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NONHOMOGENEOUS BIRTH-DEATH PROCESSES WITH CONSTANT
RATIO OF RATES

VRATISLAV HORALEK
(Received April 20, 1965.)

1. INTRODUCTION

This paper contains an investigation of nonhomogeneous birth-death processes
in which the birth and death rates A(r) and u(t) are positive and continous functions
in the open interval T = (0, o), and their ratio

M _

A1)
is constant everywhere in T. This is a special case of the process investigated by
D. G. KENDALL [1].

Under the usual assumptions given at the beginning of Section 2, there are derived
expressions for the probabilities P.(r), 1t 2 0, x = 0, 1,2, ..., that the population
size at time ¢ will be exactly x, and also for the moments ozi(t), i=1,2,3, of the
distribution of the population size at time ¢; using these, a necessary condition that
the process {A(t), u(t)} have the property [u(t)/A(t)] = ¢ is obtained.

The present paper together with that already quoted [1], with the paper of
M. S. BARTLETT [2] and with the previous paper of the author [3] completes the study
of fundamental properties of nonhomogeneous birth-immigration-death processes,
not only for the general case in which the ratios of rates are not mutually related,
but also for the case where this ratio is constant everywhere in T or where one of the
rates v(¢) or A(f) is identically zero everywhere in T.

The results of this paper have been used for the analysis of graphite nucleation
in malleable cast iron.

2. FUNDAMENTAL PROPERTIES OF THE PROCESS

Consider the birth-death process with states E, (x = 0, 1,2, ...).

Assumptions:

a) if at time ¢ the system is in state E,, then the probability of the transition E, —
— E, . in the interval (1, 1 + At) is x A(f) At + o(At) for x = 1,2, ...;
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b) if at time ¢ the system is in state E,, then the probability of the transition E, —
— E._, in the interval (1, t + At)is x u(f) At + o(At) for x = 1,2, ...;

c) the probability of a transition to a state other than a neighbouring state is
o(At);

d) if at time ¢ the system is in state E,, then the probability of no change in the
interval (¢, t + At) is 1 — x{A(t) + u(t)} At + oAr);

e) at time ¢ = O the system is in state E. -

Let ";’(t) be an integral-valued random variable which assumes the values x of the
population size at time 7, and let P(f) = 2{§(1) = x}, x =0, 1,2, ...

Now introduce the generating function

) o= oz = Y P

X= =00

where we define P (r) = 0 for x < 0. From the fundamental differential-difference
equations which the functions P.(f) must satisfy (see e.g. (3) and (4) of [1]) with
the initial conditions

2) P,(0)=1 and P(0)=0, x=*1,

we find that the function v satisfies the linear partial differential equation

v ov
3) ——(E-D[EA) - uO]-=0
ot 0z
with
(4) v=z for t=0 and v=1 for z=1.

Theorem 1. Let A(t) and p(t) be positive functions, continuous in the open interval
T = (0, ), and let the ratio

w) _
(5) 1—(7) =¢c

be constant everywhere in T. Then for the probabilities P(1), t > 0, the relations

1
© Pul) = —— o for e= 1,
1 + <J A7) d‘t)
0
N\
(1 — o(t)
- ‘S - C;m) for ¢ %1
and
eg(r) x—1 2
o) PA) = SR = PO or x =12,
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hold, where-
t

(8) go:@_gjuﬂm,c>u
0

Proof: In proving (6) and (7) we shall first look for the appropriate generating
function.

For the case given by (5) we shall attempt to find an integral surface v = ¢(z, 1),
which fulfils the conditions (4).

From the canonical system of ordinary differential equations associated with the
partial differential equation (3) there follow two equations,

dz )
©) PR CEDICEPE)
and
(10) dv=0.

The first integrals of the considered system are

t
(11) c, = Z_Pma for ¢ =1,

z 0

z — N\VA= [Ei(od
( 1) eJO " for e + 1
z—c¢

and
(12) C,=v.

