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ON SOME TYPES OF NONHOMOGENEOUS
BIRTH — IMMIGRATION — DEATH PROCESSES

VRATISLAV HORALEK

(Received September 24, 1963.)

This paper deals with some special types of nonhomogeneous birth-im-
migration-death processes. The formulae obtained permit the determination
of the probabilities that the population will be of a certain size at time 7,
further of the moments of the distribution of the population size at time ¢
and of the probabilities of extinction of the population. The necessary con-
ditions holding for the different types of processes considered are given.

1. INTRODUCTION

In recent years, birth and death processes (cf. e.g. BARTLETT [1], [2]) have been
finding more and more use in physics, biology and the technical sciences. Due to new
fields of applications, attention has shifted from the basic types of processes introduced
e.g. in FELLER's book [3] to nonhomogeneous birth and death processes in which the
birth and death rates are specified functions of the time t. This nonhomogeneous
process was studied first by KENDALL [4].

This paper deals with a nonhomogeneous process which includes in addition to
the above mentioned birth and death rates A(t) and p(t) an immigration rate v(t).
When solving the equations characterizing the process {A(t), v(t), u(t)} we investigate
only these special cases:

a) the functions A(f), v(t) and p(t) are positive and continuous in the open interval
T = (0, o0) and the ratios [v(¢)/A(t)] = b and [p(t)/A(t)] = c are constant everywhere
in T;

b) A(t) = O everywhere in T, the functions p(t) and v(r) are positive and continous
in Tand the ratio [u(t)/v(t)] = a is constant everywhere in T}

c) A(t) = 0 everywhere in T and the functions p(t) and v(t) are positive and conti-
nuous in T and satisfy the equality

t
M _ J‘ v(t) dt

u(t) 0
identically everywhere in T.
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The expressions for the probabilities Px(t), t=20,x=0,1,2, ..., that the popula-
tion size at time t will be exactly x, further the expressions for the first two general
moments o(t), i = 1, 2, of the distribution of the population size at time ¢ are given
and the probabilities of extinction of the population for t - oo are determined.
Assumptions of solution are introduced at the beginning of Section 2.

The influence of immigration on the nonhomogeneous birth and death process
has been studied in [2]. The results obtained there do not permit the direct derivation
of the required expressions for the probabilities P,(t), t = 0, x = 0, 1, 2, ... nor for
the general moments oc,-(t), t >0, i=1,2, for the cases solved in this paper, but
they are used at the conclusion of this paper in an analysis of some derived relations
between the moments «,(f) and the probabilities P (1).

This paper arose from a study of the kinetics of metal phase transformation. Here
one of the basic questions is to derive the phase transformation rate which is determ-
ined by two actions: the formation of nuclei of a new phase and by their growth.
It appears from an analysis of the first of these actions that for certain types of phase
transformations the process of nucleus formation may be very well described by the
types of nonhomogeneous procesess {A(t), v(), u(t)} investigated in this paper.

2. SOME SPECIAL TYPES OF PROCESSES {A(t), #(t), u(t)}

2.1 Consider the birth-immigration-death process with states E, (x = 0, 1, 2,...).
Assumptions:

a) if at time ¢ the system is in the state E,, then the probability of the transition
E. - E,,, in the interval (1, t + At)is {v(t) + x A(t)} At + o(At)forx =0,1,2,...;

b) if at time ¢ the system is in the state E,, then the probability of the transition
E. - E,_, in the interval (t, t + At)is x pu(t) At + o(At) for x =1,2,...;

c) the probability of a transition to a state other than a neighbouring state is
o(At);

d) if at time ¢ the system is in the state E,, then the probability of no change in the
interval (t, 1 + At)is 1 — {v(t) + x[A(t) + u(t)]} At + o(At);

e) at time t = 0 the system is in the state E,,.

Let f(t) be a integer-valued random variable, which assumes the values x of the
population size at time t, and let P,(t) = 2{{(t) = x}, x = 0,1,2,....

From the given assumptions it then follows that the P,(t) must satisfy the dif-
ferential-difference equations:

(1) (%Px(t) = (x + 1) u(t) Posy (1) —
(L0 + )] x (0} PO + {(x — 1) 20) + (0} Pay(0)
x=1,2,...
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and
R

[ X
(2) py Po(t) = u(t) Py(t) — v(t) Po(t)
with the initial conditions
(3) Py(0) =1 and P0)=0 for x=1,2,....

