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1. INTRODUCTION

In many physical applications it is necessery to determine at least the first eigenvalue
of a differential or integral operator. The purpose of this paper is to demonstrate the
advantage of several simple computational techniques, thus completing the work
presented at the conference on Basic Problems of Numerical Analysis held in Liblice
in 1964. Birger’s, Kolomy’s and Kellogg’s methods are compared with the widely
used method of steepest descent. The comparison is done from the point of view of
memory requirements, routine degree and the speed of convergence. In the theoretical
part the operator A4 is not specified in detail. The results may be used for solving
integral equations as well as for matrices.

2. THE DERIVATION OF ITERATION PROCESSES

Let a linear operator equation
(1) Ax —px =0

be given, where A is a linear bounded operator in a complex Hilbert space H and p
is a real parameter. This equation will be solved by an iteration process

, 1
) Xpry = —— Ax,.
i+ 1

The parameters p4; will be determined from the condition that the function
|Ax — tx|* on the set of all real numbers t € (— 0, 00) attains the minimal value for
the element x,. We get

(Axk’ xk)

(3) B+ = (Xk’ %) .
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This iteration process was derived by Kolomy [4], [5]. (Our Eq. (3) corresponds to
Eq. (3) of [5], p. 36; in the latter equation as well as in the following Eq. (4) given
in [5] there is obviously a misprint.) Now the following Theorem holds ([4], p. 18, 19,
Theorem 1 and 2).

Theorem 1. Let A be a positive compact operator in a complex Hilbert space H (i.e.
(Ax,x) >0 for xe H, x + 0). Let x, € H, x4 # 0 be not orthogonal to the eigen-
space H, , corresponding to the first eigenvalue uy of (1). Then the sequence {jy}
defined by (3), (2) is monotone, increasing and it converges to py. The sequence {x,}
defined by (2), (3) is convergent in H to one of the eigenvectors corresponding to .

I. A. Birger [1] introduced a similar method, but without any conditions and
without a proof of convergence. It differs from the process (2), (3) in determing the
parameters j,; and thus from the condition that the function [|(1/7) Ax — x|?
attains the minimal value on the set of all real numbers 7 € (— 00, oo). Here, we have

(Ax,, Ax))
4 . =
( ) Hi+1 (Axk, Xk)

Under the same assumptions as in Theorem 1 in [5], p. 43, Theorem 4 supplies the
convergence proof for this method. If the operator 4 is not symmetric, the method (2),
(3) can be used with a certain modification provided the operator A4 is symmetrizable
(sez Theorem 3, [5], p. 42). Marek [9], p. 53 has shown that the process (2), (3) can
be generalized for linear unsymmetrizable operators, too.

In paper [6] the assumptions of Theorem 1 are not so strong. The assumption that
the operator A is compact is omitted and it is shown that the sequence {,} con-
verges also in the case that the largest element of the spectrum a(A) is not an eigen-
value of the operator A. It is not even supposed that u} is an isolated point of the
spectrum o(A). It is shown that the above mentioned methods can be used for finding
the extreme values of the spectrum o(A).

The following assertion on the speed of convergence is true: Suppose that A4 is
a linear self-adjoint positive mapping of a real Hilbert space H into H. Let fi, be the
largest and m the smallest element of the spectrum (m < u £ M < ji,). Then ji, is
an eigenvalue of A. Let us denote H; the eigenspace corresponding to fi, and
e(|le]| = 1) the projection of x, ¢ H,, xo + 0 where H, is the orthogonal complement
of H;. Then H = H,, @ H, and for every x,, (k = 0,1,2,...) defined by (2) we
have a unique decomposition x, = e + hy, where h, € H, and (e, h,) = 0. Furthe-
more, there exist numbers g ([ 7] theorem 3) defined by

qo=[1—-&|x] >0 = MarH]"?, k=012,

such that
Goo1 < Q-2 < ... < 4go <1

332



so that
Ay — e < 43—1 . ‘h%—z Q(Z)(ljl - m) “hou2 . HXOH—Z .

