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SVAZEK 12 (1967) APLIKACE M A T E M A T I K Y ČÍSLO 6 

VARIATIONAL PRINCIPLES IN THE LINEAR THEORY 

OF ELASTICITY FOR GENERAL BOUNDARY CONDITIONS 

IVAN HLAVACEK 

(Received March 6, 1967.) 

INTRODUCTION. NOTATIONS AND ASSUMPTIONS, 
DEFINITION OF THE PROBLEM 

Neariy in ail monographs on mathematical theory of elasticity, theory of plates and 
shells, in structural analysis etc., some chapters are devoted to variational principles. 
However, the principles given there rarely correspond to boundary conditions of the 
general type, when, for example, on parts of the boundary of the given region (surface 
of the body) not only displacements and surface tractions are prescribed, but also 
contact conditions and conditions of elastic supports are given separately in the 
normal and tangential directions to the surface.1) The present paper aims both to fill 
in this gap and to offer a deeper mathematical view on classical variational principles 
with use of the methods of functional analysis, especially of the theory of Hiibert 
space. In this sense the paper extends the ideas contained e.g. in books of C. F. 
MMXJIMH [3], [4]. 

Although all this study is restricted only to the spatial problems of linear elasto-
statics, in the same spirit it is possible to establish and apply analogous principles in 
the structural theories for beams, plates and shells, if we replace the three-dimensional 
fields of displacements, strains and stresses by the corresponding two- or one-
dimensional fields of deflections, tangential displacements, extensions and curvature 
changes of the middle surface or middle curve respectively and fields of generalized 
stresses, such as force and moments resultants across a section of the element under 
consideration (see [2] for an example). 

In the following we deal with the principle of virtual work (section 1), principle of 
virtual displacements and the definition of the weak (generalized) solution to the 
problem (section 2), the principle of minimum potential energy (section 3), the 
principle of minimum complementary energy and that of virtual changes of stresses 

J ) Exceptions are presented e.g. in the works of E. REISSNER [1] or K. <E>. Hepawx [2]. 
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(section 4), cases of "free bodies" (section 5), generalized principles of Hu HAI-CHANG 
and WASHIZU, HELLINGER and REISSNER (section 6) and the estimates of errors of 

approximate solutions (section 7). 
Let the elastic body occupy an open bounded region Q of the three-dimensional 

Euclidean space with a fixed rectangular Cartesian coordinate system (xi9 x2, x3) = 
= X. We suppose that2) 

A 

a) Q = U &a 
a = l 

where each region Qa is starlike with respect to some sphere Ka (that means in each 
region Qa such sphere Ka c Qa exists, that each half-line, going out from any point 
of this sphere, intersects the boundary of Qa only at one point); 

b) the boundary F of Q has the form 

r = U sk, 
* = i 

where each part Sk can be described by the relation 

xlk = ^k(xmk^
 Xnk) > 

where \J/k is continuous, with first derivatives piecewise continuous for Xk = (xmk, x„k) e 
e gk, gk being a closed two-dimensional region, the projection of Sk; 

c) if we define the open cylinders G'k(S) and G'k(S) as the regions 

Gk(s) = ixk e gk, iK - S < xlk < \l/k} , 

Gl(8) = {Xk E gk, \j/k < xlk < xj/k + 3} , 

then one of them belongs to Q for sufficiently small O* > 0. This cylinder will be 
denoted by Gk(S); 

d) there exist closed regions gk
0) cz afc, k = 1, 2, . . . X such that the region 

G(S) = 6 G<» 
/ c = l 

(where Gk
0)(S) is the part of Gk(S), which has a[0) as its projection), includes a bound­

ary layer of Q, that means the set of all points X e Q, the distances of which from the 
boundary F are less than a fixed VJ > 0. 

Note that from the latter condition it follows, that the neighbouring parts of 
surfaces Sk may not meet only on curves, but their interiors must have a non-vacuous 
intersection. 

In the following sections some function spaces will be used, which we introduce 
now through the preliminary definitions. 

2) These assumptions are taken over from the book [3], but they can be replaced by the 
definition of so called region with Lipschitz-like boundary (see e.g. [9]). 
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Let L2(Q) be the space of real functions f(X), X e Q, square-integrable in Q in the 
Lebesgue sense, with the norm 

\f\l(S}) = !f2(X)áX. 
J Q 

[L2(Q)Y is the space of vector-functions f(X), X e Q with every component f e L2(Q) 
and with the norm 

3 

|I |[L2(*-)]3 = L |/i|L2(«) • 
i=l 

W^\Q) denotes the space of functions of L2(Q), which have all first derivatives in 
the generalized sense and these also belong to L2(Q). The norm is given through 

12 
| W 2 ( i ) f f2 dX + i f f\ dX, where fk = df\dxk . 

[ W ^ 1 ^ ) ] 3 is the space of vector-functions f(X), X e Q, with every component 
ft e W£\Q) and with the norm 

3 

I* | [W 2O ) ] 3 = LJ | / i |W2< 1 ) ' 
i=l 

Let F' cz F be a part of the boundary F, containing a set (9, which is open in F — i.e. 
for each point X° e (9 such positive s(X°) exists, that also each point X e T, for which 
the distance 

(£(**-*?)2) i /2<<*°) 
belongs to (9. We define L2(r

f) as the space of real functions f(X), X e F', with the 
norm 

\f\Ltr> = i [ f2(Xk,UXk))dXk<^, 
k=1}g'u 

where g'k means the projection of the intersection F' n Sk. Note that gk may be even 
vacuous for some k. 

Let us state the mixed boundary-value problem in the linear quasi-static theory of 
elasticity. Suppose that the strain-displacement relations 

(0.1) sik = i(uifk + uKl), 

stress-strain relations (generalized Hooke's law) 

(0.2) Tik = ciklmslm or (inverse) 

Sik — aiklmTlm 

respectively and the stress equations of equilibrium 

(0.3) TiKk + K( = 0 
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hold on Q. Here uh sik, Tik and Kt denote the cartesian components of the displace­
ment vector u, strain tensor, stress tensor and body force vector respectively. We 
use the convention that a repeated suffix implies summation over the range 1, 2, 3. 
The elastic coefficients ciklm(X), aiklm(X) satisfy the well-known symmetry relations 

Ciklm ~ Ckilm — Clmik - aiklm ~ akilm ~ almik 

and the inequality 
3 

(0.4) ciklnfiikZlm ^ Lh Z 4 
i,k=l 

for every symmetric tensor eik at each point X E Q, ji0 being a positive constant. 
On the boundary F of the region Q the boundary conditions are prescribed in the 

form of linear combinations of the displacements and surface tractions components 

(0.5) Anun + BnTn = Cn, 

Atut + BtTt = Ct, 

where the suffixes n or t denote the normal or tangential components of vectors ut 

and Tt = Tiknk into the direction of the unit outward normal nk or of the tangential 
plane to F respectively, defined through 

(0.6) un = uknk , (ut)j - (u - unn)j = u} - uxnjn}, 

Tn = Tikn,nk, (Tt)j = Tjhnk - T^n^nj . 