Let us now introduce the generating function
4) v=¢(z,1) = _Z P(t)z%,

if we define P,(t) = 0 for x < 0. With the aid of equations (1) and (2) we find that
the function v satisfies the linear partial differential equation

ov ov

5 R R O ) Lt Yo
ot 0z

where

(6) v=1 for t=0 and v=1 for z=1.

Theorem 1. Let A(f), v(t) and p(t) be positive functions, continuous in the open
interval T = (0, o), and let the ratios

@) M=b and H(—t)zc

A1) A1)
be constant everywhere in T. Then for the probabilities P(t), t = 0, the relations
®) Po(t) = [1 = f(O))
and

(b + x)

9 P(t) = ————Py(t) |1 — Po(t) |¥ x=12,...
©) 0= Ty p PO T~ PO o
hold, where
(10) f)= — e for =1,

1+ (J (%) dr>

0
e 1
= —__—_wg(')_ n for ¢+ 1

and
(11) Q(t) =0 for ¢=1;

=(c—1) fti(r) dt for c+1
0

and T'(n) denotes the gamma-function.
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Proof: Equations (8) and (9) are easily proved, using the generating function
o(z, 1).
Therefore for the case determined by the equations (7) we shall attempt to find

an integral surface v = ¢(z, t), which passes through the straight line t = 0, v = 1.
From the canonical system of ordinary differential equations associated with the

partial differential equation (5) there follow two equations

dv _ _, v

dz_ z—c¢

and

(o9

(12) == ()2 [ + (0] = = w(r).

The first integrals of the considered system are

(13) Ci=(z—-c¢).v
and
] t
(14) C,= — »—]—jl(r)dr for ¢=1,
z = 0
o(1) e(t)
= _C - for ¢=*1,
z — 1 ¢ — 1

where g(t) is given by equation (11). The first integral (13) is evident. Taking into
account that one particular solution of equation (12), which is of Riccati type, is
z,3y = 1, we may determine the first integral (14). The knowledge of this particular
solution permits the transformation of Riccati’s equation into a linear differential
equation (cf. e. g. [5]).

With the aid of (13) and (14) we obtain for the case determined by (7) the general

solution of (5) in the form

t
@ (z~l)b.u;»——1~~—— Mt)dth =0 for ¢ =1
z — | o
and
Le(1) e(t) __
* )(z — ). v; el =0 for c=*1,
z — 1 c— 1

where @ and @* are arbitrary differentiable functions. Solving Cauchy’s problem,
to which purpose we use the equations following from the first integrals (13) and (14)
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for t = 0, we obtain the required solution for the integral surface satisfying the initial
condition v = | for t = 0O:

— -

(15) b= 1~(z_|)J

~b
A1) dr] for ¢ =1

0

and

’ eL‘(”(C — I) b .
(]5) v = ;(l _ eg(})) -1 + ceg(')] for ¢ #+ 1

In view of the notation introduced in (10) we may express the required generating
function as

(16) ol 1) = {]L_‘—J}(g—)}

Expanding the function ¢(z, t) given in the form (16) in a Maclaurin series in
powers of z and comparing the coefficients of the powers z* of this series with those
of corresponding powers in the series (4), we obtain the expression for Py(t) and
P(t), x =1,2,..., in the form (8) and (9) respectively. This completes the proof
of theorem 1.

Corollary 1.1. n the process {A(t), v(t), u(t)} with the properties given in Theorem 1,
the relation

(17) VELE] -

L o const

EfZ)] b
holds for every t € T, where V[£(1)] is the coefficient of variation and and E[£(t)] the
expected value of the random variable &(t).

Proof: Let
aft) = E[E(1)], i=1,2,...
be the i-th moment of the distribution of the random variable &(t).

