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ON THE THEORY OF RATIO ESTIMATES

JAROSLAY HATEK

(Received 29 November 1957.) DT :519.27.001

Estimated variances, yielded by large sample approach, arc adjusted
by a proportional regression approach; subsequently, under the assump-
tion of normality, cxact statements on confidence intervals are arrived
at. The papor deals too, with complex types of ratio estimates, as well
as with modifications needed, when stratification, multiple stages,
or some special methods of first-stage sampling are present.

1. Introduetion

Ratio estimates belong to the most efficient techniques of modern sample
survey practice. Some of them are very ingenious, (see, for example [2], vol. 1,
p. 413), and make use of very elaborate supplementary information. Never-
theless, the present theory of ratio estimates has not gone beyond approximat-
ing their variances. At the same time, the validity of estimated variances is
inferred from the discrepancy between the confidence interval, yielded by
them, and Fieller’s confidence interval. We shall show, however, that, under
conditions typical for sample surveys, the Fieller's confidence interval is
less advantageous than the usual one, because it is longer for any sample
outcome, and, despite this, covers the true value with a smaller probahility.
In addition, Fieller's device cannot be used for ratio estimates of more complex:
type. Thus the Fieller’s method, though very useful outside the sample surveys
domain, (because of the generalify of conditions under which it works), cannot
be considered as preferable in sample survey conditions.

Let us seleet n elements from a population of N elements by simple random
sampling without replacement, observe values ¥, x;, z, of some variables, and

wish to estimate the total
N

i=1
under the supposition, that we know totals') and some subtotals of related

y
1) If we only estimate the ratio of totals, X’ we need not know the total X.
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values xz; and z;, ¢ = 1, ..., N. Now, let each value y,, 2;, 7, split into a sum
of values ¥,.i, Xueir Zueir respectively, so that
Yi = 2 D Wactr T == 2 D Cuetr % = 2 D ugiy A€ A, ce . (2)
a ¢ “w ¢ a ¢

As a rule, Yoo, Cocss 2 Will refer to a two-way classification of conditions within
the 4-th element; for example, ¢,,; may be number of workers in the «-th
age-sex group, within the c-th rural-urban part of the i-th county, v, and z,;
may refer to the present and last census number of all persons, respectively,
again in the a-th age-sex group within the ¢-th rural-urban part of the 4-th
county.

Symbols Y, Y., Y, Xoy Xue, Z, a0 Y, Yuy Yoo Yaos Tas Laes 2 Will denote popula-
tion and sample totals, respectively, extended over all subscript letters that
arc not indicated. For example,

N
X, = z Z Laci s Yac = zyaci , ete,
¢ -1 @

where > denotes the sum extended over subscripts of sampled elements,
Z

T ==y, ... 0
We shall consider the following three types of ratio estimates:
- Y

xZ, (3-1)

, z p 11 , (3-2)
Z\ o ;i : (3-3)

The estimates (3 — 1) and (3 — 2), obviously, are special cases of the estimate
(3 — 3).

2. Large — sample approach

The large — sample approach rests upon approximating estimates (3) by
a linear function of the sample totals ¥, , Y4, %o, %o, 2o, Yuo involved; the latter
funetion can be obtained from the usual Taylor expansion about corresponding
expectations. Carrying out this operation we get the following approximate
expressions for estimates (3):

N Y
Y+~ (!/ -k ) (4-1)
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N Y,
Y + '77 (yu - —f xa) ) (4'2)

. N )rrzc Yn, . Xrlﬂ 4
1 + -,'7 ZZ [:’/uc - Z 2y — E (l’uc - '_Z—C_ zc):l - (4k3)

Estimated variances of “concomitant’ linear estimates (4) can be calculated
in the usual way with the only modification, that

ZZ [?/acz’ - }éﬂ Zei — % (xacz it %ﬁ Zm)] , (5-3)
a ¢ ¢ a ¢

. . . Yy Yoo T .
are treated as single observations, and that sample ratios Yu , f/f‘--o, - are substi-
x, 2, %,
e 7

: . +a ¥ ac an : :
tuted for population ratios =, 5=, —5~, respectively. In this manner we get
X(l AC ZC N iy

estimated variances of estimates (4) in the general form
@:__?E)_Z Z A (6)
where, for individual estimates (3), A, equial
% (?/i — %xz) (7-1)
a ¢

/

~1
™)
~

respectively. See, too, equations (11).

