(Q)
into L,(I",) and L,(T",) respectively, the definition of the scalar product (2.3) may be
extended from M onto the whole H,, in accordance with the construction of H,,
preserving the form (2.3). On the left-hand side of (2.5) we have therefore [w, v].
Using the assumptions on the coefficients c¢;;,,, functions u and P,, P,, the Cauchy’s
inequality and continuity of immersion of W{"(Q) into L,(%,) and L,(%,) respecti-
vely, we obtain, that the right-hand side of (2.5) is a continuous linear functional on
[WiP(@ ] and consequently, by virtue of (2.4), also on H,,. Then Riesz-Fréchet
theorem implies the existence of a unique element w in H,,, which satisfies (2.5) for
every ve Hy,. As M is dense in H,, the solution w according to the equivalent
definition (2.5) (i.e. with restriction to v e M) is unique in H,. Then & = u + w
represents a weak solution to the mixed boundary problem and it is unique in the
set u @ Hy, of all sums u + y, where y € H,,.

3. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY

Let us define on H,, the quadratic functional
(3.1) o(v) = |v|7, — 2 {(K, v) — B(u,v) + <P,, - g’l i, v,,) + (P, = % u,, v,)},
n t

where the terms in curly bracket are defined by the corresponding integrals on the
right-hand side of (2.5). The latter relation may be written in the form

[w,v] = (K, v) — B(@v) + <p" - % i, v,,) + (P, - %E,, v,).

n t
Therefore it holds
(3.2) P(v) = |v|f,M —2[w,v] = |v - w]f,M - lw|,2,M > — [w|,Z,M.

Extending the definition of the bilinear form [v, w] from H,, onto the whole space
[W5™(2)]® with designation (v, w), and inserting v = u — u into (3.1), we obtain

P(v) = d(u — u) = (u,uy — 2{u, uy + {u, u) —

- zf(K’u_d)_—B(a’u—u)_‘_(Pn_ gﬂ "_imun_an>+(Pt_%at’ul_—a!>} =

n t

=<u,u>-—2{JK,~uidX +J P,,u,,dS+J P,.u,dS}+¢'1,
o By Be
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where @; does not depend on u. Hence the principle of minimum potential
energy follows: The quadratic functional (total potential energy of internal and
external forces) defined for ue [W{)Q)] through

1 1
(3.3) L(u) = j ottty AX + 1 J Luzas + ;J S uzas - j Ku, dX —
I, Q

Q rn Pn t

—J P,,u,,dS—j P,.u,dS
n B

attains a minimum on the set u ® Hy,, < [WiP(Q)], if andonlyif u =u=u + w
represents a weak solution to the mixed problem.
For illustration let us show the functional (3.3) for the example 3 of section 1:

1
L(u) = %I Cotmthi ity m X + %J‘ (L u? + — u,2> ds —j Ku;dX -—f Pu;dS.
0 I'o Bn Bt (9] I'p

4. THE PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY

We shall distinguish two kinds of mixed boundary-value problems according to
the existence of the set of “elastic supports”.

I. Let a non-vacuous set I', U I', exist. Let 7! be the space of symmetric tensor-
functions T(X) with components 7 = 7,; € W{V(Q), (or W(Q;)). Denote

3
Ile = (i :éllfiklizm))‘lz

and introduce in P the scalar product

@) (T = J el dX + f
(7]

I'n

B,T! T dS +J BT..T/dS.

r.

Using the relations (0.2), (0‘4) and assumptions on B,, B,, we can easily verify, that
the bilinear form (4.1) has all the properties required for the scalar product in 7
with the norm |T],.

Suppose, that the solution & € U. Then according to the definition of U the associat-
ed stress tensor T(&) € 74, but we shall suppose even T, = T(d) e W = 7). The
properties of the scalar product (4.1) imply that if T — Ty e 74V, IT - T,|, >0,
then (T — T,, T — T,)) > 0. The latter inequality may be written in the form

(4.2) (. T) + ((To, To)) > 2((T, To)) -

Let Te W and let us apply the principle of virtual work (1.1) to the fields T and d.
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We obtain

@3) (T T) = f

Q

aiklmrik;lm dx +J‘ BnTnTOn ds :J Kiﬁi dXx +
2

I'n

+J T,ii, dS +f P, dS +j T,C, dS .
n Dn I'n

Henceforth we use for brevity the following convention: the bar above a term indicates
the fact that an analogous term, but with subscripts ¢ instead of n, should be added.
Similarly, it holds

(4.4) ((To, Ty)) = J K, dX +J T,,i1 dS +-[ P, dS + j T,,C, dS .
[o] n Dy

I

Subtracting twice the equation (4.4) from (4.2) and using (4.3), we may write

T, T) = H(To. To)) > | (T, — Tp,) @, dS + J (T, — Tp,) C,dS .