Kellogg’s process is different ([ 12], [13]); here

x Ax, A ,”Axk”
(5) k+1 M+ 1 kall .

%]
All these iteration methods can be summarized in one class (Marek [8], [9], [10]).
Let X be a complex Banach space, X’ be the adjoint space of continuous linear
forms on X and X, the space of bounded linear transformations mapping X into X.
Let A€ X, and let R(4, A) = (A — A)™! be the resolvent of the operator A at the
point A of the complex plane IT. The resolvent R(1, A) can be developed into a Laurent
series .

[£e] 0

R(%, A) = ZO(;. — wo) A; + ZO(A - 1) ' B;,

i= i=

where

B, = | R(LA)dA, Bip,=(A—puol)B;, i=1,2..
2ni ) ¢,

and C, is a positively oriented circle with center at p, and such that no points of the
spectrum o(A) except y, lie on or inside the circle C,. Further we will call the point
Ho € a(A) the dominant point of the spectrum of the operator A, if Ill < I“OI for
every point A € a(A4), A + po.

Let the following assumptions be satisfied:

a) The operator A is a linear bounded operator mapping the space X into X.
b) The value y, is the dominant point of the spectrum of the operator A.

The symbol o will signify the zero-vector in the space X.

Let {x;}, {»}, {zi} be sequences of linear forms mapping X into I1. Let the forms
x"e X', y' € X’ exist such that
(6) x'(x) = klim xi(x), V(x) =klim yi(x) = klim z,(x)
for every vector x € X. Let x') e X be a definite fixed vector such that B,x(® % o
so that there is an index s(1 < s) with
(7 Bx® 0, B, x®=o0.
Further let
(8) x'(Bx®) % o, y’(BAx(o)) * o0
hold and let us put

©)

Bx©
X0 = S o
x'(Bx®)
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The Kellogg’s iterations are constructed according to the following formulas

(10) NN R Ay
’ (k) x/(x(k))
Z/(x(k+1))

1 = A )

() ")

We have ([8], theorem 2, p. 540).

Theorem 2. Let (6) hold for the forms x;, Vi, zi, X', y'. Let x*¥ e X be a vector
such that (7) and (8) hold. Then

(12) lim x4y = Xg

k—

for sequence (10) in the norm of the space X and

(13) lim pgy = 1o

ko0
for the numerical sequence (11). The vector x, is the eigenvector of the operator A
corresponding to the value .

If p, is a real simple dominant eigenvalue of the operator A € X, we can write
the iteration process (10), (11) in a simpler form ([9], p. 54) as

Akx(©) y,'((Aka(O )
X = i on e M T T o Ton o
yi(A*x?) yi(A¥x©)

(14)
The iterations determined by formulas (14), where x(® e X is a suitable vector,
converge to an eigenvector x, of the operator A4 corresponding to the eigenvalue .
Let

(15) Xppr = ApgAXe, Xo = x©,
where .
, Vilx
(16) Ay = ”L(L) .
yk(Axk)

Then the relations x, = xg, 44y = 4o = g5 ' hold according to Theorem 3, [8].

The form of the functionals y;, € X is almost arbitrary and therefore we shall ask
which functionals are the most effective ones. The concept of the process effectiveness
of an iteration type will be expressed in terms of some extremal properties. Let A" be
the adjoint operator of 4. Let a real function of the real variable

Yu(t) = I(Ax, — tx,), where [ = A'x; — 1x;
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be given. Let the sequence x; € X’ be defined by the formula
(17) Xpr1 = dpA'xp, xo=x"VeX’,

where the parameters A, are to be determined from the condition that the function v,
attains the minimal value. Then
L yA"xo) _ yo(A4** " 'x,)

;‘(k) ,V;"(Akxo) YO(Akao)

from what we can infer that the “effective” process gives the approximation of degree
2k which is equal to the approximation of degree k given by the usual iteration process
(14) with x; = x; for k = 0,1, ... This property can be succesfully used for the
symmetric operators in a Hilbert space. In this case process (17) is identical to that
given by (15); therefore a half of computations falls off. We have

ilx) = (% xi) = (x, x)
and
Yil(r) = (Ax, — 14, Axy — 1X),

this being the Kolomy’s process.

