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SVAZEK 9 (1964) A P L I K A C E MATEMATIKY ČÍSLO 6 

P Ř E D B Ě Ž N Á S D Ě L E N Í 

GENERAL STRESS-STRAIN RELATIONSHIPS OF ANISOTROPIC BODIES 
AND THE CONCEPT OF THE TRANSFORMED STRAIN 

[ADVANCED NOTE] 

ZDENEK SOBOTKA 

(Received July 20, 1964.) 

The author presents the general stress-strain relationships and the law of the 
deformation theory of plasticity of anisotropic bodies. 

The general relation between the stress and strain components may be expressed 
in the following form 

( 0 CTfj = fij(Bklmn£mn) * 

where Bklmn are the components of the fourth-rank tensor of anisotropy. 

Introducing the transformed strain tensor of the rank two 

(2) Pkl == Bklmn8mn •> 

we may consider the general function 

(3) au = f,0u) 

of two coaxial tensors otj and fikl. 

The preceding function may be, under certain conditions, developed into absolutely 
convergent power series as follows 

(4) atJ - A0StJ + A&j + A2Pufi*j + ^PufiapPpj + ••• 

where A0, Ax, A2, A3, etc. are scalar coefficients and d-^ is the Kronecker delta. 
The left-hand side of (4) being a symmetrical tensor of the second rank, it follows 

from the tensorial dimensionality that the absolutely convergent series of the terms 
on the right-hand side is also represented by symmetrical tensors of rank two, which 
may be expressed according to the Cayley-Hamilton theorem in terms of three 
principal tensors 

°ij > fiij ~ &ijkl8kl •> PiaPaj = °iaklBajmn8kl8m ^mn 
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and by functions of the three principal transformed strain invariants 

(5) h = Pifin = Bijkl5ifikl, 

(6) IIfi = PijPij = BijklBijmneklemn, 

V ' ) " - * / » == PijPiaPaj = BijklBiamnBajpfikfim^pq . 

Then we have the following constitutive stress-strain relation 

(8) ati = <P0Sij + (PtBij^u + <P2BiaklBajmneklBmn . 

The scalar functions of the invariants $ 0 , 4>1? <p2 follow from three equations which 

are analoguous to those for isotropic materials 

(9) (fijStj = 30o + $iBijkl8ifikl + &2BijkiBijmneklemn, 

(10) Oifiij = 3<P2
0 + ${BijklBijmjk£mn + 

+ @2Bi<xkiB(XjmnBippaBpjrsekiSmnspq8rs + 

+ IQ^BijuSifin + 2<P0&2BijklBijmnsklsmn + 

+ 2<Pi^2^ijklBiamnBajpqSkfimnepq > 

(11) <xl7<xiaaa,. - 3<1>* + ^\BijklBiamnBajp(fiklBmnEpa + 

+ ^2BijklBiamnBappqBpyrsByotuB0jabSkiBmn^pqei.setuBab + 

+ 3^>1B l 7^O* l 7e^ + 3^0^?B0- f c rB i / m A l8w / J + 

+ 3<Pl<P2BijklBijmn8kl8mn + 3$0&2B ijklBu^afipqBpjr&ie^^ + 

+ 3u>1<P2BijklBi(imnBappqBpjr^k^m^p^rs + 

+ 3$1$2BijklBiamnBappqBpyrsByjt^kfim^pfirsztu + 

+ 6<P0<Pi$2BijklBiamnBaJpq8klBmn8pq. 

The third term in (8) represents the second-order effects. In the case of infinitesimal 

deformation, (8) becomes 

(12) ffy = <-V0- + ®lBijklZkl • 

The invariant functions may be expressed from 

(13) (Tijdij = 3<2>0 + ^BijuStfiu -

(14) tfyffy = 3<2>0
I + 2QoQiBimSifiki + &lBiaklBaJmnsklBmn 

after introducing the relations (5) and (6) as follows 

05) #0 = - / , - / , 

(16) Ф. 

V зя, 

•12 

зя. - /ï 
where Ia = ff.yiJy, //,, = ffyffy are the invariants of the stress tensor. 
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After some rearrangements, the author has obtained the stress-strain relations 
of the deformation theory of plasticity for anisotropic bodies, 

(17) Vv-oSu = ^(Ptj - « . 
Dp i 

where o = i(oxl + cr22 + o33) is the mean stress 

ot = — y/[(trtl - o22)
2 + (a22 - o33)

2 + (o33 ~ <rn)2 + 6(o2
l2 + o2

3 + o2
31)\ 

the effective stress, ptj = Bijklekl the transformed strain components, 

A = ^AiPn " / U 2 + (^22 - / W 2 + (^33 - ^ n ) 2 + 6 ( # 2 + y l̂3 + £3 1)2] 

the transformed effective strain and f> = | ( j8 n + /?22 + />33) the transformed mean 
strain. 

Then, the concept of the transformed strain makes it possible to express the stress-
strain relationships for anisotropic bodies in a manner analogous to that of the 
isotropic case. 
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