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1. FORMULATION OF THE MIXED PROBLEM

In elastodynamics we often know the initial displacement and velocity distribution
instead of a given displacement distribution at the initial as well as at a later instant.
Then it is not possible to apply the standard Hamilton’s principle, which presupposes
the information about displacements at a later instant and fails to take into account the
initial velocities. M. E. GURTIN [1] submitted another kind of variational principles
convenient for two given initial conditions, which correspond e.g. to HU HAI-CHANG
and WasHizu principles [7], [8], HELLINGER and REISSNER principle [9], [10]
and to the stationary potential energy principle in elastostatics. It is the aim of the
present paper to establish analogous variational theorems for the elastodynamics
with large elastic deformations.

Let us introduce some definitions and formulate the fundamental relations for the
mixed boundary-value problem in the nonlinear elastodynamics.

Consider that the body occupies a bounded region Q in the three-dimensional
Euclidean space E; with the rectangular Cartesian frame X = (x,, X,, x3). These
coordinates have the meaning of the Lagrangian parameters, joined firmly with
cach particle of the moving continuum (see e.g. [2]) and identified with the Eulerian
coordinates = = (&, &,, &;) at the initial instant ¢t = 0. The functions under con-
sideration are defined for X € Q '), t = 0, unless otherwise is pointed out. Latin
subscripts have the range of the integers 1, 2, 3, summation over repeated subscripts
is implied. We write

Ll X, 1) = of (X, D)fox;, f(X, 1) = of (X, 1ot .

For brevity we shall speak about a “vector-function™ f; instead of the more exact
“‘components f; of a vector . The boundary I" of the region Q is the sum of a finite
number of closed regular surfaces (in the sense of Kellog [ 5]), which have no common
interior points.

1) Q is the closure of the region 2 in E5.
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In accordance with the basic axioms of continuum mechanics (sec e.g. [2], chapt. 9)
we assume, that the relations

E=C(X, 1) = x; + uX, 1)

between Eulerian and Lagrangian coordinates define for all + = 0 a simple regular
mapping in Q ?).

Definition 1. By admissible displacements we mean such vector-function u(X, t)
that the corresponding mapping E(X,t) = x; + u(X,t) is a simple regular
mapping in Q for all t € 0, o).

Definition 2. Let C™(Q) be the set of all functions f(X), X € Q with continuous
partial derivatives of the N-th order on Q, which are continuously extendible on Q.
CMM denotes the set of all functions f(X, t), which have continuous derivatives

0"+mf(X, t)

X, 0™x, 0"x5 0™

pe , 0n,+n,+ny;=n=<N, 0=ms=M
for X € Q, t > 0 and these derivatives are continuously extendible on Q x {0, o).

We say that a function f(X, 1) is piecewise regular on I, x <0, o) if in the
interior of each closed regular surface element S, (of which I'p consists-see [5]),
f(X, 1) coincides for each te <0, c0) with a function continuous on S x (0, o).
2(Q) denotes the set of all functions ¢(X) with continuous partial derivatives of all
orders and with compact support in Q.

The equations of motion in Lagrangian coordinates [2] take the form
(1) sjij + Fi = ooti; on @ x (0, 0),

where sj; is the Lagrangian stress tensor (generally asymmetric), 0o(X) is the mass
density at the instant t = 0, F; = g,K; is the body-force vector, K,(X) being the
force acting on the mass unity, not depending on the deformation of the medium.

The Green’s strain tensor ¢;; is defined through

2) ey = e + e + C’ikejk) >
(2) e;=1u;; on Q x{0,0).

i
The stress-strain relations have the form

(3) T = Ciufa 0N 2 x {0, 0).

2) This means that for all ¢ = 0 there exists a simple mapping 7,(X;¢t) defined on an open set M,
@ < M, which is continuously differentiable on M, having Jacobi’s determinant |Det #; | < 0
for X € M, such that on Q it holds n(X, t) = &(X,1).
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Here 1;; is the Kirchhoff’s stress tensor (see [2]), which is related to the Lagrangian
tensor s;; through

(4) Sij = Tulin = Tij + Ty on Q % €0, )
and c¢;;,(X) denote the clasticity tensor, satisfying the symmetry relations
(%) Cijer = Cjag = Chnij ON Q.
It is assumed that there exists the inverse mapping
(3) e = Aty on Q x <0, »)
with coefficients a;,,(X) satisfying the same symmetry
(59 A = Qg = dij on Q.