Note. The process mentioned above can be utilized without any difficulty for
constructing the eigenelements of equations of the type Lx = Bx + ACx, Lx' =
= B’x’ 4+ AC’x’, where L, B, C are, in general, unbounded linear operators mapping
the domains 2(L), 2(B), 2(C) into X (see [9], p. 57).

In a Hilbert space iteration methods, in which Schwarz constants of the type (3),
(4) appear, are used for determining the eigenvalues of symmetric compact operators.
The iterations given in [1] and [4] are analogous to this method; moreover, they
provide the instruction (2) for constructing the eigenvectors, which differs from the
Kellogg’s original formula (5). The letter can be obtained by putting y;(x) = z(x) =
= | x| in formula (10).

. If we choose the sequences of forms {y;}, {z}} in a specific way, other well known
iteration processes are obtained.

Let us assume that the operator A has a positive dominant eigenvalue; let H be
a Hilbert space with the inner product (x, ). Let the assumptions of Theorem 2
be fulfilled with {x;} being an arbitrary sequence for which (6) holds. Let the sequences
{»i}, {z;} be defined by one of the formulas

(18) y,"(x) = Z,'((x) = (x, x(k)) 5
(19) Yilx) = zi(x) = (x, Ax) -
Then, according to Theorem 2, hm (‘c“‘“) x®)[(x®, x®) = p, for the case (18),

lim (x®+ D, xE+D)[(E+D 50 = yo for the case (19).

k-
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Similar processes can be used for finding the eigenvalues of nonlinear bounded
operators, too. For example, H. F. Bueckner [2] used the process

Re (x;, Ax,L)
(Ax,, Ax,)

k) =

for solving the nonlinear Nekrasov’s integral equation, determined the sufficient
conditions and proved its convergence.

The method of steepest descent [3] was developed in a quite different way. The idea
of this method is to look for the maximum of the functional

L(x) = (A4x, x)

(v)

which coincides with the eigenvalue u} of 4 and for the element x} which maximizes
L(x) and is the eigenelement corresponding to 7.

We shall choose arbitrarily the first approximation x, € H and form L(x, + er).
The direction of the steepest descent is given by the element —r, = poxo — Ax, and
the functional attains its maximum in this direction for ¢ = ¢,, where

- (ro- 7o)
(A"o’ "o) - #0("0,"0)
Therefore the next approximation will be realized in the form x; = xu + grg;

similarly we proceed in next steps. The following Theorem on corvengence holds
([3], Theorem 1 (2, XV), p. 550).

o

Theorem 3. Let A be a symmetric positive definite compact operator. If x, is not
orthogonal to the eigenspace H,,,, then the sequence {i,} converges to the largest
eigenvalue p% of A and the sequence {x,} converges strongly to one of eigenvectors
corresponding to uy. The speed of convergence is geometric.

3. DESCRIPTION OF METHODS

We shall use the method mentioned in part 2 for the calculation of the first
characteristic value of the integral operator given by the integral equation

1
(20) Vx) = 2 '[ G(x, $) ¥(s) ds .

0
which will be written symbolically in the form y = A Gy. Under certain assumption
we have u = l/i, where 1 is a characteristic value of the operator G and u an eigen-
value of the corresponding differential operator. Eigenvectors and characteristic
vectors are equal.
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The inner product in the real Hilbert space L 0,15 is defined by the formula (y, v) =

= [(‘, ¥(s) v(s) ds. The iteration processes for the respective methods have the following
forms:

Birger’s method (B),
(21) . y(k+1) = Gy(k) ,

22) o~ G0 Gr)
(Gy(’", Gy"‘)) '

Kolomy’s method (K) differ from the method mentioned above in the calculation of
numbers A%, i.e. here

(73) e (v(k) (k))

In the same way the characteric number is calculated by the method of steepest
descent (M). The corresponding eigenvector, however, will be obtained by a more
complicated process,

(24’) y(k+1) = y(m FRAORON
1
(25) F = }(k) ),(k> _ Gy(")
(26) a® = (", r) _
(r®, G,(M) o (r®, ,(k))
Kellogg’s method (L) uses the fomulas
Gy®
(27) y(k+1) _ IV
l6y®] "
N\
o o bl
feye)”

The first approximation in all methods is arbitrary, the number k = 0,1, 2, ...
designates the succession number of iteration.