An, At are piecewise constant functions on F, the values of which are 0 or 1 only. 
Bn and Bt are such bounded measurable functions on F, that 

Bn^pn>0 or B„=:0, 

Bt ^ pt > 0 or Bt = 0 . 

For every point X e F we have 

(0.7) A„ + Bn>0, At + Bt > 0 . 

Let us denote the following sets of points on F: 

sin = {XeT, Bn = 0}, 

sft- {XeT, Bt = 0}, 

mn = {XeT, Bn>0}, Tn = {XeT, AnBn > 0} , 

l ( = { l e F, Bt > 0} , rt - {X E F, AtBt > 0} . 

Suppose that the sets s4,&,T,@l — F (difference of the sets) with subscripts n or t 
are either vacuous or contain an open set in F (see the definition of L2(F')). 
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Let a vector-function u e [W2
1}(0)]3 be given, which defines functions CneL2(s/n) 

and (Ct)j e L2(s/t) on s4n and s4\ by means of the relations 

un = C„ on J / , , , ut = Ct on «s/r 

as the linear combinations (0.6) of the traces of its components. 

Let Cn\Bn = Pne L2(@n) and (Ct\\Bt = (Pt\ e L2(^t\(j = 1, 2, 3), K G [ L 2 ( ^ ] 3 , 
c//cIm and aiklm be bounded measurable functions on Q = Q u F. P„ and Pt are 
prescribed components of surface tractions. 

Moreover, we suppose that if u = 0, through the boundary conditions on stfn u stf t 

and vn = 0 on F„, vf -= 0 on Ft any rigid body displacements and small rotations are 
eliminated. Then in the linear manifold M of vector-functions v, which have continu­
ously differentiabie components on Q and satisfy the above-mentioned homogeneous 
boundary conditions onstfn u s/t, the generalized Korn's inequality (see [12]) 

(0-8) í Í (»,,» + vkJ
2 dX + [ -U„2dS + 

<>*=ijfi JrnBn ",". 

1 
[ß ] 3 — v? d5 ž C k|І 

holds, if these assumptions about the properties of s4n, stfu Fn, Ff are not fulfilled, 
then further conditions, relating the loads Pn, P t and the body forces K and some rela­
tions for the functions u of displacements and v e M are needed to guarantee the total 
equilibrium of the body, the uniqueness of solution and the validity of inequality of 
Korn (0.8). Cases of this type will be called cases of "free bodies" and some of 
them dealt with in section 5. 

The proofs of Korn's inequality and of (0.8) are published for example in the book 
[3] of C. V. MHXJIMH for various cases of "fixed" and "free" bodies as well. General 
results concerning these problems were reached by J. NECAS ([9], [10]).3) 

1. THE PRINCIPLE OF VIRTUAL WORK 

Let Wbe the set of such symmetric tensor-functions of stress *-\K) with components 
xik = xki e W2

(1\Q), which meet the equations of equilibrium (0.3) (in the sense of 
elements of L2(Q)) and the "pure static" boundary conditions (0.5) on the parts 
@n - r„ = Q)n and &t - Tt = ®t (in the sense of L2(®„) and L2(@t) respectively). 
W will be called the set of s t a t i c a l l y a d m i s s i b l e stress-fields. 

Let U be the set of vector-functions of displacement ue [W2

(1)(.Q']3, which satisfy 
the "pure geometric" boundary conditions on stfn u stft (in the sense of traces) and 
moreover, if F„ u Ft is non-vacuous, the conditions of elastic supports on F„ u Ft 

in the form (0.5) as well, where Tn = Tn(u) and Tt = Tt(u) represent the components 

3 ) Starting with the theorems of [10], J. NECAS and the author attempted to create a more 

systematic work on this field (see [12]). 
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of surface tractions, derived from u on the base of (0.6) and (0A), (0.2) (in the sense 
of elements of L2(Tn) and L2(Tt) respectively). Therefore, if Fn u Tt is non-vacuous, 
we must suppose, that the corresponding stresses t i k (u) e W2

(1)(Q). U will be called the 
set of g e o m e t r i c a l l y a d m i s s i b l e d i sp lacement- f ie lds . 

If T e W and u e U, by virtue of divergence theorem 

i ( * Í M + Kt) u, dX = - í xikuKk dX + í KiUi dX 
Ja Ja Ja 

iiknkui dS = 0 

and using decompositions 

F = sin u ®n u Fn, s/n n 9n = s/n n Fn = @n n Fn = 0 , 

F = s/tu 9t\j Tt, sJt n 9t = jtf, n Fr = 9t n F, = 0 , 

we derive 

(1-1) Í hMu) dX=( KiUi dX + f T„t7n dS + í T, . u, dS 
J Q J Q J SÍn J ^t 

+ i PnundS+ i P ř . u t d S 
J 9n J ®t 

+ 

Ь (C„ - B„ T„(o)) T„dS + (C, - B,Tt(u)) T . d S . 

This relation represents the p r i n c i p l e o f v i r t u a l work, which is often interpreted 
in the following way: "the virtual work of internal forces 

(1.2) ^fceifc(u) 
J ß 

dX + BnTnrn(u)dS+ I* B,Tr.Tt(u)dS 
JTt 

is equal to the virtual work of external forces" 

(1.3) I K ^ d X + f TnundS+| Tt.utdS+\ PnundS+| P f . u , d S 
J Q J s/n J *4t J ®n J &t 

f C„T„ 
Jrn 

+ 

+ ; dS + Ct .TtdS. 

Consequently, the work of "elastic supports" is comprised by the work of internal 
forces and the work of "yielding of supports" u, Cn, Ct by the work of external forces. 
Sometimes, the virtual work of internal forces is defined with negative sign, so 
that the principle asserts: "the sum of virtual works of internal and external forces is 
equal to zero". 