The boundary I'" consists of two regular surfaces [ 5],

I'=r,vlr,

the interiors of which are mutually disjoint and this division is independent of time.
The boundary conditions take the form

(6) u(X, 1) =1u4(X,t) on I, x 0, 0),

where i, is a given function,

(7) s;i{(X. ) n(X) = PyX,1) on I, x 0, c0),
where ;1j is the unit outward normal vector to I', P} is a given function.

Remark 1. We can derive (7) as follows: denote by o;; the Euler’s stress tensor.
The area of an elementary parallelogram (illustrated by a vector), formed by vectors
dx, dx in the initial state (1 = 0) is

dF; = |dx x éx| n; = n; dF°.

After the deformation it changes into

Il

dszldéxﬁé, n; = n;dr.
According to the meaning of the Lagrangian stress tensor we have
6;;dF; = s;;dF;, ie. a;n;dF = sj,-;olj dFe.
Let the actual surface tractions be P; = a;;n;. Consequently
sjn; = P dF|dF° = Pi(X, 1)
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if we assume, that the “reduced” surface tractions P; do not depend on the deforma-
tion of the boundary. (Hence it follows that e.g. the tractions of the hydrostatic type
cannot be included exactly.)

The initial conditions for ¢t = 0 are

®) u (X, 0) = d{X)
ui(X,0) = v(X) on Q,

d;, v; are the prescribed initial displacements and velocities. Our problem differs just
by the conditions (8) from those considered in [3] by AmNoLa or in [4] by YI-YUAN
Yu, where two conditions for the displacements at the instants ¢, = 0 and ¢, > 0 are
prescribed.

Remark 2. The conditions (6) and (8) arec not independent, they must agree
mutually for X eI',, t = 0.
Henceforth we assume the following regularity conditions:

200€CV(Q), Cime C(Q), ayume CA(Q),7)
d;eCY(Q), v,eC(Q), K, eC", u;eC’? for Xel,, tel0, o),

P? is piecewise regular on I', x €0, o).

Definition 3. By a solution of the mixed problem we mean an ordered array
of functions P = [u,, e, &}, Tij 5i;], where

9) u;eC**, e;eC?, r1,;eC?, s;eCh?,

9) €j=¢ji, T T

ij = Lji
satisfy equations (1), (2), (2'), (3), (4), boundary conditions (6), (7) and initial
conditions (8) and where u; are admissible displacements.

An array 2, satisfying (9), (9) and involving the admissible displacements, will
be called an admissible motion. %, denotes the set of all admissible motions. The
set of all arrays 2, which satisfy (9), (9’) only, forms by an evident manner a linear
space, denoted Z. Consequently Z, < 4.

By the convolution of functions ¢(X, ¢) and (X, t), which are continuous on <0, o0)
for each X € M, we mean the function ¢ =y defined on M x (0, c0) through

[oxy](X,1) = J,(p(X, t— 1) Y(X,t)dr.

3) In case of inhomogeneity, if the body consists of a finite number of parts Qj (provided on cach
of them our regularity conditions are satisfied) we can apply the following variational thcorems
to each part Qi separately and then sum up the results. With respect to the transitional cenditions
the surface integrals on the intersections onj cancel out and the theorems still hold for the total

body.
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It is well-known that
Pry =y,
@ %y =0 implieseither ¢ =0 or Y =0,
(P*(l//*X):(‘P*l//)*XZ(P*'/’*X,
pr(W+ ) =0+ oy,
Theorem 1. Let us denote
g(1) = t, fiX,0) = [g* F](X, 1) + 0o(X) [t0/(X) + d{(X)] .

Let u;e C*2, s;;€ C“°. Then u,, s;; satisfy the equations of motion (1) as well as
the initial conditions (8) if and only if
(10) g xS+ fi=o00u; on Q x 0, 0).