The Birger’s book [ 1] contains also the instruction for the calculation of the second
characteristic value of the operator G solving the equation y = A Fy, the first
characteristic value of which is the second characteristic value of the operator G.
This property is exhibited by an equation with the kernel of the following form

G(x, s) — (X) U(S) = F(x,s)
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hence, in our case we have

v (:0)

Fy = Gy — .
Y Y 2* (v, v)

However, this operator insures only the orthogonality of the first approximation to
the eigenfunction v. It is not suitable for practical calculation. We shall construct
the F-operator in such a way that the orthogonality of all successive approximations
to the first eigenvector v is insured independently of the choice of the first approxima-
tion. We put

We can easily prove that (y**1, v) = 0, because

(k)
(VED v) = AW(Fy®, v) = AW(Gy®, v) — 4® (___Gy 11) (v,v) =0.

(v, v)

This way, however, also did not prove to be successful for the computer calculation
probably as a consequence of orthogonality destruction by rounding errors. The com-
putation of the second characteristic value also failed even in the case that the first
value was computed with relative error 10~¢ (kernel G,).

4. DISCRETIZATION

For the calculation on a computer the following discretization was made. In the
interval <0, 1> n + 1 meshpoints were taken. Denote h = l/n, x;=1i.h, 5; =
=j .k, yi = y(x)), G;; = G(x;, s;), etc. Equation (20) will be replaced by a system of
linear equations

Yi=AY A;Guy; =0 (i=0,1,...,n),
i=0

where A4;; are constants obtained by replacing the integral by a finite sum. The inner
product will be defined by

(o) =3 4;y;,
j=0

where A4; are again the constants of numerical integration. The norm will be defined
as usual, ie. [v] = /[(v, v)].

The numerical integration was performed by the trapezoid and the Simpson’s rule.
In examples, where the function G(x, s) had a discontinuous first derivative on the
diagonal, the modified Simpson’s rule was used. Although the symmetry of the
operator G, which is an essential condition for the method of steepest descent but not
for the other ones, was violated, the convergence remained intact. Although the
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trapezoid rule is form the programming point of view the simplest one, the results
are, however, almost by one decimal rank worse than those obtained by the Simpson’s
rule. Therefore the Simpson’s rule should be preferred. Together with the accuracy
of calculation of characteristic values, the accuracy and speed of the convergence of
eigenvectors was followed. The values

g

1 n
=Y lgil, max|g;l, |g]
nj=o0 0=j=

n
were calculated, where
Vi _ Y2

v; Vny2

dj =

and v denotes the exact eigenvector of integral equation (20).

Fig. 1a. The trapezoid rule Fig. 1b. The modified Fig. 1c. The Simpson’s rule
(LCH) Simpson’s rule (MS) S)

The calculations were made on the floating point on computer URAL 2 in the
Institute for Computation Technique of the Czechoslovak Academy of Sciences.
Mantissa has 8 figures, the maximum spread of decimal exponents is +19. The
program was made in the machine code. The termination of the iteration process in
the program was chosen for ||y**» — y®| < ¢ in view of the fact that after the
termination it was possible to go on by switching off the key 2 and by starting an
“infinite process, except for the method of steepest descent, which terminated with
a division by zero for

(r. Gr) — % (r,r) < 10717,

5. RESULTS

The methods mentioned above were tested on six integral equations with kernels
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e, 5) = ~x9) {
Go(x,5) = J[(1 + x) (1 + 5)]. Gy(x,5).