From the known relations between the generating function of the probabilities
P(t), x =0,1,2, ..., and the moments oyt), i = 1,2 (cf. e.g. [3]), there follow
according to (16) the expressions for the first two moments,

_ b
(18) 9‘1(’) g —f(t) )
(19) ) = (1) [1 + a(t) + (1/0) an(0)]

Let us now investigate the function f() given by (10). We prove that f(t) = 0 for
t=0and 0 < f(t) < 1 fort > 0 for every ¢ > 0.
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The above assertions are evident from (10) with the exception of the case ¢ # 1 and
t > 0. However, using

t
(20) e —1=(c— l)j Mr)e?™@dt, c+1,
0

we may rewrite the expression for f(t) successively as follows:

(21)
e(t) __
f(t)ze Lo ! = ! for ¢+1.

00t _ o(1) t -1
ce 1 1+ (C 1) e 1+ eg(t) [J‘ l(‘l.’) eg(r) dr:l

ee(t) -1 o

Hence there also follows the inequality 0 < f(t) < 1forc¢ # land t > 0.

Therefore, in view of (18) and (19) () and a,(t) are positive functions for ¢ > 0
and for every ¢ > 0. The derivation of (17) from (18) and (19) is evident.

Corollary 1.2. In the process {A(t), v(t), u(t)} with the properties given in Theorem
1, the relations

(22) a(t) = f Weyde  Jor =1,

0

hold.

Proof: The expressions (22) are obtained by setting (10) into (18) and using (7)
for ¢ = 1, and by setting (21) into (18) for ¢ = 1, respectively.

Note. The influence of immigration on the growth of «,(t) is evident from the *
equation

T
23) af) =) [ 2 ae. i zo,

0 1(7)
where a(t) is the expected value of the size of the population at time ¢ due to the
nonhomogeneous birth-death process {A(t), u(t)}. The relation (23) follows from
equation (13) in [4]

t
2¥(1) = exp {— j [(z) — 4(7)] df},
0
and from equation (22), which we may write in a form valid for every ¢ > 0

T
(24) o (t) = e“’(’)f W) e?@dr, t20.

0
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Corollary 1.3. In the process {A(t), v(t), u(t)} with the properties given in
Theorem 1, the relations

(25)  lim oy(f) = J v(t) dt for c¢=1,
[ i} 0

b (1-0) |(°)° A(t)dr ©
= |1—e . for ¢ 1, i(t)d‘t<oo,

c—1 0

b @
= for ¢>1, | Aot = oo,

¢c—1 . o

= o for ¢<1, [‘7/1(‘[) dr = o

' 0

hold.
Proof: The equations (25) follow by taking limits in (22) for t — oo.

Corollary 1.4. In the process {A(t), v(t), (1)} with the properties given in Theorem I
the relation

(26) lim Py(f) < 1

t— 00
holds.
Proof: The equation (26) follows by faking limits in (8) for t — oo, if we introduce
(10) into (8) for ¢ = 1 and (21) into (8) for ¢ = 1.

2.2 We shall now investigate a further type of nonhomogeneous birth-immigration-
death process, for which A(t) = 0 everywhere in T, the so called nonhomogencous
immigration-death process {¥(t), u(f)}. We obtain the corresponding assumptions
from those considered at the beginning of Section 2.1 by putting there A(f) = 0.

Theorem 2. Let A(t) = 0 everywhere in T. Let the functions v(t) and p(t) be positive
and continuous in T, and let

(27) Mo _ o,

u(1)

be constant everywhere in T. Then for the probabilities P(1), t = 0, the relations

(28) Py) = exp { ~ 2 (1 L ,,umr)}

AN
and

(29) P =~ Pl) [lg _] =12

1 1
(x + 1) Po(’)
hold.
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Proof: The steps in the proof are analoguous to those in Theorem 1. In the first
step we shall again look for the appropriate generating function v = ¢(z, t). The
partial differential equation satisfied by the function v is obtained from (5) for A(t) = 0.

The system of first integrals corresponding to the linear partial differential equation
so obtained is given according to (27) by

- 't T T
(z = 1)e o

C,
and

C, = ve

Hence we obtain the general solution. The required integral surface satisfying the
condition v = 1 for t = 0 is then

1 =" u(eyde
(30) v = exp {—»(z—])(l —e ""M)d)}.
a
In a manner similar as in Theorem 1, we obtain from (30) the expressions for the
probabilities P (1), x = 0, 1,2, ..., 2 0. This completes the proof of Theorem 2.