Proof. Equations (1) and conditions (8) imply

[0 (s + F)] (6 1) = 0u(X) [ (t — <) (X, 7) dv =

= 0o(X) u(X, 1) — 0o(X) [t,(X) + d(X)]

and consequently, (10) are met. Conversely, suppose (10) holds. By deriving (10)
twice with respect to time, we obtain (1) for ¢t > 0. (8) follow by transition to the
limit 1 — 0+ in (10) and d (10)/dt respectively.

By means of Definition 3 and Theorem 1 we can establish an equivalent character-
ization of the solution to our problem:

Theorem 2. An admissible motion P € R, is a solution of the mixed problem if
and only if it satisfies (2), (2°), (3), (4), (10) and (6), (7).

2. VARIATIONAL PRINCIPLES

Let us formulate some variational theorems, which characterize the solution of the
mixed problem.

Theorem 3. For each t = 0 define the functional A(P) on the linear space
through

(1) A(2) ={ (g * {%cijktgijgkx - Tij[ﬁij — Hei; + e + eikejk)] +
o
+ siju;,; — e} 4+ doouu; — fiu) dX +
+j g*sj,.;zj(ﬁ,-—ui) dS—j g * Piu;dS,
I'u r

P

where g, f; are defined in Theorem 1.
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Then 2, € Ry is a solution of the mixed problem if and only if
(12) 5 A(Py) =0 foreach t=0,

where the variations du;, Oe;;, d¢;j, 01,5, ds;; are independent of t.

Remark 4. Integrating the functional (11) by parts an equivalent form is obtained

(‘3) A(2) :j (g = {%cijklgijakl - Tij[gij - %(eij + e; + eikejk)_] -
o

= spjei; = Sp i+ deou; — fiug) dX +
+ f g *s;njii; dS + J g *(s;m; — P7)u,dS.
I, r

P

In the case of linear elastodynamics A,(2) is reduced to a form close to the
functional from Theorem 4.1 of Gurtin [1], a counterpart of the generalized principle
of Hu Hai-Chang [7] and Washizu [8] in elastostatics.*)

Proof. Using the symmetry of coefficients c;;, and of tensors ¢;;, 7;; and integrating
by parts, we obtain

5 A(2) =J g * (Cipatrr — 71)) 081 dX —

2

- J‘ g *[e; — ey + e;i + eikejk)] Sfij dXx + f (9 * (zi; + Taer; — si7) Seij +
0 Q

+ (eott; — fi — g * 85:.)) du)dXx + J g*(u;; — e;) Ssij dX +

2

+J g (i, — u;) ﬁﬁsﬂds + J g *(s;m; — P9)du,dS.?)
I

I'p

If 2, is a solution of the mixed problem, then according to Theorem 2 all integrated
expressions vanish and therefore (12) is fulfilled.

Conversely, let § A,(?,) = 0 for certain #, € #, and all ¢t = 0. First consider
ou; € 2(Q) for a fixed i and all the other variations zeroes. By a reflection usual in the
calculus of variation we obtain that 2, meets equations (10). Considering a fixed
de;; € 2(Q) and all the other variations zeroes, it follows in the same way, that

g* (1 + tije; —s;) =0 for t=0.
4) See, for example, [11] for derivation of these generalized non-classical principles.
%) Arranging the expression we have used the supposition, that Ju; a.s.o. are independent of
the parameter ¢, with respect to which the convolutions are carried out.

112



Deriving this expression twice with respect to ¢ we obtain the equations (4) for t > 0.
The validity of (4) for ¢t = 0 follows by the limiting transition t — 0+, because of
the continuity in time of all the functions mentioned.

Equations (2) and (2') may be obtained similarly. If we take a suitable du; on I'p,
we obtain the boundary conditions (7). As the sum ﬁjgsj,- may be suitably chosen
for any fixed i in the neighbourhood of each regular point of I',, by a consideration,
usual in the calculus of variation, we obtain the conditions (6), too. Hence 2,
satisfies all the conditions of Theorem 2 and therefore it is a solution.