G,y(x,5) = (1 —
Gy(x, 8) = /(x)

Gu(x,s) = |x —

VO (=),

(s + 10,

S|,
lgx, x <s,
lgs, s < x,

The exact solution of the eigenvalue problem was known for some of them only, i.e.

Table 1
R e
l Kernel A* v(x)
|
|
1 G, (x, 5) 7% = 9-8696040 sin 7x
; G,(x, 5) 6:0000000 21 — /%)
? G,(x, 8) 15/106 = 0-14150943 Jx
Gs(x, 5) 5-78318 -
|

The estimate 2.87833 < A* < 2.87846 is known for the function G4, for the function
G it will be obtained from the equation #(\/4) = 0, where #, is the Bessel function.

The number n of meshpoints was between 10 and 500 in computing. One iteration
step carried out by the method of steepest descent took 50 minutes for n = 500. In
further examples, where the calculation of the functional value lasted longer, the
number of meshpoints used did not exceed 200.

Let us now present the results of computation. The course of the computation of
the characteristic value in a single process is represented for the kernels G, and G5
in Fig. 2 to 9 as well as in Table 6.

Table 2
| i | o ]
‘ n 1 10 % 20 50 100
- ! B L
! MS 3.1073 l 4.107% H 2:6.107° 3.107°
) | '
| LCH | 8.1073 2.1073 ‘ 33.107% 8.107°
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Table 3

Kernel 1 n 1 ’ d ’ [ ligll l max [g ;|
B | ‘ i i o
10 MS ] 3.107! || 4.1072 | 13.1072 2:5.1072
( S ‘ 2.1071! | 3 10~ 2 <‘ 3.107° 7.107°
| 100 ! S ‘ 6.1073 |1 1073 | 6.107° | 3.1073
| 7' ] T T
“ 200 \ MS ' 2.1073 ’ 4.107% — ] —
| MS 8.107* i 5.1073 2.1073 4.1073
-0 S | 14.107% | 1.107¢ 10-° 5.107°
G i Ty T T R T - o
3.0 100 MS 6.107° 1 1074 | 1.1073 | 1.1073
‘, S | 16.107% | 1-1.107¢% 1-5.107° ‘ 4.107°
Table 4
| ,
n d é | gl max |g ;|
10 | 30.1072 30.1073 2.1072 2.1072
20 | 40.1073 40.107% 3.1073 7.1073
50 | 2:6.107% 2:6.107° 2.107% 8.107%
100 i 30.107° 30.1077 4.1073 2.107%
200 40.1076 40,1077 7.107¢ 6.1075
500 | 2:0.1077 2:0.1078 3.1070%) 2.1075 %)
]
I O S S

Table 4 contains the data concerning the error of computation of the characteristic
value and of the eigenvector for the kernel G,. Table 3 contains the same values for
the kernels G, and G5 separately for various integration rules used for the computa-
tion. Table 2 gives the relations between the error in the computation of the charac-
teristic number and the mode of the numerical intergration for the kernel G,. In all
the tables the results are distinguished according to the number of meshpoints.

In spite of the difference in the algorithms of the various methods the speed of
convergence as well as the accuracy of the characteristic value obtained were equal.
This is demonstrated in Figures 2 to 6 for kernel G, and for n = 10, 20, 50, 100, 200,
in Figures 7 to 9 for the kernel G5 and n = 10, 100, 200, namely for the process of
steepest descent by a line, for the Kolomy’s process by a dashed line, for the Birger’s
process by a dotted line and for the Kellogg’s process by a dot-and-dashed line. In
order to compare the individual methods as much independently of the problem
discretization as possible, we relate the value A® calculated in the k-th step of the
process to the value 4 attained in the steady-state of the process. This value is always
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the same for all four methods. The ratio of A% and A diminished by 1 is plotted on
the vertical, the iteration step number on the horizontal axis.