Let us emphasize that in (1.1) the statically admissible stress field and the geome­
trically admissible displacement field are in general mutually independent. Any of 
them may be replaced by the real stress field and real displacement field respectively 
(provided the assumptions of definitions of W and U respectively are satisfied) and 
the other field remains virtual, hypothetic. Such an application of the principle is 
usual in structural analysis. 

The principle of virtual work in the above-mentioned physical interpretation holds 
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only within the range of infinitesimal deformations, when the strain-displacement 
relations are given through (0.1). 

In case that the elastic coefficients cmm(X) are piecewise continuous with jump 
discontinuities on a finite number of surfaces, then T e W will be defined as such 
stress-tensor, which satisfies (0.3) only in a piecewise manner on every subregion Qj 
with continuous ciklm in the sense of L2(Qj), consequently Tike W^l)(Qj). Further­
more, let Tr

iknk = —T"ikn'k on the surfaces of discontinuities. Then integrating by parts 
we obtain again (1.1), because the corresponding surface integrals cancel out. 

Similarly, in this case u e U means only Tik(u) e W^1)(QJ) instead of Tik(u) e W2
1)(Q), 

for Tn u Tt non-vacuous. 
In order to illustrate the general form of the principle, we apply it to several 

examples of mixed boundary-value problems. 

1. Let F = FM u TP u TK be the mutually disjoint decomposition of the boundary, 
where each part involves an open set (according to the definition of L2(F')). Moreover 
prescribe by u, P and un = 0, Tt = 0 the displacements on Tu, the surface tractions 
on FP and the conditions of contact support on TK, respectively. Therefore on Fx Bn = 
= Cn = 0, At = 0, Ct = 0; sJn = Tu u TK, sft = Tu, <%n = TP, 3tt = TP u TK, 

Tn = Tt = 0. The principle of virtual work takes the form 

f Tik8ik(u) dX = f KiUi dX + f (Tnun + Tt. ut) dS + f (Pnun + Pt. ut) dS . 
J Q J Q J TM J rr 

2. Let F = Tu u Fp u Tv be the mutually disjoint decomposition of F, where on Tv 

the conditions, corresponding to the torsion problem of a cylinder on its end are 
prescribed: Tn = 0, ut = u r Consequently An = Cn = Bt = 0, s#n = Tu, stft = 
= Tu u Tv, g$n = Fp u Tv, Mt = Tp, Tn = Tt = 0 and the principle takes the form 

J Tik8ik(u) dX = KtutdX+ I TiknkuidS+ J PiuidS+ | Tt. ut dS . 
J Q J Q J T„ J TP J rv 

3. Let F = FM u Fp u TQ be the mutually disjoint decomposition, where on TQ 

the conditions of elastic supports 

un= -BnTn, ut= -BtTt 

&re prescribed. Consequently 

cn = o, ct = o on rQ, s^n = ru, s/t = rU3 rn = rt = rQ, 

9n = 9t = TP, 

and the principle takes the form 

J Tik8ik(u) dX = J KiUi dX + J T^u.dS + J P.u. dS -
JQ JQ JTu JTp 

- [ (B„TBTn(u) + B (T r .T ((u))dS. 
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If rn u rt is non-vacuous, we can state the principle of virtual work with alternative 
definitions of the sets W and U. Thus let W be the set of such symmetric tensor-
functions of stress T(X) with components Tik = Tki e W^\Q) (or W^1)(Qj) in case of 
jump discontinuities of ciklm(X) — see the definition of W), which meet the equations 
of equilibrium (0.3) (in the sense of L2(Q) or L2(Qj) respectively), the "pure statical" 
boundary conditions (0.5) on Q)n u Q)t (in L2(Q)n) and L2(@t)) and the conditions of 
"elastic supports" in the form (0.5) on F„ and Ff in the following manner: such vector-
function u e [JV2U)(-3)]3 exists, that 

Tn = Tn(u) -= (Cn - un)JBn (in L2(F„)) 

Tt = Tt(u) = (Ct - ut)JBt (in L2(Fr)) , 

where Tn(u) and Tt(u) are derived from u on the base of (0.6) and (0.1), (0.2). Again, 
W will be reffered to as the set of s t a t i c a l l y a d m i s s i b l e s t ress fields. 

Let U be the set of vector-functions of displacements u e [IV2
(1)(.Q}]3, which satisfy 

the "pure geometric" boundary conditions of the form (0.5) on stfn u s/t (in the 
sense of traces, i.e. in L2(s4n) and L2(s4^) respectively). Again, U will be reffered to as 
the set of g e o m e t r i c a l l y a d m i s s i b l e d i s p l a c e m e n t field. 

If T e W and ueU, the principle of virtual work (see the derivation of (1.1)) 
holds in the form 

( i . ť ) тiкгiк{u)dX = KiuidX + dS + Tt.utdS + 

+ 

Tnun i 
J Sfn 

f P „ « „ d S + f P ( . i i , d S + f ( C „ - u „ ) « „ - - + f ( C , - 5 , ) . u t ^ 
J ®n J &t J Tn Bn J rt Bt 

which allows the following interpretation: "the virtual work of internal forces 

(1.2') 
J n 

is equal to the virtual work of external forces" 

(* t* 

Pt. ut dS . 

Tikeik(u) dX + — unun dS + — ut. ut dS 
a JTnß« Jrt

Bt 

(1.3') f X i M ; d Z + f T„íí„dS + f T, . a , dS + f P„«„dS + 
J Q J S$t J SÍt J &n J 

Here again the work of "elastic supports" is involved in the work of internal forces 
and the work of "yielding of supports" u and that of surface tractions CnJBn on Fn 

and CtJBt on Ff in the work of external forces. 
The fields T(X) and u(X) are in general independent. The application of the latter 

principle, however, is restricted in praxis to the case, when the field T(X) — T(u) is 
real field, associated with the real displacement field u(X), representing the solution 
to the problem. 
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Among examples 1 till 3 only the expression in example 3 will be changed: 

Tikeik(u)dX = K;MX + TiknkUidS + PiUidS -
Q JQ J ru J r P 

Un u t 

ӣn + 
\ Bt 

dS 
rQ 

A c o n v e r s e of t h e v i r t u a l w o r k p r i n c i p l e due to DORN and SCHILD [5] was 
generalized by M. E. GURTIN in [6]. We introduce here the Gurtin's assertion: 

let F = Tu u FP be a disjoint decomposition of F; let Q be a bounded, simply-
connected region, whose boundary F is the union of a finite number of regular surfaces, 
(the latter term being used in the sense of Kellog [7]), Q convex with respect to FM 

(that means: the straight line joining any two points X' e FM, I " e f„ intersects F 
only at X' and X"). Let Kt = P£ = 0, Ut be continuous on FM and let s}j be asymmetric 
tensor field, which is twice continuously differentiable on Q. Then if 

rueuáX TiknkUidS 
Tu 

holds for every symmetric tensor-function zij9 which is continuously differentiable 
arbitrarily often on Q and meets the equilibrium equations (0.3) on Q and Tiknh = 0 
on Fp, there exists a vector-function Ui, which is continuously differentiable on Q and 
satisfies the strain-displacement relations (0.1) and the boundary conditions Ui = ut 

on FM. 