An Iy

Hence the principle of minimum complementary energy (Castigliano-
Menabrea) follows directly: If & € U and T, = T(G) € W, then the quadratic func-
tional (complementary energy)

2=

2

aiklmrikflm dX + j’ (%BnT‘n2 n n) dS +J‘ (;B T2 - C T) dS -

—f T,,ﬁ,,dS—J‘ T,.i,dS
n N

attains a minimum on the set W of statically admissible stress fields T, precisely
if [T =Ty, =0.

II. Let the set I', U I', be vacuous- that means no elastic supports exist, every-
where on I' 4,B, = A,B, = 0. Clearly, all of the part 1. holds, with the only change
that the integrals on I', and I', have to be omitted. In the present case, however, it is
possible to apply the method of orthogonal projections in Hilbert space (see e.g. [4],
§54) with weaker requirements for the fields T(X) than in the foregoing method.

Let us define a scalar product in the space 7, of symmetric tensor-functions T(X)
with components 7, = 7; € LZ(Q) and with the norm IT!2’ through

(4‘5) ((TI T”)) —f iktmTikCim AX -

2

As in the part I. all the properties of the scalar product are easily verifiable for (4.5).
Since 7, is a complete space, 7, with the scalar product (4.5) forms a Hilbert
space . Note that the norms ITI , and ((T, T))!/? are even equivalent.
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Denote #, = # the subset of tensor-functions T’, to which such vector-function
v’ € H,, exists (recall the section 2 for the definition of H,,) that

"N — ’
Tik(T) = T = CiktmPim -

Furthermore, denote #, < # the subset of tensor-functions T”, which satisfy the
homogeneous equations of equilibrium and homogeneous statical boundary-
conditions in the weak sense, (see (2.1) or (2.2) for K= 0, P, =0, P, = 0) i.e. it
holds for every v e M, that

(4.6) f rik(T”) 0;,dX =0.
I

Since the transition to the limit in (4.6) is possible for v™ e M,

. ’
limv® = v e H,

in the sense of [ W5"(Q)]*, we have
(4.7) (T, 7)) Z‘f ti(T") Vi dX =0
o

forany T'e #,, T" € A ,.

Next let T e # be an arbitrary stress tensor, satisfying the complete equations of
equilibrium (0.3) and the statical boundary-conditions on %, and %, in the weak
sense, i.e. it holds for every v e M that

(4.8) J‘ Ty dX =J K, dX + J Pp,dS + J‘ P,.v,dS,
Q Bn EN

Q

where t;, are components of the tensor T.

Denote again T, the tensor T(if) associated with the weak solution & = u + w
according to the Hooke’s law (0.2). Now use (2.2), (4.8) and compare with (4.6) to
deduce that T — T, € 5,. It holds

T, = T(u) + T(w)
with T(w) € # . By virtue of (4.7) we have
(49) [T = T@[% = |(T = To) + T(w)[> = [TW)[% + [T = Tofz = [Tw)[5»
where the equality takes place precisely if [T — T,|,, = 0. We can rewrite
T = T@)% = (7. 7)) = 2(T, T(w)) + ((T(u), T(w)) =

= j i Tit Ty X — 2-[ Tiklli i dx + IT(G)Br
o - . . o)
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Hence the principle of minimum complementary energy follows: The
quadratic functional

(410) ;(T) = %f AikimTikTim dx —j Tikﬁf,k dXx
2 o]

attains a minimum on the set of tensor-functions T € F ,, which satisfy the equations
of equilibrium and the statical boundary conditions in the sense of (4.8), if and
only if ‘T — Tolz = 0.