Definition 4. Let 2 be the linear space of all couples [u;, ;] of vector- and tensor-
functions, that meet the conditions (9), (9'). Let 2, = 2 be the set of all couples
such that the corresponding u; are admissible displacements. We say, that [u, t5,]
belongs to the solution 2, of the mixed problem, if the ordered array
Py = i, €, €55, 155 s3], where € is defined by (2'), &3; by (2) and si; by (4) on
the base of uf, t3;, is a solution of the mixed problem.

Theorem 4. For cach t 2 0 define the functional O (u;, t;) on the linear space 2
through

(14) Ou; ) = J {g * [e:j(u) 7i; — %aijkﬁijfkl] +
I

+ doouau; — fu;} dX — j g * Piu;dS — J g # 81, i) ;lj(u,. —u;)ds,
. .

I'p u

where g, f; are defined in Theorem 1, ¢;; through relations (2),(2") and s;; through (4)
Then [u3, ] € 24 belongs to the solution of the mixed problem, if and only if

(15) 50 (u3,t3) =0 forall t=0.
Here the variations du,, STjk on 2 are functions of coordinates X only.

Remark 5. Theorem 4 is an extension of the principle of the Gurtin’s Theorem 4.2
[1] onto the nonlinear problems, and corresponds to the Hellinger-Reissner principle
in elastostatics (see [9], [10], [11]).

Proof. Integrating by parts and using the symmetry of the coeflicients a;;, and
tensors 7;;, &;;, we derive

(16) 59:(”," Tjk) = j {.‘] * (Eij - ”ijufkr) STij -
Q

— (g *s1; + fi — 0ou;) Su;} dX — J g % (u; — ;) nds;; dS +

T
+ f g *(s;n; — P3)du;dsS,
I'p
where Ssﬁ = Srj,» + Sfjkll.gk + zj.-S“.'.k-
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If [us, r‘j,‘] belongs to the solution 2, of the mixed problem, then according to
Theorem 2, all integrals vanish and therefore 0 ,(us, 15) = O0fort 2 0.

Conversely, if 0, = 0 for certain [uf, 1] € 2, and each t = 0, then we derive
in a similar way as in the proof of Theorem 3, that the corresponding 2, meets
conditions (3), (10) on Q and (7) on I'p. In order to prove also the fulfilment of the
boundary conditions (6), let us choose an arbitrary regular point X, e I,. Let
n,(X,) # 0 for certain m. Choose du; = ¢; = const., hence ou;, = 0 for X € Q.
Then

g * (ll? - l-l,) ;lj(ssji =g * (u(i) - 17l) ((31':1 + uci),a) ;ljérj“ .
Denote
g * (M? - ax) (61'1 + u(i),a) = h:x(X’ t)

and suppose that for a subscript k and t = ° > 0
h(X,, 1°) # 0.

First, let k = m. Choose 6t;; = 8,,0;,, ¢(X), where ¢(X) is a non-negative function
with continuous derivatives of all orders, the support K(¢) of which is a neighbour-
hood of X, such that the functions n,(X) and h,(X, t°) have constant signs for
X eI', n K(¢p). Thus

j g+ (uf — 1) i 85,045 = j (X, ) R (X) 9(X) dS + 0
Ty Iy

and h,(X,, t°) = 0 follows from the contradiction with (15).
By the same approach we can prove that h,(Xg, 1°) = 0 for Xj € 0(X,), where
0(X,) is a neighbourhood of X, such that n,(X5) # 0 still holds for all Xj e O(X,).
Second, let k + m. Again select du; = ¢; = const. and

81'ij = (0bjm + dimd i) P(X),

where @(X) is a non-negative function with continuous derivatives of all orders, the
support K() of which is a neighbourhood of X, such that K(¢) = 0(X,) and the
function h,(X, t°) has a constant sign for all X € K(®). Thus we have

f g*(uf — 1) ;‘jgsjids = f [h(X, 1°) n(X) + (X, ©°) n(X)] $(X) dS.

But h,(X, 1°) = 0 and n,(X), h,(X, £°) have constant signs for X € K($). These facts
imply the contradiction with (15), hence h(X,, t°) = 0.