2. THE PRINCIPLE OF VIRTUAL DISPLACEMENT AND THE DEFINITION 
OF A WEAK SOLUTION TO THE PROBLEM 

Let the real displacement field u{ e U and the real stress field Tik = ciklmUlm e W. 

Inserting rik together with both the real displacement field ut and the varied field 

ut + SUie U in the principle of virtual work (1.1') and subtracting, we obtain the 

p r i nc ip l e of v i r t u a l d i s p l a c e m e n t s 

(2.1) J Tik8uitkdX + f — unSiindS+ f —ut.3utdS = 

= J K,.(5u; dX + j Pn. diin dS + j Pt. Sut dS . 
J a J mn J ®t 

According to (2.1) the de f in i t i on of weak (genera l ized) s o l u t i o n to t he 
mixed b o u n d a r y - v a l u e p r o b l e m is formed: let M be the linear manifold of 
vector-functions v, continuously differentiable on Q, (see the Introduction), which 
satisfy the homogeneous boundary conditions (for u = 0) on s/„ and s&v The weak 
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solution to the mixed boundary-value problem is defined as a vector-function u eU 
such that for every v e M 

(2.2) j ciklmůhmvitk áX = ľ --íľ, 
Jß 

dX + PЛdS + Pt.vtdS 

1 • Я Q — uиv„ dS 
r„Bn 

- ůt. V, dS 

Note that this definition differs from the definition of the set W by the fact, that the 
stress components xik need not belong to the space W^l\Q) or W^1)(Qj), but only 
to L2(£2), and the boundary conditions on &n and 361 have not to be met by the com­
ponents rik in the sense of L2(D„), L2(Dt) and L2(F„), L2(rt) respectively. 

Let u e O b e such a displacement field that T(u) e W. Then (2.1) holds for du = 
= v e M and consequently u is a weak solution. Hence (2.2) defines a solution, which 
is more general than that of section 1, called "real" displacement field, for which the 
associated stress field belongs to W. 

Next we shall discuss briefly the p roo f of the ex i s tence and u n i q u e n e s s of 
the weak so lu t ion . Introduce the scalar product 

(2.3) [v, w] = ciklmvitkwKm dX + — vnwn dS + —vt.wtdS 
J Si Jrn

Bn Jrt
Bt 

on the linear manifold M. By means of Korn's inequality (0.8) and (0.4) we can 
prove, that for each v e M 

(2-4) [v, v] ^ C2\v\iWlW (ß)]3 

and thus the bilinear form (2.3) has all the properties of the scalar product on M 
with the norm of [W2

(1)(.Qy]
3. In order to create a Hilbert (complete) space HM 

from M with this scalar product, in general it is necessary to form the completion 
of M in the norm, associated with the product (2.3). 

Let us write the solution in the form 

U = U + W 

The definition (2.2) implies an equivalent definition for w: wn = 0 on s/n, wt = 0 
on s#t (in the sense of traces, i.e. in L2(s/n) and L2(sft) respectively) and for each 
v e M it shall hold 

(2.5) cihlmwl>mvi}k dX + — wnvn 

J n J rn
 Bn 

CiklmUl>mViík d X + 

dS + I — w, . v, dS 
Jr.B, 

A, 

( K,v 
Jß 

idX -

B. 
-um)vKdS + >t - d í ut) 

в t 
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It is possible to form HM from the elements of [W2
(1)(0}]3 and then the inequality 

(2.4) holds in the whole HM. From this and from the continuity of the immersion of 
W2

[l)(Q) into L2(stfn) and L2(s/t) respectively (see e.g. [3] § 22) it follows that if w e HM, 
then wn = 0 on stfn and wt = 0 on s/t in the sense of traces. Therefore it is sufficient 
to find w in HM. By virtue of (2.4) on HM and the continuity of immersion of W2

1)(Q) 
into L2(rn) and L2(rt) respectively, the definition of the scalar product (2.3) may be 
extended from M onto the whole HM in accordance with the construction of HM 

preserving the form (2.3). On the left-hand side of (2.5) we have therefore [w, v]. 
Using the assumptions on the coefficients ciklm, functions u and Pn, Pt, the Cauchy's 
inequality and continuity of immersion of W2

1)(Q) into L2(3$n) and L2(^t) respecti­
vely, we obtain, that the right-hand side of (2.5) is a continuous linear functional on 
[JVPX-Q/]3 and consequently, by virtue of (2.4), also on HM. Then Riesz-Frechet 
theorem implies the existence of a unique element w in HM, which satisfies (2.5) for 
every v e HM. As M is dense in HM, the solution w according to the equivalent 
definition (2.5) (i.e. with restriction to v e M) is unique in HM. Then u = u + w 
represents a weak solution to the mixed boundary problem and it is unique in the 
set u © HM Of all sums u + y, where y e HM. 

3. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY 

Let us define on HM the quadratic functional 

(3.1) 4>(v) = \v\HM - 2 |(K, v) - B(u, v) + (P. ~ j S„ »») + (P, ~ j «„ ".)} , 

where the terms in curly bracket are defined by the corresponding integrals on the 
right-hand side of (2.5). The latter relation may be written in the form 

[w, v] = (K, v) - B(u, v) + (Pn~j u„, vn) + (P, - ± u„ v,) . 

Therefore it holds 

(3.2) <P(v) = \v\HM - 2 [w, v ] = |v - W\HM - \w\HM k - \W\HM . 