If moreover the weak solution & is such that T(&) € W (i.e. the equilibrium inside
and on the surface of the body is satisfied in a stronger manner than in the sense of
(4.8)), we can take for T the statically admissible stress fields T e W and apply the
principle of virtual work (1.1) to the fields T and u. Thus we obtain

fz,.,‘a,.,kdx ='[ T,i, dS +j P,i, ds +I (1, ds.
2 n n 2

As the last integrals do not depend upon T, we may omit them and write the principle
in the usual form: The quadratic functional

P(T) = %J

Q2

Qi TiaTim dX — J
o,

T,u, dS —J T,.u,dS
n d‘

attains a minimum on the set Te W of statically admissible stress fields, if and
only if [T — T,|, = 0.

The latter assertion corresponds to the principle of minimum complementary
energy from the part I. The relation

(4.11) P(T) = #(T) - f K, dX —J P,ii, dS —J P,.u,dS
2 n Be
holds.
Let again I', U I', be a non-vacuous set. The necessary condition for the minimum
of #(T)at T = T, is expressed by the principle of virtualchanges of stresses:

Let the real stress field Ty = T(ii, € W. Then it holds

@12)  S(T,) = f

Q

aikszoikéflm dX — f

n

i,0T, dS —J u,.0T,dS +

oA

+ J (B,To, — C,) 0T, dS +J (BT, — C,).0T, dS =0,
I'n r.

where the variations 9ty satisfy (in the sense of L,(Q) or Ly(R;)) the homogeneous
equations of equilibrium

(4.13) Oty =0
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and (in the sense of Ly(2,) and Ly(2,)) the “pure statical” homogeneous boundary-
conditions on 9, and 9,
(4.14) 8T, =0 and oT, =0
respectively. 1
IfI,=1T,=0,thenT(ii)e T, for the weak solution & and the necessary condition

for the minimum of §(T) is e_xprés_sed by the principle of virtual changes of
stresses in the form

5 F(To) = f

2

@m0 AX — J U 61 dX =0,

where the variations 8t satisfy the homogeneous equations of equilibrium and the
statical boundary-conditions in the sense of (4.6) (i.e. 0T € #,).

In case, that T(u) € W, the principle holds in the form (4.12) with side conditions
(4.13), (4.14), the integrals on I, and I', being omitted.

5. CASES OF ““FREE BODIES”

In the present section we draw attention to such cases, for which some of assump-
tions of the introduction fail to hold, namely when all «,, &,, I',, I', are vacuous or
the conditions u = 0; v,/= 0"on'I',, v, = 0 on I', do not eliminate the rigid body
motions. Let us consider several important cases of that type:

1. Let the surface tractions be:prescribed on the whole boundary, i.e. I' = I'p =
=B, =B, A,=,=1T,=T,=0. Then the necessary conditions of static
equilibrium are i o

(5.1) JKdX+deS=0,
|ode r

(5.2) ferdXJrfrdeszo.“)
2 r

In order to guarantee the‘uniqueness of the solution &, we choose for example the
following complementary conditions

(53) fudX=0, frotth:O.
Jo ... Q

Note that the necessary ;equilibrium conditions (5.1), (5.2) follow also from the
principle of virtual work (1.1). Indeed, inserting u; = d;;, (6;; = 1 fori = j, §,;; = 0
for i = j), we obtain (5.1) and inserting three admissible small rotations

A ._:(.‘(!ﬂ)»":,\b(‘l) xr, (l = 1’ 2’ 3)
where b = §,;, we obtain (5.2).
4) r denotes the radius-vector, X the vector product.
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2 let '=A, I VA, A,=I=TI,=0, B, <Ip and let &, be such
that u = 0 does not exclude the possibility of rigid body motions. Thus for example
let

a) o/, consist of surfaces of rotation having a common axis of rotation x;. Then
the external forces must satisfy the equation of moments

(5.4)

j (x:K; — %,K,) dX + J (x:P, — x,P,) dS +J (x2(P)s — x:(P)); dS = 0
Q2 I'e

Be¢=~Tp

and we choose the complementary condition

(5.5) J (g, —uy,)dX =0.
2

b) Let &7, be composed of portions of cylindrical surfaces parallel, for example,

with the axis x,. The external forces must satisfy the equilibrium condition in the
direction of x,:

JKldX+J P, dS +j (P),dS =0
o) r'e

Be=Tp

and the complementary condition may be chosen in the form
(5.6) JuldXzo.
2

c) Let o, reduce to portions of planes, which are parallel, for example, with the
plane x; = 0. The necessary conditions of equilibrium are (5.4) and

fK,dX+J PidS+J (P),dS =0 (i=1,2).
0 re Be=Tp

The complementary condition may be chosen in the form (5.5) and
Ju,-dX =0 (i=12).
2

d) Let o7, consist of portions of concentric spherical surfaces. The necessary
condition of equilibrium is

‘J'(rxx)d)mj (rxP)dS+J (rx P)ds =0

Q P Be=Tp

and the complementary condition may be chosen in the form

J‘rotudX=0.