Altogether we have obtained h(X,, t) = 0fort = 0, k = 1, 2, 3. Consequently —
because of the properties of convolution —

(u§ — uy) (0u + ”?,k) =0
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at X, for each t = 0. As u are admissible displacements, the coefficients o, + u$, =

= {; of this system of equations form a non-zero Jacobi’s determinant, (see defini-

tion 1), hence u3(X,) = @i(X,) forall t = 0. Finally, the continuity of functions uj(X)

and i,(X) on Q yields the fulfilment of (6) at the remaining, non-regular points of I',.
Thus 2, is a solution according to Theorem 2.

Remark 6. In definition 4 ¢;; may be defined through (3") instead of (2), (2').
Then (2), (2') follow as Euler’s conditions.

Definition 5. Let 4 be the set of all vector-functions u; € C*%, which satisfy the
boundary conditions (6). Let A", = A" be the set of all admissible displacements,
belonging to A .

We say that u; belongs to the solution P, of the mixed problem, if ?, =
= [us, €5}, &7, ©i)> 53], where €3} is defined through (2'), &}; through (2), t3; through
(3) and s3; through (4), is a solution of the mixed problem.

Theorem 5. For each t 2 0 define the functional ®(u;) on A through

(19) o (u;) = %j {cimalg * e;(u) euu)] + Qouu; — 2fu} dX —
2
- J‘ g * Pju;dS,
e

where g and f; are defined in Theorem 1, ¢;(u;) by means of (2), (2').

Then u; € A belongs to the solution P of the mixed problem, if and only if
(20) 6 u3) =0 foreach t=0.

Here the variations du; are functions of X only, they do not depend on time t.

Remark 7. Theorem 5 is an extension of Gurtin’s Theorem 5.1 [1] on nonlinear
problems and corresponds to the well-known principle of minimum potential energy
in linear elastostatics.

Proof. According to (2), (2)

e = 4(8u; j + Suy,; + ug duy; + ug duy ;).

Using the independence of du; of time and du; = 0 on I', x <0, ) and defining 7;
and s;; through (3) and (4) respectively, we may write

(21) oo (u) = —J (g *s;0; — oou; + f2) Su,dX +
2
+ f [g* (sjir;j — P})] bu,ds.
re
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If 2y = [uf, €5}, €5, 15, s3] is a solution of the mixed problem, then according to
Theorem 2 2 satisfies (10) on Q x <0, o) and (7) on I'p x <0, c0), hence § &,(uf) =
= 0fort = 0.

Let (20) hold for u7 € #’y. Define ej; through (2'), &; through (2), t3; through (3)
and s;; through (4), then (21) holds. Considering du; € 9(Q), the surface integral
vanishes and the expression in brackets in the first integral is continuous. Hence
the usual consideration of the calculus of variations implies (10) for all ¢t > 0.

Next choose du; with continuous derivatives of all orders being continuously
extendible on Q and such that du; = 0 on I',. As before, we derive

g*(s;m; — P;)=0 forall >0, Xel,.
Deriving this equation twice with respect to time implies

s-,-r;j=P‘i’ forall t>0, Xel,.

J

Transition to the limit t — 0+ yields (7) for ¢ = 0, too. Thus 2, is a solution of the
mixed problem.

3. APPLICATION OF THE VARIATIONAL THEOREMS

Although the special variations, independent of time, are not customary in varia-
tional principles, they do not mean an obstacle for application. Let us show here,
how for example Theorem 5 may be employed for the approximate solution of the
above-mentioned mixed problem®). The possibility of application of Theorems 3
and 4 by an analogous manner is evident.

Suppose that u; belonging to an approximate solution have the form

i, =Y TO®) ¥(X), (do not sum over i),
s=1

where %% are fixed chosen linearly independent functions on Q, T are unknown
functions on the interval <0, ). According to Definition 5 ii; € A shall satisfy the
regularity conditions #; € C*** and the boundary conditions (6). Let us seek for
functions T{*(f) in such a way that the corresponding functions #; meet the condition
(20) of Theorem 5 and suppose such functions exist. As the variations du; shall be
independent of time,

a(di)for = (0o Y. 6 TO(1) £P(X) = Y. 8 T(1) (X)) = 0
s=1 s=1
and moreover, the linear independence of the system »{* implies

STE()=0 for t>0, ie.
STO(t) = ¢ =const., s=1,2,...,m.