Hence we obtain the general solution. Solving Cauchy’s problem, for which we use
the equations following from the first integrals (11) and (12) for ¢ = 0, we obtain
the required equation of the integral surface in the form

z_@_nﬁqgm

(13) v = for ¢=1,

1—u_nfmﬂf

0

Ar — o2 _ _ pe(t)
:L(C W) — (1 — et for ¢4 1.
z(1 — @) — 1 + ce®®

The expressions for Py(t) and P(t), x = 1,2, ..., in the form (6) and (7) respectively
are obtained by expansion of v = ¢(z, 1) given by (13) into a Maclaurin series
in powers of z, and comparing the coefficients of the powers z* of this series with
those of the corresponding powers in the series (1). This completes the proof of
Theorem 1.
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Corollary 1. For the process {A(t), u(t)} with the properties given in (5), the rela-
tions

(14)  limPo()=1 if rz(r)dr:m, <1 if rx(z)dmoo

t—w
and for ¢ = 1 hold; for ¢ < 1 the relation
(14) lim Po(1) < 1

t— o0

always holds.
Proof: The equations (14) and (14') follow by taking limits for 1 — oo in (6).

Corollary 2. Let o), i = 1,2, ..., be the i-th moment of the distribution of the
random variable &(t); then for the process {A(t), u(t)} with properties(5), the relations
(15) () = e ™ for ¢>0,

T
(16) a(ty =1+ ZJ\ M)dt  for c=1,
0
207 — ¢ — |
= e ~- for ¢ *1,
(1= c)e” f
t t
(17) ay(t) = 1 + 6J A7) dr [J Mr)dt + ]} for ¢=1,
0 0
e 3o
=—— {61 — V) (1 — ce®@) + (1 — ¢)? XM} for c+1
(1—¢f

hold, where o(t) is given by (8).

Proof: The expressions (15), (16) and (17) follow from the known relations between
the generating function of the probabilities P (t), x = 1,2,..., and the moments
aft), i = 1,2, ..., of this distribution.

Corollary 3. For the process {A(1), u(t)} with the properties (5) the relations

(18) limo, (1) =1 for ¢=1,
=00
R L CTLI I 7/1(1) dr < oo,
Jo
=0 for ¢>1, AMt)dr = o,
N\ Jo
roo
=® for c¢<1, Mr)dt =
Jo
hold.

Proof: The equations (18) follow by taking limits for t - oo in (15).



Corollary 4. A necessary condition that the process {A(t), u(t)} has property (5),
is that for every t € T the relations

19 E‘}ﬁ)_lzi - e =1

(19) o) -1 2 Jor <

and

(20) VD] (1 - B L] = : T konst. for ¢4 1
—c

hold, where E[&(t)] is the expected value and V[E(t)] is the coefficient of variation
of the random variable &(1).

Proof: Condition (19) follows from (16) and (17), condition (20) from (15)
and (16).

Corollary 5. Let E[E%(1)] be the expected value of the size of the population at
time t due to the nonhomogeneous birth-immigration-death process {(t), v(t), u(t)}
with constant ratios of the rates

(21) @ =b and H(Vt) =c, teT,

At) O

where all rates are positive and continuous in T. Then between the expected values

E[&(r)] and E[EX(1)], the relations

(22) E[e(0)] = E[e*(1)] {f()d} for ¢=1,

1 - g—_b_l E[£*(1)] for ¢ #1
hold for every te T.
Proof: (22) follow from (15) of the present paper and from (22) of [3].

Note. It is obvious that some of the expressions derived. in this paper must corres-
pond to those obtained by Kendall in [1]. For example, the expression for P(t),
teT, ¢ £ 1, given by (6) can be obtained from equation (8) and (12) of [1] on ap-
plying the identity

t
e — 1 =(c— I)J Nr)efPdr, c=*1.
)
The assertion of Corollary 1 is only an analogous transcript of (18) and (19) of [1].
The same also holds for (15) and (18).