It is obvious that the convergence of all the mentioned methods is almost equal.
Although the integral operators are symmetric, they are not monotone; it is caused
by the breaking the symmetry of the operator in consequence of the discretization
according to the Simpson’s rule modified in the odd lines so, that the point on the
diagonal fell in the meshpoint, i.e. the following way: the Simpson’s rule is used
in the interval <h, 1 — h) the trapezium rule is used in the intervals <0, h),
{1 — h, 1) so that the constants 4;; have the following form

Ay =3h[1,4,2,4,...,4,2,4,1]
Asyoy; = 5 ho2h 5h[4,2,4,...,4,2,4], 2h, 5h .

Thereby the symmetry is broken in the points indicated in the picture 1b). For the
large n this breaking is negligable. If we compute according to the trapezium rule
(LCH), the symmetry is not broken at all (expecting the bounds, see picture la),
where the function G(x, s) is often nought), the obtained results, however, are worse,
e.g. for the kernel G,(x, s) it makes half of the decimal rank in several cases even the
whole rank the convergence being monotone. The calculation according to the
Simpson’s rule (S) can be carried out only in the case that the function G(x, s) has
a continuous first derivative. The breaking of the symmetry is considerable large
here, see picture 1.c). The results are slightly better than those obtained by the
modified Simpson’s rule. Moreover they are obtained earlier. It is more important,
however, that the eigenvector is calculated considerably more accurate, its accuracy
being including all the 8 figures.

The results for the kernels G,(x, s) and G;(x, s) referring to all four methods are
given in Table 3, d denotes the absolute, J the relative error of computation of the
characteristic value, |g|| and max |g;| denotes the error of computation of the eigen-
vector. For the kernel Gl(x, s) the eigenvector is obtained for all eight figures if the
trapezoid rule is used. If the Simpson’s rule is used, the absolute error of calculation
of the eigenvector is usually equal to the absplute error of calculation of the characte-
ristic value. The corresponding results are given in Table 4.

The values [g| and max |g;| for n = 500 refer to the Kolomy’s method; for the
method of steepest descent |[g]| = 5.107°, max |g;| = 4. 10™* which may be caused
by rounding errors in case of a large number of operations needed by this method.

Comparing the last two columns of Table 4 we see that the error of the eigenvector
is spread rather proportionally, its maximum being attained at the boundary points.
This follows from the definition of the vector g.

Furthemore, let us pay attention to the routine degree of the calculation and to
memory requirements. Although the calculation showed that the method of steepest
descent can be used with the same success as the other methods even in the nonsym-
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metric case (i.e. when the operator in not symmetric and positive definitive), other
disadvantage appear while carrying out the comparison. It needs 1.5 time more
working places and twice the number of operations than the Kolomy’s, Birger’s, and
Kellogg’s methods do at every iteration step. Also the program for the calculation by
the method of steepest descent is considerably longer.

Suppose that the values of the function G(x, s) are computed at each step of the
process by some subroutine (n2 words in the storage will be saved). Denote the number
of operations needed for computation of every value G(x, s) by the letter G and the
number of operations needed for computation of the coefficient of numerical integra-
tion by the letter 4. The corresponding comparison is given in Table 5.

Table 5
Method Memory Number of operations
M 3n 203 4+ A+ G) + n(44 + 2)
K
———— 2n 234 A+ G) + n(24 + 1)
, B
L 2n G+ A+ G+ nA+ 1)+ |/

As to the Kellogg’s method a number of operations needed for the calculation of
the root should be added to the number of operations.

Table 6 gives the values A%®) at the respective iteration steps. For n = 500 and the
kernel G,(x, s) the maximal accuracy has been reached and the error of the last valid
figure is due to the rounding errors.

. Table 6

k M K !
|

0 12:000001 g 12:000001 [

1 99904303 9-8823527

2 9-8698419 98697539

3 98696050 9-8696061

4 9-8696043 9-8696043

5 9-8696042 98696042
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6. CONCLUSION

From the theoretical point of view the method of steepest descent can be used in
the case of a symmetric and positive definitive operator only. The practical calcula-
tions showed that this method gives in fact good results even if some of the assumptions
are not fulfilled (e.g. the operator with the kernel G(x, s) = \/(x) (s + 10) is not
symmetric, the operator with the kernel G,,,(x, s) = [x - s] is not positive definite).