Q
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e) Let o7, be composed of portions of the helical surface
Xy =pcosw, Xx,=gsinw, x;=7f(0)+ kw.

The necessary condition of equilibrium is

J (x:Ky — ,K,) dX +J (x:Py — x,P,) dS + f (xa(P)s —
0 I'p

Be=T'p

— xy(P))dS + b ( f

2

stx+f

r

P,dS +J (P)s dS> =0
P Be=T'p

and as the complementary condition (5.5) may be imposed.

In all cases mentioned above the inequality of Korn (0.8) holds on the linear
manifold M of vector-functions, continuously differentiable on Q and satisfying both
the homogeneous boundary-conditions u, = 0 on &, and the complementary
conditions (see e.g. [3] § 43 or [12] for the proof of this assertion).

3. Let I', u I', be non-vacuous, &, = § and &/, = @ vacuous or let o, be of some
of the types 2a—2e discussed above. In these cases we have equilibrium conditions,
relating the external forces to the displacements on I', U I',. The appropriate choice
of complementary conditions is shown in [12].

6. THE GENERALIZED VARIATIONAL PRINCIPLES

Using the method suggested in [11], the generalized variational principle of
Hu-HA1-CHANG and WASHIZU may be derived from the principle of minimum poten-
tial energy (3.3). Thus the condition

0 f(“is Eiks Tik) =0,
where

(6-1) f(“i, i Ti) = j {%ciklmgikszm — Kiu; — tygy + %(“i,k + uk,i) Tik} dXx +
I

+f T,(it, — u,) dS —j P,u,ds +J 2 (qu, - C,) dS
n Dn ) r, B
implies both the constitutive equations of the elastostatics inside the body (strain-
displacement and stress-strain relations and equilibrium equations) and all the
boundary conditions (0.5) as Euler’s equations and natural boundary conditions
respectively.

Similarly, on the base of the principle of minimum complementary energy, the
generalized variational principle of HELLINGER and REISSNER may be derived.
This principle asserts: From the condition

0R(u;, ) =0,
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where

(6.2) '%(ui’ Ty) = J‘ {_%aiklmriktlm + i + ) T — K} dX +
o

N J T(@, — u,) dS _J Pu dS + j T(C, — 4B,T, — u,)dS
An 2n r,

the relations

— 1
iimTim = (i + up ;)

and equations of equilibrium inside Q and the boundary-conditions (0.5) follow as
Euler’s conditions and natural boundary conditions respectively.

From the foregoing two principles a group of special variational theorems may be
derived choosing variously some side conditions among the constitutive relations
(see e.g. [11]). Here we present only the Reissner’s theorem “for boundary
conditions”:

From S%'(u;) = 0, where

(63) W)=~} [ Ky, dX + f T(u) (@, — u,)dS +
S Q n

+ f u,(3T,(u) — P,) dS + f T,(u)(C, — %B,,T,,(Vu) — tu,) dS ,

I'n

T,(u), T(u) are defined through(0.1),(0.2) and (0.6) by means of u and t,(u) satisfy
in Q also the equations of equilibrium, the boundary-conditions (0.5) follow as
natural conditions.

Remark 1. Inserting the stress-strain relations (0.2) into the functional (6.1) we
obtain a functional equivalent to the functional (6.2) (in the sense of the principle
0% = 0) and having the integrals

u
I (3u, — C,) dS
L (= )

instead of the last two integrals (over I, and I',) in (6.2). This variant may be obtained
also from the Reissner’s principle in [ 1], if we choose the potentials there as follows:

(6:4) ¥ (u,) = — %u,. + ;11; u? on A,(or B,),

n
n n

VAT,) = —Tit, on f,(or o).