Corollary 2.1. If the process {A(t), v(t). u(t)} has the properties given in Theorem 2,
then

- ' T)dt
(31) (1) = 1 (1 — e Jont )d)
a

and

(32) 1,(t) = o (1) [1 + =,(1)] . Vz >20.

Proof: Equations (31) and (32) follow from (30) using the known relations bet-
ween the generating function v and the moments a,-(t), i=1,2.

Corollary 2.2. In the process {A(t), v(t), u(t)} with the properties given in Theorem 2,
the relation

(33) D[¢(1)] = E[E(1)] = Ig P—1(5

holds for every t > 0, where D*[&(t)] is the variance of the random variable &(t).
Proof: The equation to be proved follows immediatly from (31), (32) and (28).

Corollary 2.3. If the process {A(t), v(t), u(t)} has the properties given in Theorem 2,
then

(34) lim ay(t) = l(l - e_J‘:"mdt) for qu(r) dr < o0,

1= oo a 0

for qu(r) dt = .

0

Q=
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Proof: Equation (34) is the limiting case of (31) for t —» co.
Corollary 2.4. If the process {A(t), v(t), u(t)} has the properties given in Theorem 2.
then

(35) lim Py(t) < I .
t—= oo
Proof: From (28) it follows that
lim Py(t) = e™ '/, when J. i(r)dr = o0,
t— oo 0

=e¢ M 0<k<l, when f p(r)dt < o0 ;
0

since 0 < a < 0, (35) holds.

Theorem 3. Let A(t) = 0 everywhere in T. Let (1) and p(t) be positive functions,
continuous in T and satisfying identically the equality

~v(—t—) = tvr T
(36) N(t) Jo ( )d

everywhere in T. Then the probabilities P(t), t Z 0, are given by expressions

t
—(1/2)‘r0\'(r)dr

(37) Po(i) = ¢
and

1 1
(%) PO =y Pt [ v =12

Proof: In the first step we shall again solve for the corresponding generating
function v = ¢(z, t). The partial differential equation satisfied by the function v
follows from (5) and, according to (36), is of the form

ov ov

(39) 5+(z—I)VVJQ)—.E—Z—z(z—l)v(t).v.

Hence we obtain the system of ordinary differential equations

t
dz | v(z)d
dt J()t dv

\ I GE-Do) (-Dot)

Taking now a combination of the upper members, such that the sum of the lower
members is equal to zero, we obtain the so called Pfaff’s equation

(40) Qdt + Rdz + Sdv =0
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here the functions Q, R and S are of the form

)

(41) 0= (-1
‘[Ov(r) dr
R =v,

= a[[we’

) O

and are defined in the domain G: {0 <t < 00;0 <z £1;0 < v £ 1} containing
no singular point, i.e. no point at which Q = R = S = 0. According to (41) and (36),
it is obvious that a necessary and sufficient condition for the integrability of Pfaff’s
equation, in the form of a single relation namely (cf. e.g. [5])

0 OR 08 +R o5 _ 09 + S 9Q _ R =0
dv 0z ot Ov 0z 0t

is fulfilled identically.
Hence it follows that the general solution of equation (40) is a oneparametric
system of surfaces

(1, z,v) = Cyo, -

This equation describes the twodimensional integral variety for the equation (40).

Due to the symmetry of the form (40) of Pfaff’s equation in ¢, z and v, we may
write this equation in a form, where on the left hand side of the equation there
appears either one of the differentials dt, dz or dv. In our case the expression for dz

appears to be the most suitable for integration (according to our assumptions v = 0
everywhere in G),

PP R Clalt) MO

v j W(e) de j o(7) de

0 0

Hence there follows a system of two partial differential equations

0z v(t)
@) % 1oy 0
ot J" v(r)dt

(43) o2

o[ wgar

0
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From equation (42) we find

__ 9(v)
(44) z=1- —+—.
J v(t) dt
0
By setting (44) into (43) we obtain
dg 2
de v
from which
g =21lgv! + Cy.
Introducing now this value into (44) and putting C, = — 21g C, we obtain the
general solution of the system in the form
2 .
J v(t) dt
0
In view of the condition v = 1 for z = 1, we obtain
21
c=1+ 8% ,

t
f v(t) de
0
so that

(45) o = exp {— 31— 2) J (1) dr} .