However, the method of steepest descent has in comparison with the Kolomy’s
Kellogg’s and Birger’s method many disadvantages; the essential one is the complexity
of the algorithm and large memory requirements. The fact that the convergence speed
and the accuracy are the same for all methods, sprats clearly for the new methods of
Kolomy and Birger because of their algorithm simplicity, mild memory requirements
and general applicability.
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Souhrn

O ITERACNICH PROCESECH PRO VYPOCET VLASTNICH CISEL
A VLASTNICH VEKTORU LINEARNI{HO OPERATORU

VERA MARSIKOVA

V prdci jsou shrnuty n&které vysledky (zejména podle praci [5], [7], [8], [9], [10])
z teorie feseni linedrnich operdtorovych rovnic v Banachové a Hilbertové prostoru
a uvedeny véty o konvergenci iteraénich procesit pro vypocet vlastnich &isel a vlast-
nich vektori.

Téchto procestt bylo pouZito s uspéchem prifeSeni homogennich linedrnich integral-
nich rovnic

1

y(x) = AJ G(x, s) y(s) ds

0
na samocinném pocita¢i URAL 2. Integrdly, vyskytujici se pfi vypoctu, byly pocitdany
priblizné podle lichobéznikového a Simpsonova pravidla, v pfipadech, Ze funkce
G(x, s) méla nespojitou derivaci na diagondle x = s, podle Simpsonova pravidla
modifikovaného v lichych fddcich tak, aby bod na diagonale byl jednim z krajnich
boda diléich intervaltt délky 2k, v nichZ se pouzivd Simpsonova pravidla. Kazdy
z té&hto zplisobii porusil symetrii operdtoru, nejvice Simpsonovo pravidlo (viz
obr. 1a) — ¢)).

M¢éla-li funkce G(x, s) spojitou derivaci, dalo ptesn&jsi vysledky vlastnich funkei
obvyklé Simpsonovo pravidlo nez modifikované, u vlastnich &isel je rozdil ve vysled-
cich maly (tab. 3).

Nemeéla-li funkce G(x, s) spojitou derivaci, byla vlastni Gisla spoctena témé&f o fad
piesnéji podle modifikovaného Simpsonova pravidla neZ podle lichobé&Znikového
(tab. 2), zatimco situace ve vypo&tu vlastnich funkei byla opagnd. Zdvojndsobenim
Jpoctu délicich bodit vzrostla presnost vypoctu témér o jeden fdd.

Vysledky u jednotlivych metod jsou stejné (obr. 2—9), rozdily jsou patrné jen v né-
kolika prvnich iteracich, po stejném poctu krokit bylo u vSech metod dosazeno téze
hodnoty.

Pro srovndni byly vSechny pfiklady poditdny téZ metodou nejvétsSiho spddu, kterd
je vSak ndro¢néjsi na strojni ¢as i pamét pocitace nez metody Birgerova, Kolomého
a Kelloggova (tab. 5). Pfesto, Ze podminka symetri¢nosti operdtoru je pro konvergen-
ci metody nejvétsiho spddu podstatnd, lze se bez ni, alespont v nékterych pfipadech,
obejit.
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Pesiome

O HEKOTOPBIX HOBBIX UTEPALIMOHHBIX METOOAX IJIS PEIUEHIA
ITPOBJIEMb! COBCTBEHHbIX 3HAUEHUU JIMHEMHOI'O OIIEPATOPA

BEPA MAPHIMKOBA (VERA MARSiKOVA)

B craThe npuBeEHbl HEKOTOPHBIE Pe3ynbTaThl (MMenno 1o paboram [5], [7], [8],
[9], [10]) Teopuu peleHUst TUHEHHBIX OMEPATOPHBIX YPABHEHHI B IIPOCTPAHCTBAX
Banaxa n Twipbepra M TEOpPeMbI O CXOJUMOCTH UTCPALMOHHBIX MPOLECCOB IS
pelueHust poOJIeMbI COOCTBEHHBIX 3HAYECHUI.