We shall not enlarge upon well-known asymptotical properties of estimates
(3) and their estimated variances (6); reference is made to the paper [6]. The
main point of this section was to show how to get estimated variances in
a simple form even for complex ratio estimates.

Remark 2.1. Inserting (7 — 3) into (6), we obtain the estimated variance
which is much simpler but otherwise equivalent to that recommended in [2],
vol. II., p. 226.
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3. Proportional regression approach

The expressions (5) suggest that the corresponding ratio estimates (3) are
fitted to the following regression models:

Y
My,lx;) = 5 %o (8-1)
’ }7(:. 5
‘n[(yuilxa'z’: @ € 11) = Y Zyi s a € A ’ (8_ ))
Y Y X
M oo ) C nc sy L A e T
4 (?/(:czlxuc i Re'is a’ e A ¢ e ) Zc 2 Xa (-Eum Zc cz) , e, Ce C

(8-3)

Here, and in what follows, M (ylx,, x € II) and D(ylz,, x € H) denote the con.
ditional expectation and variance of 4 with respect to a finite family of random
variables {x,, ~ ¢ H}. Linear regression, which passes through the origin, we
shall call, for brevity, proportional regression?). All regressions, given by the
equations (8) are proportional regressions. Relation (8-2) implies that z,,,
given z,,;, is linearly independent of z,,, @’ + a. Relation (8-3) means that
,; and z,; both are proportional to z,,, and moreover, that the residual y,,; —

— 1—1”— 2,; 18 proportional to the residual z,,, — ,{ag 2
Z, Z,

When sampling is from finite populations, relations (8) must be, generally,
reinterpreted, (see Remark 3.1). Let us consider, therefore, the parallel problem
when the sample consist of » independent observations from a multidimensional
distribution governed by one of the relations (8). Under this condition, the
conditional expectations of ratio estimates (3), for any fixed z,; and Zzg,
will equal Y. It suffices to show it for the most general estimate (3 — 3):

Z 7, Yac

Ze

M ZA,,. — \@lilpaeA“c —

N

ﬂ!(’/aczl Weis Bl @ € A,¢" € C)=

?) The proportionality relation is irreversible: If M(ylx) = gx and M(x) # 0, then
M (xly) == yy, unless ¥ = @z with probability 1.

ZZ
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- ‘Z Zz;'j’-’"“ _
¢ %o

BN RN XY=V Xe
[

c

For this reason, the adequate confidence interval should be based on estimated

- . n e . .

conditional variance Py E A% where, for individualestimates (3), A, equals
X Y
2y, — Lo, 11-1
o (3/1 o u) (11-1)
X, a

S 112
Al —_— n:’l (| a ‘I:”v (ll) ( )

Returning, now, to.sampling without replacement from finite populations,
we may, by analogy, hope, that the A,’s given by (11), when inserted into (6),
will give better estimated variances than the A’s given by (7). Asymptotically
both considered methods of estimating the variance are equivalent, because
for large n and (N-n)

Z(’

1 — &

=

~1

For small samples, however, the improvement may be essential, generally
in the sense that (13) will yield considerably greater estimated variance, on the
average, than (7). Furthermore, without using (11), we cannot detect the
possible negative effect of splitting x; into too many components z,;, (see [2],
vol. II, p. 139).
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Remark 3.1. In finite populations, relations (8) are reflected in such -
a manner that the regression of y,,; upon z,.; and z,; passes through the origin.

Exceptionally, they may be fulfilled precisely, for example if 2, equals 0 or 1,
and if z; = 0 implies y, = 0.

Remark 3.2. Inserting (11 — 2) into (6), we obtain the estimated variance,

which for the special case n = 2, and stratified sampling, has been derived
in [5].

4. Normal theory approach

Assuming normality and (8), we shall prove that confidence intervals

y X / N, vV »
x¥ede| D S T (12-1)
Yo ., |/ Xl v 2 y
ZXa Z j: ta Vn 1 [Z 'xa (1 wi ; "111')] ’ (1“ 2)

where t, denotes the critical value of Student’s distribution with n — 1 degrees
of freedom for significance level «, will cover ¥ with probability greater than
1 — a. In other words, confidence intervals (12) are “conservative’ .
n . 2/ 2
The statistic Z (yl- — xl) does not possess chi-square distribution and
x
i=1

is not independent of (y, z). Nevertheless, the following general inequality
holds:

Theorem. L] {Y,es, Tacis 2 @€ A, ce O}, 0 =1, ..., n,is a sample from a mulli-
dvmensional normal distribution, then

n

< Yooy Mafp o Tac P g .
z {Zz j‘ae [:l/(u:) - ZU ~cl v (‘l«wz 2 zcz’)]} == }.’u—lo k] (1‘})
i=1%a ¢

a (4
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where
n n n
, g/uc:zyaciv a-m'uc:zxaci: Zc:zzci> aed, CGO:
PR i=1 =1

K, are arbitrary constants, which may depend on ., %ae, 2., a € A, ¢ € C,
2y 18 a random variable which is independent of {Yae Taes 20 @ € A, ¢ € O}, and
possesses the chi-square distribution with n — 1 degrees of freedom, and

o 18 the conditional variance of > > Koae; W. 7. b {%ygi, 2oy a e A, ce A, i =
a ¢
=1,...,n} :

Proof. Let us choose an orthogonal transformation, given by the matrix

1

=,
D
n

n n
A Y
Uqe: == Z bi.’iyacja Vaer = Z [)z'jxacjs Wy = z 2oy € A, ceC,
i=1 1 i=1

{b;;} such that b,;, = j=1,...,n, and denote

) Y Zye 2, . .
Obviously %, = 52, V4 = 7=, W = ——. Then, first owing to
o I

Jn
Y Y X,
’ K {w., — 2w, — 22y — 2w || =
ZZ ac ace Z cl ’,E ace z [
a c

4 “~a (4

< 4 ?/(lt' . ‘Z‘UC >
- Z bii {zz kuc [yncy - ey — T (mac}' - ch)]}: v = 17 FRRT (O
4 2 ¢
a [ -

F=1

and to
n
7/! /Z/fl wll(‘
Koo\ Yior — = 20y — 22 @y — =2 2 =
ac act c ‘et ci ?
Zzz Ze Xy Z,
Ea a c =

the following well-known algebraic identity (see [7], p. 116)

n

21 {ZZ K, [?/nci — ?/;n Zes — % (xuci - lz(i Zcz‘)]}z*

“ c o 4
i=

. 7 , z
= I K, | tae: — Yo g Yuly —_ La w, (14)
l ac ZC [ x act - c1
-2 a ¢

a ~c

will hold, and, secondly, random vectors {u,q;, Vaes, Wes, ¢ € A, c € C}, 1 == 2, ..., m,
1° will be independent one of each other,
2° will be independent of {y,,, %4, 2, @ €A, c e C},
3° will possess mean values
M(wges) = M(040;) = M(w,;) =0, aed, ceC, i=2,..,n,
4° will be governed by the same variance covariance matrix as random vectors
{Yueis Taors 2oty b€ A, ce Oyt =1,..., n.
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From 1°, 2° and 3° it follows, that

n

¥ .q/vzc 7/ o T2
Z Z? !('w Waer — —— Wey — f':q Vugg — —= Wey -
e =ned “¢ ‘1‘(1 zc
i=2 a ¢
—
— 2 Y - Yue
- [11—1111 (Zz I\Hr: Uy — _N_( Wey —
a ¢ “e
Ya Lac 2
= o Yac: T T Wea
‘l‘a “c

It remains to be proved that the latter conditional mean valueis always greater
or equal to 6% As, according to 2°, random vectors {Uyeg, Ve, ey, @ € A, ¢ € O}
and {Y.;, T 2, @ € 4, ¢ € O} are independent, we may write

M {(22 K, [uavz — y;: Wey ~—

Yo Lo 2 )
- Vacs — —— Wey Yaos Eger Zeo Be A, ce Ol =

Yaes Lyey Zoy U € A, Ce G} . (]5)

Xy “e¢

o > 1//1(! i . "VYC 2
- ﬂ[% {( E ]&m: [ua(’,z - 'IN u"c;z - ?/_ (vu,cz - ! u’c")]) } ? (16)
Zﬂ ” Ze gy 2. - !

4

where the asterisk denotes that y,., ¥,,, 2, a € 4, ¢ € O, are treated as constants.
The mean square of any normal random variable cannot be smaller than its
conditional variance, i. e.

— - - Yae 7 x 2
M* Z ]iac Waca — ";'_( Wey — ﬂ Vues — e Weo
¢ e L 2
. - Y 2 x .

> ])> {Zz [\ac |:'ZI/,”,2 — '—;li 1‘(7” B {ﬂ - ac Wio >

a ¢ e Za e
> P {ZZ K yilagy | Ugens Weny @ € A, ¢ € c} (17)

e ¢ .