On the other hand, the expression for Py(r) for ¢ = 1 given by (6) cannot be derived

without the knowledge of the corresponding generating function (13). A similar

assertion holds also for probabilities Px(t), x = 1,2, ... The comparison for other
assertions cannot be made.
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It therefore appeared more reasonable to start out from the partial differential
cequation (3) modified in accordance with condition (5); to obtain the generating
function directly by the simple solution (diﬂ'erent from Kendall’s) of this equation;
to use this function for studying the fundamental properties of the process; and
finally to verify the agreement of the results obtained with those of [1].
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Vytah

NEHOMOGENNI{ PROCES ROZENI-UMIRANI S KONSTANTNIM
POMEREM INTENSIT

VRATISLAV HORALEK

V prdci je uvazovdn nehomogenni proces rozeni-umirdni s intensitami rozeni A(f)
a umirdni p(t). Za b&nych pfedpokladd je studovédn specidlni pfipad, kdy funkce
A(t) a p(t) jsou positivni a spojité v intervalu T = (0, 00) a pomé&r

W _
A1)
je vSude v T konstantni.

Jsou odvozeny vzorce pro pravdépodobnosti Px(t), t20, x=0,1,2,..., Ze
soubor v Case t bude tvofen prdvé x Cdsticemi, ddle vzorce pro prvé tfi obecné mo-
menty a,(1), i = 1, 2, 3, rozdéleni podtu &dstic v Ease t a je uréena pravdépodobnost
vymfeni souboru pro t — o0. Je ukdzdno, 7Ze nutnou podminkou pro to, aby proces
{A(t), p(r)} m&l pomér intensit vude v T konstantni, je aby pro kazdé re T

aB(t) :_] __E pro ¢ =1

oB(t)—1 2

I + ¢

Vz[f(’)] {l — E71 [f(l)]}A1 = I; = konst. pro c¢=*1,
-

kde E[£(1)] je matematickd nad&je a V[ &(1)] je variacni koeficient ndhodné proménné
£&(t), nabyvajici hodnot po&tu &dstic v souboru v &ase t.
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Pes3rome

HEOJJHOPOJHBIM MPOLUECC POXAEHUS — T'MBEIN
C NNOCTOAAHHBIM OTHOWEHUWEM KO29PULMEHTOB
POXIAEHUA N I'MBEJIN

BPATUCJIAB I'OPAJIEK (VRATISLAV HORALEK)

B pabote paccMaTpuBaeTcs HEOIHOPOAHBIH MPOLECC POKIEHUST — THOETH C KO3~
¢uuuentamit poxaenus A(t) v rubenn p(t). TIpu 0GbIMHBIX TIPEANONOKEHNIX peLa-
eTCsl CTelMalbHBLA ciyyait, koraa GyHkimu A(1) u u(t) NoJOKUTEIbHBI i HEPEPHIBHDI
B untepsane T = (0, 00) n OTHOUICHNE

Mo _
A1)
BCto/ly B T NMOCTOSIHHO.

BoiBoasiTcst GopMyJibl I BEPOSITHOCTEH Px(t), t=0,x=0,1,2,..., 4TO coBO-
KYHOCTh BO BPeMeHH ! OyleT o6pa3oBaHa MMEHHO X YacTMLAMM, aajiee Gopmysbi
U TIEPBBIX TPEX MOMEHTOB (1), i = 1, 2, 3, pacnpefecHus KOJIMYECTBA 4aCTUL| BO
BpeMEHH !, M YCTAHOBJIEHA BEPOSTHOCTb BBIMUDPAHMS COBOKYMHOCTH sl [ — cO.
Ewe mokasano, uto e {A(), u(r)} — HeOMHOPOMHBIA MPOLECC POKACHUSL-THEETH
C MOCTOSIHHBIM OTHOLLEHHEM Ko3(uLenToB Bctoay B T, To aas kaxaoro t€ T

?EM(I)_ ! =§- g ¢ =1
a%(f) -1 2
u
2 11 ~1 I+c
VAEN] — ET'En] ! = e konst. s ¢ # 1,
—c

rae E[&(1)] — matemaruyeckoe oxunanue u V[E(1)] — xoadpuument Bapuammmn
cityuaiiHoii nepeMenHoi £(1), TpUHNMAIOLLCH 3HAYCHUS, PABHBIC KOJUYECTBY YaCTHLL
COBOKYMHOCTU BO BPEMEHH 1.

Author’s address: Ing. Vratislav Hordlek C.Sc., Statni vyzkumny ustav pro stavbu strojl.,
Husova &, Praha 1.
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