0

The above argument was derived for the domain G, in which 0 < t < c0. However
from (45) it is clear that the derived function v satisfies also the condition v = 1
for t = 0. Therefore the expression (45) yields the required generating function.

By the same procedure as in Theorem 1, using (45) we obtain the expressions for
the probabilities P.(1), t = 0, x = 0, 1, 2, ..., in the form (37) resp. (38). This com-
pletes the proof of Theorem 3.

Corollary 3.1. If a process {(1), v(t), u(t)} has the properties given in Theorem 3,
then~

(46) a(t) = %f v(t) dt
and

(47) a(t) = ay(t) [1 + ()], 1=0.



Proof: The equations (46) and (47) are easily derived from (45).

Corollary 3.2. If a process {A(t), v(t), i(t)} has the properties given in Theorem 3,
then the relation (33) holds.

Proof: The assertion follows immediately from (46), (47) and (37).

Corollary 3.3. If a process {A(t), v(t), u(1)} has the properties given in Theorem 3,
then
(48) lim Po(t) < 1.

t— o0

Proof: The relation follows from (37) by taking limits for  — co.

2.3 Bartlett devotes attention to the influence of immigration on the change of the
population size in Section 3.41 of [2]. With aid of equation (1), e.c., we may obtain
the expression for the generating function of the nonhomogeneous process {v(t); u(t)},
where the functions v(t) and pu(t), positive and continuous in T, are not mutually
related. In view of the assumptions given at the beginning of section 2. of the present
paper, we obtain

) oz, 1) = oxp {(z — 1) j (5 e Jor e dr}.

0

Using (49) to express the first two moments (1), i = 1, 2, and the probability Py(r),
t > 0, we find that (33) still holds. Therefore it is clear that (33) expresses a necessary
condition for each nonhomogeneous process {v(t), u(t)}, v(t) > 0, u(t) > 0, te T,
irrespective of an eventual relationship between the functions v(¢) and u(t). On the
other hand, equation (17) gives a necessary condition only for a nonhomogeneous
process {A(t), ¥(t), u(f)} with the properties given in Theorem 1.
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Vytah

K NEKTERYM TYPUM NEHOMOGENNICH PROCESU
ROZENI — IMIGRACE — UMIRANI

VRATISLAV HORALEK

V préci je uvazovan nehomogenni proces rozeni — imigrace — umirdni s intensi-
tami rozeni A(f), imigrace v(f) a umirdni p(t). Za bé&Znych piedpokladit jsou FeSeny
tyto tfi specidlni pripady:

a) funkce A(t), v(t) a u(t) jsou positivni a spojité v intervalu T = (0, 00) a podily
[v(0)/A(1)] = b a [u(t)/A(t)] = ¢ jsou v§ude v T konstantni;

b) A(t) = 0 v§ude v T a funkce ¥(1) a p(t) jsou positivni a spojité v T, piicemz
podil [u(t)/v(1)] = a je viude v T konstantni;

¢) At) = 0 v§ude v T a funkce v(t) a p(t) jsou positivni a spojité v T a spliuji
vSude v Tidenticky rovnost

M) _ J (o) dr.

#(t) 0

Jsou odvozeny vzorce pro pravdépodobnosti P.(t),1 = 0,x = 0, 1, 2, ..., Ze soubor
v Case t bude tvofen prdvé x Cdsticemi, ddle vzorce pro prvé dva obecné momenty
aft), i = 1,2, rozd€leni poltu &dstic v Case t a je urfena pravdépodobnost vymieni
souboru pro t — 0.

Je ukdzdno, Ze nutnou podminkou pro kazdy nehomogenni proces rozeni —
imigrace — umirdni {A(t), v(¢), u(t)} s konstantnimi podily intensit [v(t)/A(t)] = b
a [u(t)/A(1)] = cje, aby pro kazdé te T

VA[E(t)] — E"'[¢(1)] = b~ = konst .

a ddle, Ze nutnou podminkou pro kazdy nehomogenni proces imigrace — umirdni
{¥(t), u(t)} bez ohledu na funkéni vztah mezi intensitami w(r) a p(1) je, aby pro kazdé
teT

1
Py(t)
kde E[&()] je matematickd nad&e, D*[£(f)] rozptyl a V[(f)] variadni koeficient
ndhodné promé&nné (1), nabyvajici hodnot podtu Edstic v souboru v &ase t.