Now, according to 4°,
D*{ZZK.M@LMIWM, Wog, e A, ¢ e O} =
= D*{ZZKHI‘7 weil Tacis 2oy W€ A, € € Cy. (18)

Iy

YV

Tinally, as vectors {¥uei acs Z» @€ A,ceC}, i =1,..., n, are independemt,
we may write

D*{zzKavyaci!xace" Z,oed, ce C} =
= D{zzlfacyacilxaci” Zoiry U € A, Ce O; i = 1,.., n} = o?%. (] 9)
By the chain of relations from (15} up to (19) the proof is completed.
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In the special case, where the conditions (8 —- 3) are fulfilled and

z X, (20)

for fixed {%,;, 2., 0 € 4, ce U, 12 =1, ..., n}. The estimate given in (3 - 3) and
(12 — 3) is the sum of the observations (20). Observations (20) are independent
(for fixed {ye;, 2y @ e Ad,c e C, i = 1,...,n}) and, as we have seenin § 3, their sum
is an unbiassed estimatorof Y. Inequality (13) shows that the estimated variance
used in (12 — 3) is greater or equal to an estimator of variance that s (a)
unbiassed, (b) chi-square distributed, and (c) independent of the sum of obser-
vations (20). Consequently, the above statement concerning the confidence
interval (12 — 3) is really true. Intervals (12 — 1) and (12 — 2) need no specific
consideration, as they are special cases of the interval (12 — 3).

Remark 4.1. Our results could be generalized for the case where the same
intraclass correlation is present, as in sampling without replacement. The only

modification needed is to replace the coefficients ¢, in (12) by ¢, ]/l -
Fa
Thus we obtain confidence intervals corresponding to simple random sampling

without replacement.
5. Comparison with Fieller’s method

The confidence interval (12 — 1), corresponding to the simple ratio estimate,
can be compared with that provided by Fieller’s method. We shall show that
Fieller’s interval is always longer.

Let us have a random sample (2,, ¥,), - .., (Z,, ¥,,) from a two-dimensional
normal distribution, and put &£ = Mx;, n = My,. Fieller’s solution-rests upon

the obvious fact, that the random variables y, — n x; have mean values 0,

&
so that
— , (21)
2 — 9 - 2
72172[?/" = g“("”‘“”’]
i-1
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is governed by Student’s distribution with n — 1 degrees of freedom. Thus
for any g—, with probability I — «, it holds that [f| = f,, where 1, is the critical

value of Student’s distribution with = — 1 degrees of freedom for significance
level &, By the inequality |¢| = ¢, where ¢ is given by (21), a certain confidence

" "

region for £ is defined, which covers the true value of 3 with probability 1 — «.

Fieller has shown in [1], that, under the condition
1—t% >0 (22)

the confidence region is equal to the interval with endpoints

y 1 —t2ey, £ [ — t20,y)? — (L — 22eH)(1 — t2c})

L - e’ 23
x 1 — 22 (23)
where
1\2 n ° _
2 __ |- - — 2
Gl‘(x) n__l l(xl x) H
c: = L " ﬂ( — %)
E= |, n~121y y

012:‘1—‘ " ] Z(ma—x)(yz“‘g)

I (22) does not hold, it may be proved, that the Fieller’s confidence region
equals the whole line, or half-line, or complement of a finite interval. The
square of the length of the interval with end-points (23), say dj, equals

_ y\* (1 — t3cy)® — (I_H I — i)

I

2 2

., (1 xtgcf)(ng%ﬁ)Jr(cl‘;—'*)

1, cS$ 5
LA N (o

=

Let us compare this length with the length of the interval obtained from
(12 — 1) after dividing by X:

y 1 ] 25
:v(;'td;t“ n—lZ( ‘,1). (25)
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The square of the length of the interval (25), say d, equal

t * 7 ,
dA:4(:r) — ( ma:) “4(1}) 12(c3 — 2¢,y + ¢f) =

AV PR )l

el % o)

5.2 3, Cio :
,\2 (1 — t2c%) {ed — o + le; — .
<4 (i) 1‘2 1 1 — dp

x (1 — t2c})? o

i. e. the Fieller’s interval (23) is always longer than the usual interval (25).