To the latter variant the functional #(u) corresponds, having been derived on the
assumption that u satisfies only “pure geometric” conditions on &, U &,.
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The variant (6.2) follows, if we choose in [1]

3 W) =~ Cru, on 2,013,
((T,) = = C,T, + 1B,T; on o, uI,(or o, UT,).

To the variant (6.2) the functional #(T) corresponds, having been derived on the
assumption that T satisfies only “pure statical” conditions on 9,, Z,.

It is easy to verify that both the variants (6.4) and (6.5) of potentials imply the same
boundary conditions (0.5) by means of the relations (see [1])

T, + 0y®[ou, =0, u, + oy°foT, = 0.

Analogically in (6.3) we may replace the last two integrals by

- J gﬂ (Cn - %BnT;l(u) - JZ‘un) ds >
Iy

n

which corresponds to the theorem “for boundary conditions” in [1] when the
potentials are chosen according to (6.4).

Remark 2. The functional #(T) of the complementary energy follows from (6.2) by inserting
the conditions of equilibrium and the static boundary-conditions. If we use the other variant of 2
(according to Remark 1), we should obtain a functional, depending not only on the stress field T
but also on the displacement field u.

7. ESTIMATES OF ERRORS OF THE APPROXIMATE SOLUTIONS,
OBTAINED FROM THE PRINCIPLES OF MINIMUM POTENTIAL
AND MINIMUM COMPLEMENTARY ENERGY

I. Asin section 4 let us consider at first the problems with non-vacuous part I', U T,
of the boundary. We can show, that if the solution & € U and the associated T, =
= T(d) € W, we have

(7.1) —P(Ty) = 2(&) + 4,
where

4 =f C;[2B,dS .
I'n

Indeed, according to the definition of U

(7.2) i, + B, Ty, = C, on T,
4, + B, T,,=C, on T,.



Furthermore it holds

- (1) =

Q2

02
2(a) = J (it 4t — Kotty) dX —f P,i, dS + f <—”-— P u,,> ds =
fol Dn I'n 2Bn

= _%J‘ ﬁi,k%ik dx +J. TOnﬁn ds +J\ <‘“‘ - P ll,, + T()n n) ds.
2 An r, ZBII

Consequently
,f + y(To) f < - - un + TOn n) dS J\ (TOH ‘n ~ ZBnTOZn)dS .

Inserting

L?i,k’gik dx +f TOnan ds +j (TOnCn - %BnTOZn) dS >
o I'n

TOn = (Cn - ﬂn)/Bn

according to (7.2) into the two integrals, we obtain

L2 Cr
2(8) + #(T,) = oy 90T '2—(Cn — i) dS = — - ds,
r, I

n

which is precisely (7.1). Note that

2(a) = _JZJ‘ Cictmiti ity dX — %f 2dS = -4, 4.
o

rn “~n

Next let u™ be a term of a sequence, minimizing the functional #(u) and let T™
be a term of a sequence, minimizing the functional #(T).
The error &(u™) of the approximation u™ may be measured by the difference

S(u™) = 2(u™) — #(8).
Then it holds
—9’(T"")) < —y(TO) = .,Z’(&) + 4,
(7.3) g’(u‘»"’) < f(u("’) + ,9’(T("") + 4

by virtue of (7.1) and the principle of minimum complementary energy. Similarly,
the error #(T™) of the approximation T may be measured by the difference
F(T™) = #(T™) — F(T,). Then by virtue of (7.1) and the principle of minimum
potential energy it holds

—P(Ty) < L(u™) + 4,
(7.4) F(T™) < L(u™) + L(T™) + 4.
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Il. Next let I', U T, = 0 as in the section 4[ll. The estimates of errors of u™
and T™ may be derived again by the method of Hilbert space. According to (3.2) we
have (for v = w® = u™ — ue H,)

(1.5) u® — a2, = [w® — wl3, = o(w®) + w2, .