Extending the definition of the bilinear form [v, w] from HM onto the whole space 
[ ^ ^ ( O ) ] 3 with designation <v, vv>, and inserting v = u — u into (3.1), we obtain 

<Z>(v) = <p(u - u) = <u, u> - 2<u, u> + (u, u> -

- 2 | ( K , o - u) - B(u, u-u) + fpn - d - un, un - S \ + ^ P , - ^ u „ ut - S ^ j = 

= <u, u> - 2 KtUidX + í P„w„dS + f P ( . u . d s l + # ! 
Si J .«„ J S8, J 
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where $ x does not depend on u. Hence the p r i n c i p l e of m i n i m u m p o t e n t i a l 
energy follows: The quadratic functional (total potential energy of internal and 
external forces) defined for " ^ [W2

(1)(.Qj]3 through 

(3.3) J2ř(ii) = І Cmmuifkulim d Z + J í — M„2 dS + i - uf
2 dS - f Ktu, dX -

o Jr„Bn Jrt
Bt J o 

{ 
j m 

Pt. u, dS 

attains a minimum on the set u © HM c [ W ^ 1 ^ ) ] 3 , if and only ifu=u = u-{-w 

represents a weak solution to the mixed problem. 

For illustration let us show the functional (3.3) for the example 3 of section 1: 

«a?(«)= i f Cttfa.tt,^!!,^dx+i r ("i un
2 + 1 uA dS - f KiWidX - r P.u. dS. 

Jo jrQ\Bn &t / JQ JTP 

4. THE PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY 

We shall distinguish two kinds of mixed boundary-value problems according to 
the existence of the set of "elastic supports". 

I. Let a non-vacuous set Tn u Tt exist. Let 3T^ be the space of symmetric tensor-
functions T(X) with components xik = xki e JV2

(1)(.Q), (or W2
(1)(.Q7)). Denote 

|T|- ^ ( £ h*|U)1/2 

i , fc=l 

and introduce in ZT^ t n e scalar product 

(4.1) ( (T, T")) = f O a t a T ^ d^r + f £„T„' T„" dS + f £(T,' . Tt" d'S . 
J o J rn J r t 

Using the relations (0.2), (0.4) and assumptions on Bn, Bt, we can easily verify, that 
the bilinear form (4.1) has all the properties required for the scalar product in ST^ 
with the norm |T|2. 

Suppose, that the solution ueU. Then according to the definition of U the associat­
ed stress tensor T(6i) e &*£*> but we shall suppose even T0 = T(u) e W a ST{^. The 
properties of the scalar product (4.1) imply that if T — T0 e ^~(i\ \T — T0 |2 > 0, 
then ((T — T0, T — T0)) > 0. The latter inequality may be written in the form 

(4-2) ((T,T)) + ( (T 0 ,T 0 ) )>2 ( (T ,T 0 ) ) . 

Let T e W and let us apply the principle of virtual work (1.1) to the fields T and u. 
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We obtain 

(4.3) ((T, T0)) = f aiklmxikxlm dX + f B„T„T0„dS = í iC;ó; dX 
J Q J J „ J Í2 

+ j Twu„ dS + P„un dS + J TnCn dS . 
J j / n J ®n J rn 

Henceforth we use for brevity the following convention: the bar above a term indicates 
the fact that an analogous term, but with subscripts t instead of n, should be added. 

Similarly, it holds 

(4.4) ((T,, T0)) = f KA dX + f T0„u dS + \ Pnun dS + f T0nCn dS . 
J Q J $$n J @n J i n 

Subtracting twice the equation (4.4) from (4.2) and using (4.3), we may write 

i((T, T)) - i((T0, T0)) > f (T„ - T0„) u„ dS + f (T, - T0„) C„ dS . 
J stn J rn 

Hence the p r i n c i p l e of m i n i m u m c o m p l e m e n t a r y energy (Castigliano-
Menabrea) follows directly: If u e U and T0 = T(u) e W, then the quadratic func­
tional (complementary energy) 

HT) = i f aiklmxikxlm dX + f (iB„T„2 - C„T„) dS + f (iBJf - C, . Tt) dS -
Jf l JTr, J Ft 

TnundS - T r . u f d S 
J stn J S&t 

attains a minimum on the set W of statically admissible stress fields T, precisely 
; / | T - T 0 | 2 = O. 

//. Let the set Tn u Ff be vacuous- that means no elastic supports exist, every­
where on F AnBn = AtBt = 0. Clearly, all of the part /. holds, with the only change 
that the integrals on Tn and Tt have to be omitted. In the present case, however, it is 
possible to apply the method of orthogonal projections in Hilbert space (see e.g. [4"L 
§ 54) with weaker requirements for the fields T(X) than in the foregoing method. 

Let us define a scalar product in the space 2T2 of symmetric tensor-functions T(X) 
with components xik = xki e L2(Q) and with the norm |T|2, through 

(4-5) ((T,T")) = fa, .k [ m4T;'MdX. 
JQ 

As in the part /. all the properties of the scalar product are easily verifiable for (4.5), 
Since ZT2 is a complete space, <r2 with the scalar product (4.5) forms a Hilbert 
space #£. Note that the norms |T|2 and ((T, T))1/2 are even equivalent. 
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Denote ffl\ c $f the subset of tensor-functions T', to which such vector-function 
v' e HM exists (recall the section 2 for the definition of HM) that 

TikiJ ) = t'ik ^ CiklmV'l,m ' 

Furthermore, denote Jf2
 c •#* the subset of tensor-functions T", which satisfy the 

homogeneous equations of equilibrium and homogeneous statical boundary-
conditions in the weak sense, (see (2A) or (2.2) for K = 0, Pn = 0, Pt = 0) i.e. it 
holds for every v e M, that 

(4-6) ľ гik{T") vh 

J Й 
dX = 0 . 

Since the transition to the limit in (4.6) is possible for v(n) e M, 

lim V<M) = v' e HM 

n~* oo 

in t h e sense of [W2
(1 )(£2)]3 , we have 

(4.7) ( ( T ' J 1 ) = | rik(T")v'itkdX = 0 

for any T'e jfu T"ejf2. 