D[<(1)] = E[&(0)] = Te
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Pesrome

K HEKOTOPBIM BUJAM HEOIHOPOIHBIX IMPOLIECCOB
POXIOEHUSA—HNMMUTPALIUN—TUBEIN

BPATHUCIIAB TOPAJIEK (Vratislav Horélek)

B paGoTe paccMaTpHBaeTCs HEOXHOPO/IHBLI IIPOLECC POXKAECHUS — MMMUIPAHE —
rubemu ¢ xospumuentamu poxaenust A(f), mmmurpauun v(t) u rubemn p(t). Ipu
HOPMaJIbHBIX IIPEIIONIOKEHUSIX PEIIAOTCS CIICYIOIUC TPU CIIEIUATBHBIX CITyYast:

a) dynxumu A(7), v(t) u p(f) mosoxuTebHEL 1 HenpepbiBHEL B uuTepBaje T = (0, c0),
u ornowenus [v(t)/A(t)] = b u [1(r)/A(1)] = ¢ Bcromy B T MOCTOSAHHBI;

6) A(f) = 0 Bcropy B T, u gynxiuu v(z) u p() TOIOKUTEILHBL i HEIIPEPBIBHEL B T,
npudem otnowenue [u(7)/v(t)] = a Beromy B T MOCTOSHHO;

B) A(f) = 0 Bcrogy B T, u pynxiu v(f) u p() MOTOKUTETBHBL U HEIIPEPLIBHEL B T
M YOOBJETBOPSIOT BCIOAY B T TOXIECTBEHHO PABEHCTBY

@: tvr T.
ol

HManee BeiBOmsiTCS hopmystsl st BepositHocTel Py(f), t =0, x = 0, 1,2, ..., 4ro
COBOKYIHOCTb BO BpeMeHM t GyaeT 06pa3oBaHa MMEHHO X YaCTHIAMH, HOTOM Gop-
MYJIbl I IEPBBIX IBYX OOIMX MOMEHTOB & i(t), i = 1, 2, pacupelieacHue KOJINYECTBA
YacTHI[ BO BPEMEHU f, M, HAKOHEI, YCTAHOBJECHA BEPOATHOCTb, YTO COBOKYIIHOCTH
BBIMpET JUIS t — 00.

Vka3bIBaeTcs, 4YTO HEOOXOAMMBIM YCIOBUEM IS KaXIOTO HEOJHOPOHOTO IpO-
necca poxzeHus — ummurpammn — rubenn {A(f), v(¢), u(f)} ¢ nocrosHEBIME OTHO-
urennsimu kospduuuenros [v(1)/A(1)] = b u [u(t)/A(1)] = ¢ sBusercs To, 4TOGHI A1
kaxmgorote T

V2[E(N] — ET'[E(1)] = b~ = konst. ,

M Jajiee, YTO HEOOGXOXAMBIM YCJIOBUEM IS KaXIOrO HEOJHOPOIHOIO MpOIEecca
wmmuarpamuu — rubzim {v(f), p(f)}, HecMOTps Ha (YHKUMOHAIBLHOE OTHOLIEHHE
mexay koaddummentamu v(f) 1 p(t), sBasercs o, 4To6HL A5t Kaxgoro t€ T

D[e(r)] = E[E()] = lg .
Py(t).
rze E[¢(1)] — matemaTudeckoe oxumanne, D[ &(f)] — mucnepcust u V[E(f)] — xoad-
¢UIueHT Bapualyy CILy4aiiHOM BEIMYMHBI é(t), NMPUHUMAIONIEH 3HAYEHUS KOJIMIEeCTBa
YaCTUI[ B COBOKYITHOCTH BO BPEMCHY f.

Adresa autora: Ing. Vratislav Hordlek C. Sc., Statni vyzkumny ustav tepelné techniky, Hu-
sova 8, Praha 1.
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