) A similar use of a variational principle in theory of creep of metals was described by Kagamos
([6] § 34).
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Inserting

m
iy 8y = 5 (TO0) + ) 4(X)
s=1

into (19), the functional @,(ii; + dii;) (with fixed ¢ and fixed functions T{*(r))
becomes a function of 3m parameters ¢ and the condition 0@, = 0 for ¢ = 0
yields a system of equations

0D, [0c -0 =0, i=1,23; s=12,..,m, 1

v

0.

Arranging this we obtain

(22) f {[g * Cijklgij(az) 531‘1(‘7;')/57:(3)} +

+ 0o x> — fxV} dX — J g* Py ds =0,

re

r=1,23; s=1,2,...,m, (donotsum over r).

Change of integration order in (22) and integration over space coordinates implies
a system of 3m nonlinear equations of Volterra’s type for the functions T )(r).
It may be eventually transformed by double derivation with respect to time onto
a system of nonlinear differential equations with initial conditions.
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Souhrn

VARIACNI PRINCIPY
V NELINEARNI DYNAMICE PRUZNYCH TELES

IvAN HLAVACEK

M. E. GURTIN [ 1] formuloval varia&ni principy v linedrni dynamice pruznych téles,
analogické principu staciondrni hodnoty potencialnienergie, principu Hu-HA1 CHANGA
a WasHizu [7], [8] a principu REisSNERA a HELLINGERA [9], [10], pFicemZ uvaZuje
misto obvyklych dvou podminek pro posunuti v ¢asech t = 0, ¢, > 0 dvé poci-
teéni podminky v ¢ase t = O pro posunuti a rychlosti.

V tomto ¢Eldnku je Gurtinova idea rozsifena na dynamické tlohy teorie pruznosti
s kone¢nymi deformacemi (tzv. geometricky nelinedrni teorie). Odvozuiji se tfi vty
analogické zminénym variaénim principiim a ukazuje moznost jejich aplikace k sesta-
veni metody pfiblizného feseni daného probiému.

Pesrome

BAPMALIMOHHBIE ITPMHIUIIBL
B HEJIUHEMHOW JAUHAMUKE YIIPYIOI'O TEJIA

MBAH I'JTABAYEK (IvaN HLAVACEK)

M. O. T'apTau [1] chopMynupoBal BapuallMOHHbIe NPUHIMIbL JIMHEWHON NMHA-
MMKM YOPYIHMX TeJl, KOTOpbIE AHAJIOTHYHBI IPUHIMUIY CTAIMOHAPHOW BEJHYMHBL
NOTeHIMAIbHOR 3Hepruu, npunmuny Xy-Xai-Yaura u Bawusy [7], [8] w npun-
uuny Peiiccuepa u Xenuurepa [9], [10], yuurast BMecTo OGBIMHBIX IBYX YCIOBHIL
JUTS TIEPEMELIEHI B MOMEHTaX fo = 0, f; > 0, [Ba HAYAJLHBIX YCIOBHS B MOMEHTE
t, = 0 1A mepeMelieHni 1 CKOPOCTEH.

B mpennaraemMoii crathe wiaes [apTioHa MepeHOCUTCS HAa JIMHAMWYECKUE 3a[a4d
TEOPUU YIPYTOCTH ¢ KOHEUHbIMM AedopManusiMu (T.H. TCOMETPUIECKM HEJIMHEHHAS
Teopus). [IpUBOASTCS TPU TEOPEMBI, AHAJIOTMYHBIE BBIIIE YIOMSIHYTHIM TIPUHLMIIAM,
M TIOKa3bIBAETCS BO3MOXHOCTb UX NPUMEHEHUSI K 0OOCHOBBIBAHHUIO MPUOIIMIKEHHOTO
pelLeHYs JaHOM 3aJauH.
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