Next let T e 2tf be an arbitrary stress tensor, satisfying the complete equations of 
equilibrium (0.3) and the statical boundary-conditions on &n and £%t in the weak 
sense, i.e. it holds for every v e Ni that 

(4.8) ľ гiкvitкdX = í KiVidX + ľ PnvndS + ľ P ( . v ( d S , 
J ß J Q J @n J Mt 

where xik are components of the tensor T. 
Denote again T 0 the tensor T(u) associated with the weak solution u = u + w 

according to the Hooke's law (0.2). Now use (2.2), (4.8) and compare with (4.6) to 
deduce that T - T 0 e J f 2. It holds 

T 0 = T(u) + T(w) 

with T(w) e 2tf x. By virtue of (4.7) we have 

(4.9) \T - T(u)\%, = \(T - T0) + T(w% = |T(w)|*. + |T - T0|^ ^ |T(w)£, 

where the equality takes place precisely if \T — T 0 | ^ = 0. We can rewrite 

|T - T(u)fc = ((T, T)) - 2((T, T(u)) + ((T(u), T(u)) = 

= fl,7tIn,-t,fcT,md^ - 2 xikuiykdX + \T(u)\l 

J Si J Si 
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Hence the principle of minimum complementary energy follows: The 
quadratic functional 

(4.10) Sř(J) ~ i aiklmTikTlmdX - т i k tt f ł Ä 

J Q 
dX 

attains a minimum on the set of tensor-functions T e &~2, which satisfy the equations 
of equilibrium and the statical boundary conditions in the sense of (4.8), if and 
only if \T - T0\2 = 0. 

If moreover the weak solution u is such that T(u) e W (i.e. the equilibrium inside 
and on the surface of the body is satisfied in a stronger manner than in the sense of 
(4.8)), we can take for T the statically admissible stress fields Te W and apply the 
principle of virtual work (1.1) to the fields T and u. Thus we obtain 

TikuitkdX = Tnun dS + Pnun dS + < ux dS 
Sén J ®n J Q 

As the last integrals do not depend upon T, we may omit them and write the principle 
in the usual form: The quadratic functional 

&{T) = i f aiklmTikTlm dX - f Tnun dS - f Tt ut dS 
J Q J s4n J st?t 

attains a minimum on the set TeW of statically admissible stress fields, if and 
only if\T - T 0 | 2 = 0. 

The latter assertion corresponds to the principle of minimum complementary 
energy from the part /. The relation 

(4.11) 7f{J) = &>(T) - f Kfit dX - PnundS - f Pt. ut dS 
J Q J ®n J ®t 

holds. 
Let again FM u Tt be a non-vacuous set. The necessary condition for the minimum 

of £?(T) at T = T0 is expressed by the p r i n c i p l e of v i r t u a l c h a n g e s of s t r e s s e s : 

Let the real stress field T0 = T(u) e W. Then it holds 

(4.12) ÔSЃ(T0) = 

+ 

W,*<5T, m dX - f ň„dT„ ŮS - í ut 5Tt dS -, 
Q J sén J sšt 

f (5„T0„ - C„) ST„ dS + í (B,T0t - Ct) . ST, dS = 0 , 
J rn J rt 

where the variations dTik satisfy (in the sense of L2(Q) or L2(Qj)) the homogeneous 
equations of equilibrium 

(4.13) faik,k = o 
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and (in the sense of L2(^n) and L2(@t)) the "pure statical" homogeneous boundary-
conditions on Q)n and <3)t 

(AAA) &Tn = 0 and 3Tt = 0 

respectively. 

If r„ = rt = 0, then T(u) e 3~\ for the weak solution u and the necessary condition 

for the minimum of Sf(T) is expressed by the p r i n c i p l e of v i r t u a l c h a n g e s of 

s t resses in the form 

r0)ы[ӣ 
J Q 

3 Sř(T0) = aiklmTikÓTlm áX uikÓTikáX = 0 , 

where the variations dTik satisfy the homogeneous equations of equilibrium and the 
statical boundary-conditions in the sense of (4.6) (i.e. 5T e Jf2). 

In case, that T(u) e W, the principle holds in the form (4A2) with side conditions 
(4A3), (4.14), the integrals ort Fn and Ff being omitted. 

,5. CASES OF "FREE BODIES" 

In the present section we draw attention to such cases, for which some of assump­
tions of the introduction fail to hold, namely when all s/n9 s/t, F„, Ff are vacuous or 
the conditions u = 0\ vn\= 0 on Fw, vt = 0 on rt do not eliminate the rigid body 
motions. Let us consider several important cases of that type: 

1. Let the surface tractions be prescribed on the whole boundary, i.e. F = FP = 
= @tn = $t, stfn = s$ t = rn = rt = 0. Then the necessary conditions of static 
equilibrium are : ;j -' 

(5.1) | KdX + | P d S = 0 , 
| Jo J J 

(5.2) \ r x KdX + \ r x PdS = 0. 

г 

Г 

In order to guarantee the Uniqueness of the solution u, we choose for example the 

following complementary conditions 

(5.3) f udX = 0 , f r o t u d X = 0 . 
J Q .., |. J Q 

Note that the necessary equilibrium conditions (5.1), (5.2) follow also from the 

principle of virtual work (1.1). Indeed, inserting u} = 5jt, (Su = 1 for i = j9 Sij = 0 

for i -j= j), we obtain (5.1) and inserting three admissible small rotations 

s ^)}=^l) x r , (1 = 1,2,3) 

where b(P = dtj, we obtain (5.2). 

4 ( r denotes the radius-vector, X the vector product. 
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2. Let F = stfn u FP u # r , s/t = rn = Tt = 0, ^ „ c Fp, and let J / M be such 
that u — 0 does not exclude the possibility of rigid body motions. Thus for example 
let 

a) stfn consist of surfaces of rotation having a common axis of rotation x3. Then 
the external forces must satisfy the equation of moments 

(5.4) 

f (x^ - x2K,) dX + f (xxP2 - x 2 P x ) dS + f (x 1 (P t ) 2 - x 2 (P ( ) 1 dS = 0 

J Q J Tp J mt-Tp 
and we choose the complementary condition 

dX = 0 . (5.5) (w 2 д - w l j2)« 
Jß 

b) Let s4n be composed of portions of cylindrical surfaces parallel, for example, 
with the axis xx. The external forces must satisfy the equilibrium condition in the 
direction of xt: 

f Kx dX + f Px dS + f (P t), dS = 0 
JiO J LP Ji^t^Tp 

and the complementary condition may be chosen in the form 

ixdX = 0 . (5.6) f ut 

c) Let stfn reduce to portions of planes, which are parallel, for example, with the 
plane x3 = 0. The necessary conditions of equilibrium are (5.4) and 

f K, dK + f P. dS + f (Pt)t dS = 0 (i = 1, 2) . 
J Q J rP J i%t-rP 

The complementary condition may be chosen in the form (5.5) and 

f utdX = 0 (i = 1,2). 
J Q 

d) Let s4n consist of portions of concentric spherical surfaces. The necessary 
condition of equilibrium is 

f (r x K) dX + f (r x P) dS + f (r x Pt) dS = 0 
J r? JEp J^t-^Ep 

and the complementary condition may be chosen in the form 

1 rot u dK = 0 . 
Q 
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e) Let J / „ be composed of portions of the helical surface 

Xt = Q cos OJ , x2 = Q sin co , x3 = /(@) + kco . 