6. Some other methods of sampling-estimating

Ratio estimates are generally biassed. In the paper [9], however, it is shown,
that the bias of the simple ratio estimate X % can be completely removed by the
following method of s(mehnw In the first phase, we select one element with

probablhtles X i=1,.., N, in the second phase, we select n — 1 element

from remaining N — 1 elements by simple random sampling. The estimated
variance, of course, at least for small n, must be changed accordingly. Follow-
ing Yeates and Grundy, (see [4]), we get the estimated variance in the form

( ) ZZ( g *JJF%’")(%E 1), (27)

where s; denotes the probability that the i-th element will be included in
sample, and z,; denotes the probability that the ¢-th and j-th element both
will be included in sample simultaneously. For the “two-phase” sampling
described above, it may be easily shown that

xz, N —n n— 1

7 = = 1,..., N 28

TEXN 1N 1 P et (28)
z; -+ 2y n—ll\'—n n—1n—2

r— 7;‘ — — B i ', q = 1 e 7V. 29

n!] JY ]\ _ _L‘\T""]_ 4[ AY_ 1 N* 2 b ?7j B Ji ( )

Let us mention briefly two other methods of sampling-estimating. First
method: We choose, n-times independently, one element with probabilities ;—é ,
¢ =1, ..., N, and use the following point and interval estimate for ¥
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n Z Yi v n n -
X[ ; X® AN
S — A et . g ‘ }
n Zfz T =) 2o A “Vﬂ(n — 1 z [x, n | (30)
¢ ¥,

[ €

i
n n,

where > and » denote the sums extended over all sampled elements and over
Z €

distinet sampled elements, respectively, and n, denotes the number of distinet

elements in the sample; (some of elements may appear twice or more times

in the sample).

Second method: We carry out IV independent experiments, the i-th of which

decides with probability ¢ Yiand 1 — ¢ % if or if not the ¢-th element will

be included in the samplo, so that the number n of elements included in sample

will be a random variable with M(n) = ¢. Then we use the following point
and interval estimates for Y

'7( Xz i Y )
D ) R D | (- B

7. Stratitication and subsampling

We shall only touch this topic vory briefly. Tet us label the strata, and
statistics referred to strata, by the subscript 2 = 1, ..., L. If the stratified
.. . . N N .
sampling is proportionate, i. e. f = h=1,..., L, then formulae (3)
h

need no change, and the estimated variance (6) should be replaced by
L
(Arh * nh)nh
At 7 Bl e A 39
« hzl N,(n, — 1) Z nh Z hl ’ (32)

where
N, Y ‘
Ahz’ = ’I’L_ Yne — l; Thi ) ete. 5

h

in accordance with (7).

If the stratified sampling fails to be proportionate, then the sample
totals y, z, ¥, ete. in formulas ( ) should be replaced by

N, N e
Z‘ : Z Yni s Z n z “hi s nh' Z Yhai » th-: ('33)
h P h P

respectively. Formula (32) needs no change. The theorem of § 4 could be gene-
ralized for stratified sampling in an obvious manner. In corresponding state-
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ments concerning confidence, of course, will denote the critical value based
on the generalized Student’s distribution, (see [8]).

On some occasions, other ratio estimates may be useful in the case of strati-
fied sampling:

L
ZX;, o (34-1)

x h
A1

z Z X, ?Lj_ , (34-2)
5w

z X, e . (34-3)
= .

a Z Ahb hae.

The corresponding estimated Variances equal
L
— ny)n
Z o _] 1)h Z AV (35)
h
h=1

where

h

X Y
hi x Yhni @, hi) s )

in accordance with (11). The estimates (34) are advantageous in such cases,

.Y -
where the ratios )Th’ ete., vary substantially from stratum to stratum. On
h

the other hand, they may be heavily biassed, unless “two-phase’” sampling

. . . . . Y,
described in § 6, is used in each stratum. Moreover, if T{" does not vary very
A

much, and if the number of strata is large and »,’s are small, then the variance
of estimates (34) may even be greater than the variance of estimates (3).

Finally, when more stages are involved in our sampling plan, then the only
modification needed is to replace the values y;, ¥,;, ¥a» and, possibly, values
Xy, Laiy Tyeis 26 DY thelr estimates obtained from subsampling. After this adapta-
tion formulae (12) are valid, in a conservative manner, for multistage sampling,
too. Subsampling rates are often chosen so that the estimate turns out to be
an unweighted sum of the ultimate observations. For example, let the hi-th
clement contains M,; subsampling elements, m,; of which we select by sub-
sampling. If we put

' M, X
My, = — {[J“A'L , h = SAsi=1,..,N,, (36)
k 0

then the estimate (34 — 1) turns out to equal ky’, where y" denotes the sum
of ultimate observations.
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8. Some concluding remarks

The above discussion, based on a combination of the large—sample, regression
and normal theory approaches, will also apply to other possible types of ratio
estimates. Some important problems, however, remain to be open. Let us
mention two of them: (a) For what set of normal distributions is it true that
the confidence intervals (12) cover Y with a probability greater or equal 1 — «?
(b) How can we simplify the computations of estimated variances consider-
ably ? (The estimated variances, derived in this paper, despite their relative
simplicity, are to complicated for daily practice, particularly, when hundreds
of items are tabulated simultaneously.)
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Souhrn

O TEORIT POMEROVYCH ODHADU

JAROSLAV HAJEK

(Doslo dne 29. listopadu 1957.)