ITH npouecchl GBUTH YCHEUIHO UCTOJIE30BAHBI IPU PELICHUH JIMHEHHBIX OTHOPOI-
HBIX MHTETPAJLHBIX YPABHEHHUIT

1
y(x) = ).J G(x, s) y(s) ds
0

Ha ObICTpIEHCTBYIOUICH BBIYUCIHTENbHOM MaumHe Ypan 2. VHTerpajbpl BBIYHCIA-
J¥Ch IpUOMKeHHO 1O HpaBwiy Tpamenuif u CuMmrocona. B cirodae pa3pbIBHOM
nepBoii npoussoaHoit Gpynkumu G(x, s) Ha THArOHANA X = § IPUMEHSIOCH [IPABUIIO
Cumricona, MoauUMIMPOBAHHOEC B HEYCTHBIX CTPOKaX TakuM o0pa3om, 4ToObI
TOYKa HA JMArOHAJIM IONaJia B TPAHUMYHYIO TOYKY OJHOTO M3 YACTUYHBIX UHTEPBAJIOB
IUTUHBI 21, B KOTOPBIX ucmosib3yercs nmpasuio Cumicona. Kaxaplit U3 3TUX coco6oB
MHTETPUPOBAHMS HAPYILWI CUMMETPHIO oriepaTopa, 0oJblle BeeX npasmiio Cummco-
Ha (uepT. la—1c).

Ipu ucnons3oBaHuK 00614HOTO NMpaBiia CuMIICOHA TS QYHKIME C HEMPSPBIBHOM
NPOUBOTHOM GBUTH OJIyIeHBI 00.IS¢ TOYHBIC PE3YIbTATHI [IPH BBIYUCIICHUM COOCTBSH-
HBIX (PyHKIMIA, YeM NMPU UCITOJIb30BaHu MomubrnmpoBaHHoro npasmwia. CoocTB2H-
HbIe 3HAYCHHST OBLIM MOYTH OMMHAKOBBIE (Tab. 3).

Korma ¢yuxuust G(x, s) He MM2Ja HEIPEPHIBHYIO NPOU3BOIHYIO, COGCTBSHHBIE
3HAYCHUS MOJIYYWJIACh MOYTH HA OJMH Pa3psii JIydille TIPU UCTIOIH30BaHUM MoAuDH-
LUPOBaHHOTO mpaBwiia CUMIICOHA YeM IIPU MCIOJIB30BAHKK IIPABIIIA Tpaneuyi (Tas.
2), MeX/Iy TEM KAK CHTYAUVs MPY BBIYUCICHUH COOCTBSHHBIX (QyHKIKMI ObLIa 00paT-
Has. B ciaydyae yABOSHWS YHMCJIA TOYSK ASJZHUS TOYHOCTH BBIMMCICHUN MOBBICHIIACH
TIOYTH Ha OAUH pPa3ps.

Pe3yisTaThl OTACIbHBIX METOJOB OJMHAKOBBL (4epT. 2—9), pasHULy BUIHO
TOJIBKO B HECKOJIBKMX IIEPBBIX MTEpAlMsiX, MOCAe OJUHAKOBOI'O 4YUCJIA MTEparyi
OBLIO JOCTUTHYTO TOTO XX& 3HAUSHUS Y BCEX METO/IOB.

JLJTst cpaBHEHMS BBIYUC/ISUTUCH BCE TPUMEPBL TOXE ITO MCTOAY CKOPSHIIEro CIycka,
KOTOpHBIH TpeOyeT GoJibllle BpeMEHN M NaMsTH 4eM MeTonel Buprepa, Komomoro
u Kesutorra (ta6. 5). XoTs ycoBue CUMMETPUK ONIepaTopa I CXOJUMOCTH MeTo1a
CKOpeEIero chmycka BaXXHO, MOXHO 0e3 Hero, mo KpaiiHeit Mepe B HEKOTOPBIX CIIy-
vyasx, 000UTHCE.

Author’s address: Véra Marsikovd, Ustav vypoétové techniky CSAV a CVUT, Horsk4 3, Praha 2.
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