The necessary condition of equilibrium is 

f (x!K2 - x2Kt) dX + f (xxP2 ~ x2Px) dS + f (xx(Pt)2 -
Jfl JEP Jmt^rjp 

- x2(P-)1) dS + h ( f K3 dX + f P3 d5 + f (P,)3 dS ) = 0 
\JQ J rP J®t-rP J 

and as the complementary condition (5.5) may be imposed. 
In all cases mentioned above the inequality of Korn (0.8) holds on the linear 

manifold M of vector-functions, continuously differentiable on Q and satisfying both 
the homogeneous boundary-conditions un = 0 on stfn and the complementary 
conditions (see e.g. [3] § 43 or [12] for the proof of this assertion). 

3. Let Tn u rt be non-vacuous, s/t = 0 and s/n = 0 vacuous or let $0n be of some 
of the types 2a —2e discussed above. In these cases we have equilibrium conditions, 
relating the external forces to the displacements on F„ u Ff. The appropriate choice 
of complementary conditions is shown in [12]. 

6. THE GENERALIZED VARIATIONAL PRINCIPLES 

Using the method suggested in [11], the generalized v a r i a t i o n a l p r i n c i p l e of 
HU-HAI-CHANG and WASHIZU may be derived from the principle of minimum poten­
tial energy (3.3). Thus the condition 

<5 f(ui9eik9 Tik) = 0 , 
where 

+ (6.1) f(ui9 eik9 Tik) = {icikimeikelm - KtUi - Tikeik + i(uifk + uKi) Tik] dX 
JQ 

+ f Tn(un - un) dS - f Pnun dS + ( J ( X - Cn) dS 
J s/n J®n S Jrn

Bn 

implies both the constitutive equations of the elastostatics inside the body (strain-
displacement and stress-strain relations and equilibrium equations) and all the 
boundary conditions (0.5) as Euler's equations and natural boundary conditions 
respectively. 

Similarly, on the base of the principle of minimum complementary energy, the 
generalized v a r i a t i o n a l p r i n c i p l e of HELLINGER and REISSNER may be derived. 

This principle asserts: From the condition 

b0t(ui9 Tik) = 0 , 
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where 

(6.2) 0t(ui9 Tik) = {-iaiklmTikTlm + i(uijk + uM) Tik - KÍUÍ} áX + 
J Q 

f T„(uw - u„) dS - f PwuM dS + f Tn(Cn - iBwT„ - un) dS 
J ^n J ®n J En 

+ 

the relations 
aiklmXlm — 2\Ui,k + Uk,i) 

and equations of equilibrium inside Q and the boundary-conditions (0.5) follow as 
Eulefs conditions and natural boundary conditions respectively. 

From the foregoing two principles a group of special variational theorems may be 
derived choosing variously some side conditions among the constitutive relations 
(see e.g. [11]). Here we present only the Re issner ' s t h e o r e m "for b o u n d a r y 
c o n d i t i o n s " : 

From b@t'(u^) — 0, where 

(6.3) #'("«) = - i f KiUi dX + f TB(u) (u„ - K ) <*S + 
J iQ J sin 

+ f w«(iTn(u) - Pn) dS + f Tn(u) (Cn - iBMrn(u) - X ) dS , 
J ^n J En 

TM(u), Tf(u) are defined through (0.1), (0.2) ana1 (0.6) by means of u and Tik(u) satisfy 
in Q also the equations of equilibrium, the boundary-conditions (0.5) follow as 
natural conditions. 

R e m a r k 1. Inserting the stress-strain relations (0.2) into the functional (6.1) we 
obtain a functional equivalent to the functional (6.2) (in the sense of the principle 
bM = 0) and having the integrals 

f -^0„-C„)ds 
Jr„Bn 

instead of the last two integrals (over Tn and Tt) in (6.2). This variant may be obtained 
also from the Reissner's principle in [1], if we choose the potentials there as follows: 

(6.4) W^) = - £ «- + TZ < o n ^ ( o r **) > 
Bn 2Bn 

Vi\T„) = - T„un on st, (or stt) . 

To the latter variant the functional &(u) corresponds, having been derived on the 
assumption that u satisfies only "pure geometric" conditions on stn u s41. 
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The variant (6.2) follows, if we choose in [1] 

(6.5) ^ n ) ( « „ ) = ~~un on ®n(oi9t), 
B„ 

^ci\Tn) = - CnTn + iBnTn

2 on stn u F„(or s/t u Tt) . 

To the variant (6.2) the functional S?(T) corresponds, having been derived on the 

assumption that T satisfies only "pure statical" conditions on Q)m 3fv 

It is easy to verify that both the variants (6.4) and (6.5) of potentials imply the same 

boundary conditions (0.5) by means of the relations (see [1]) 

T„ + #<">/&.„ = 0 , un + dW\dT„ = 0 . 

Analogically in (6.3) we may replace the last two integrals by 

- f U^(Cn-iBnTn(u)-iun)dS, 
JrnBn 

which corresponds to the theorem "for boundary conditions" in [1] when the 

potentials are chosen according to (6.4). 

R e m a r k 2. The functional ^(J) of the complementary energy follows from (6.2) by inserting 
the conditions of equilibrium and the static boundary-conditions. If we use the other variant of & 
(according to Remark 1), we should obtain a functional, depending not only on the stress field T 
but also on the displacement field u. 