Comparison of (2.3) with (4.5) implies

(7.6) Wiz, = |T(w)|% -

When T meets (4.8), according to (4.9) we obtain

(1.7) 2 S P(W®) 4 [T™ — T(w)[2, .
From the formulas, following (3.2), we deduce

d(w™) = 22(u™) — (u,u) + 2K, u) + 2(P, @,) .

u® — g

Similarly, from the formulas, following (4.9), we deduce
[T — T@)[3 = 29(T) + [T()] -
As in the case under consideration
[T(@)5 = <u ),
we may write finally the estimate
78) [ =i, = 22@) + FT) + (K u) + (P 6],

where

(K, u) =fKiﬁidX, (P, 1) =f P,i, dS +j P,.u,dS.
2 Bn Bt

Remark. If moreover T™ e W, then with respect to (4.11)

o = afy, < 2L + STV

Thus (7.8) is an estimate precisely twice as high as &(u™) of the part 7/I.
For |[T™ — T,|, we have according to (4.9)

[T = Tolo = [T = T@[% — [TW)lz -
By virtue of (7.6) and (3.2) it holds
= [Tw)[% = = Wi, = o(w®).
Thus we obtain the estimate
|T("‘) - To{fr < <1>(w(")) + I-rrm) - T(a)lfrr
with the same right-hand side, as in (7.7) and consequently also the same as that in

(7.8).
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VARIACNI PRINCIPY LINEARNI TEORIE PRUZNOSTI
PRO OBECNE OKRAJOVE PODMINKY

IvAN HLAVACEK

Souhrn

V ¢ldnku jsou probrdny klasické i neklasické variacni principy linedrni statické
teorie pruznosti pro obecny kombinovany okrajovy problém ve tfech dimenzich.
Na c&dstech povrchu télesa jsou uvazovdny podminky pro dand posunuti, dané
povrchové zatiZeni, kontaktni podminky a pruzné podepfeni, a to oddélené ve smé-
rech normdly a teéné roviny k povrchu télesa. Ukazuje se na souvislost s definici
slabého (zobecnéného) feSeni, pfiCemZ se podstatné vyuZivd metod Hilbertova pro-
storu. Také k odvozeni principu minima doplitkové energie je uZita metoda ortogo-
ndlnich projekci v jistém Hilbertové prostoru tenzorovych funkci napéti. V tomto
smystu jde o rozsifeni ideji z knihy C. I'. Muxnuua [3] a [4].
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Pesome

BAPUALIMOHHBIE NMPUHUMWIIBI JJUHEMHON TEOPUU
VIIPYT'OCTU JJI OBIUX KPAEBBIX YCJIOBUI

VBAH T'JIABAYEK (IvAN HLAVACEK)

PaccmaTpuBaercs cMelllaHHas KpaeBas 3aa4a JIMHEWHOM TeOpUu YypyrocTu, B Ko-
TOPOH 3aJlaHBL IIEPEMELICHYs] U MTOBEPXHOCTHAS Harpy3Ka OTAEJIbHO B HaNpPaBICHUSIX
HOPMAJIbHOM M TAHI€HIMAJIbHOM K I'DAaHUYHOH IOBEPXHOCTM, BKJIIOYAsl YCIOBHS
KOHTAKTHOM 3aJlaui ¥ yIIpyTHe ONOPBI.

Kiraccuueckue MPUHIUIBI MUHUMYMa NOTEHIMAIBHOW U MUHMMYMa KOMILIEMEH-
TAPHOW JHEPTMU YCTAHOBIICHBI MPU MOMOIUM TEOPHU TUILOEPTOBA NPOCTPAHCTBA.
IToxa3aHbl UX CBS3K C NPUHIMIIAMU BUPTYAJIBHBIX paOoT, BUPTYAJIbHBIX IIEpeMellie-
HWi{, BUPTYaJIbHBIX M3MEHEHUI HATIPSDKEHHOT'O COCTOSIHUS U C OIPEe/IeJIEHUEeM c1aboro
PCIUCHHUS U3 TEOPUU IUTUNTUYECCKUX cucTeM Auddepennuaibubx ypasaenuit. Ipuse-
JeHbl Toxke 0600uennbie npuHuunbl Xy-Xaii-Yaura u Bamuny [8] u PeiliccHepa
u Xemunrepa [1]. Uccrenyercst BONpoc o ABYCTOPOHHKUX OLEHKAX ITOTPELIHOCTEH
NpuOIMKEHHBIX peuleHuil. Ciydau ,,cBOOOIHBIX Tes', KOTJa KpaeBble YCIOBUS JAJIS
NepEeMELICHUIT He UCKITIOYAOT BO3MOXHOCTD JXECTKUX CMEILEHHI TeJIa, TOXKE NOJBEP-
TaloTCsl UCKYCCUU.
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