7. ESTIMATES OF ERRORS OF THE APPROXIMATE SOLUTIONS, 
OBTAINED FROM THE PRINCIPLES OF MINIMUM POTENTIAL 

AND MINIMUM COMPLEMENTARY ENERGY 

/. As in section 4 let us consider at first the problems with non-vacuous part Tn u Ft 

of the boundary. We can show, that if the solution u e U and the associated T 0 = 

•= T(u) E W, we have 

(7.1) --^(T 0 ) = j?(fl) + J , 

where 

Л = C2J2B„ dS . 
rn 

Indeed, according to the definition of U 

(7.2) un + BnT0n = Cn on F„, 

&t + BJ0t = Ct on Tt . 
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Furthermore it holds 

-ПЪ) ůikTikdX + 

Kfit) dX 

T0nun dS + 
лѓn 

(T0„C„ - ІB„T0

2

Я) dS , 

js?(ů) - f (±a í > J k í t t 
JiQ 

= - i ůf,fcT/fcdX+ PoAdS 
J Q J sčn 

Pnůn dS + 
Tn 2B„ 

En 2Д 
£- - P„M„ + T0„W„ dS 

Consequently 

SЄ(Ů) + У(T0) = f ( A - - Ş đ. + T0„й„) dS - f (T0„C„ - |B„T0

2„) dS . 
Jг„\25„ Ą, / Jr„ 

Inserting 

Ton = (Cn - W„)/Bn 

according to (7.2) into the two integrals, we obtain 

SC(u) + S«(T0) = f - j | d S - f --L(C„2 - « 2 ) d S = - f & d S , 
J En 2^« J En 2 i *" J En 2^« 

which is precisely (7.1). Note that 

S£(u) = -i f ciklmuifkul>m dX - i f ^ dS = - K « , *> • 
Jo JEn

 5« 

Next let u ( w ) be a term of a sequence, minimizing the functional S?(u) and let T ( w ) 

be a term of a sequence, minimizing the functional Sf(T). 
The error S(u(n)) of the approximation u ( n ) may be measured by the difference 

Then it holds 

(7-3) 

Ąu(n)) = S?(u(n)) - S£(й). 

-Sŕ(T(m)) ź -Sŕ(T0) = Sf(ů) + Á , 

Ąu(n)) S SЄ(u(n)) + SЄ(T(m)) + A 

by virtue of (7.1) and the principle of minimum complementary energy. Similarly, 

the error #*(T (m)) of the approximation T ( w ) may be measured by the difference 

J T ( T ( W ) ) = ^ ( T ( m ) ) - Sf{J0). Then by virtue of (7.1) and the principle of minimum 

potential energy it holds 

-Pfjo) S J?(u(n)) + A , 

(7.4) (T ( m )) ^ SЄ(u(n)) + SЄ(T(m)) + Å . 
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//. Next let F„ u Ff = 0 as in the section 4///. The estimates of errors of u(n) 

and T(m) may be derived again by the method of Hilbert space. According to (3.2) we 
have (for v = w(n) = u(n) -ueHM) 

(7.5) \u(n) - u\]lM = \w(n) - W\2
HM = <P(w(n)) + \w\2

HM . 

Comparison of (2.3) with (4.5) implies 

(7-6) HL = m * -
When T(m) meets (4.8), according to (4.9) we obtain 

(7.7) |u<"> - U\2
HM g *(w<">) + |T<m> - T(S)|i . 

From the formulas, following (3.2), we deduce 

$(w(n)) = 2<?(u(n)) - <u, u> + 2(/C, u) + 2(Pn, un) . 

Similarly, from the formulas, following (4.9), we deduce 

|T<'»>-T((i)|i = 2 (̂T<'">) + |T(l7)|^. 

As in the case under consideration 

\T{u)\%, = <u, u> , 

we may write finally the estimate 

(7.8) |i<"> - u\2
HM rg 2[j§f(U<")) + £(T<m>) + (K, u) + ( P ^ ) ] , 

where 

(K, u) = f Kfi, d* , (P„, 5„) = f P„u„ dS + f P r . 5, <tf . 
J .o J ^„ J mt 

Remark. If moreover T(w) e W, then with respect to (4.11) 

\u(n) - U\2
HM = 2[se(u(n) + sr(T(m))~\. 

Thus (7.8) is an estimate precisely twice as high as $(u(n)) of the part 7//. 
For |T(w) — T0\# we have according to (4.9) 

| T < m ) - T 0 | i = | T < - > - T ( 7 j ) | i - | T ( w ) | ^ . 

By virtue of (7.6) and (3.2) it holds 

-|TK|i=-H»M = ^K))-
Thus we obtain the estimate 

|T<m> - T0\%, ^ <Z>(w<">) + |T<m> - T(d)\%. 

with the same right-hand side, as in (7.7) and consequently also the same as that in 
(7.8). 
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VARIAČNÍ PRINCIPY LINEÁRNÍ TEORIE PRUŽNOSTI 
PRO OBECNÉ OKRAJOVÉ PODMÍNKY 

IVAN HLAVÁČEK 

S o u h r n 

V čiánku jsou probrány klasické i neklasické variační principy lineární statické 
teorie pružnosti pro obecný kombinovaný okrajový problém ve třech dimenzích. 
Na částech povrchu tělesa jsou uvažovány podmínky pro daná posunutí, dané 
povrchové zatížení, kontaktní podmínky a pružné podepření, a to odděleně ve smě­
rech normály a tečné roviny k povrchu tělesa. Ukazuje se na souvislost s definicí 
slabého (zobecněného) řešení, přičemž se podstatně využívá metod Hilbertova pro­
storu. Také k odvozem principu minima doplňkové energie je užita metoda ortogo­
nálních projekcí v jistém Hilbertově prostoru tenzorových funkcí napětí. V tomto 
smyslu jde o rozšíření idejí z knihy C F. MMXJiHiia [3] a [4]. 
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Резюме 

ВАРИАЦИОННЫЕ ПРИНЦИПЫ ЛИНЕЙНОЙ ТЕОРИИ 
УПРУГОСТИ ДЛЯ ОБЩИХ КРАЕВЫХ УСЛОВИЙ 

ИВАН ГЛАВАЧЕК (1УАЫ НЕАУАСЕК) 

Рассматривается смешанная краевая задача линейной теории упругости, в ко­
торой заданы перемещения и поверхностная нагрузка отдельно в направлениях 
нормальном и тангенциальном к граничной поверхности, включая условия 
контактной задачи и упругие опоры. 

Классические принципы минимума потенциальной и минимума комплемен­
тарной энергии установлены при помощи теории гильбертова пространства. 
Показаны их связи с принципами виртуальных работ, виртуальных перемеще­
ний, виртуальных изменений напряженного состояния и с определением слабого 
решения из теории эллиптических систем дифференциальных уравнений. Приве­
дены тоже обобщенные принципы Ху-Хай-Чанга и Вашицу [8] и Рейсснера 
и Хелингера [1]. Исследуется вопрос о двусторонних оценках погрешностей 
приближенных решений. Случаи ,,свободных тел", когда краевые условия для 
перемещений не исключают возможность жестких смещений тела, тоже подвер­
гаются дискуссии. 

Аигког'8 аМгезз: 1п&. 1юап НШасек С 8 с , МагетаНску й$1ау С8АУ, Ор1егак^а 45, Ргапа 1. 
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