V této praci je teorie pomérovych odhadd budoviana kombinaci metody vel-
kych vybéra (asymptotické metody), metody linearni regrese, a metody zalo-
Zené na predpokladu normalniho rozdéleni. Naptiklad, odhady rozptyld, jak
vyplyvaji z asymptotické teorie, jsou pro koneény rozsah vybéru piizpisobo-
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vany pomoci vhodnyeh piedpokladi o regresi. Obdrzené vysledky jsou pak
ovéfovany za piedpokladu normdlniho rozdéleni, a ukazuje se, Ze v pomérech
pliznaénych pro vybérové Setfeni interval spolehlivosti, sestrojeny na zdkladé
Studentova rozdéleni, pokryva spravnou hodnotu s vétsi pravdépodobnosti,
nez je ta, které odpovidd pouziti koeficient ¢,. Je ukdzdno, Ze zminény interval
spolehlivosti je vidy kratdl nez interval spolehlivosti Fiellertiv.

Prace dale pojedndva o towm, jak ziskat odhad rozptylu pomérného odhadu,
kdyz (a) je tento pomérovy odhad velmi slozity, nebo je-li (b) vybér je strati-
fikovany a vicestupiiovy, ¢i je-li (¢) vybér je provadén metodou dvou fazi,
které ¢ini pomérovy odhad nestrannym.

Pesowme
O TEOPUM  IIPOHOPLUUIAHBLIX“Y) OLEHOK

APOCJIAB TI'AER (Jaroslav Hédjek)

(lMocrymuno b pepario 29/X 1 1957 r.)

B macroameii paSore paspuBacrcest TEOPUH IPONOPHHOILIX OMEHOK KOMOH-
HHEpOBaIHeM MeToja OO0JBLIMHX BLHIDOPOR (ACHMUTOTHYCCKUI METOM), MeTOjia
JMHEHHOU Perpecci X MCTOjla, OCHOBAHHOIO Ha IPCAIOI0ReHIE HOPMallbHOTO
pacupenencuns. Hampumep, onemxy gucuepcenii, MOJMYICHUDBIC 110 ACHMITOTH-
YCCKOMY MCTOJLY, P HCHOCOBIIOTCA T KOHEYHOT 0 00beMa BLIOOP KK IIPU TOMOLITY
HOJAXOMAIME UPeInoyokenuit o perpecenn. Ilomydesunie pesynbTaThl 3aTeM
IPOBCPSLIOTCHA IIPU YCJIOBHM HOPMAJLHOTO paclipefeeHnd, M ORa3BRACTCH, 4T0
PIL 06CTOATETBCTBAX, XaPAKTCPHLIX 7151 BLIGOPOTHOTO MCCCOBATIIA, JIOBCPH-
TCABHBIL HATCPBAN, NOCTPOCHHRI Ha ocHomamun pacupepencuns Crpiojeura,
HOKPLIBACT TOYHOC 3HAYEHTeE ¢ OONBMCH BEPOSITHOCTLIO, CM BEPOATHOCTE, KO-
TOPORl coorBercTBYET NpuMeHCHHBIH KoadPuimment £,. B cratne noxasano, 4ro
YKa3aHHBI TOBCPHUTCALHLII HHTCPBAJ KOPOUe TOBEPUTCALHOT0 nHTepBasa Du-
JIepa. '

Hamee B pabore paceMarpuBaerest BOLPOC, KAK HOJIYUUThH OLEGHRY JIHCIIePCUR
OPONOPUUITHOM OICHKY B ¢lIyYae, KOTHa (&) 9Ta OTHOCUTE/ILHAs OIeHKA SIBIISACT-
¢fl OYeHR cJrozkuol, mian worja (b) Bbbopra ABnsiercs BLIGOPKOH IO Tpyluam
(Tunudeckoil) M MHOTOCTYHEHYATON, WM ke Koraa (¢) BHIGOPKA IPOBOJMMTCS
MeTOMOM ABYX (ad, KOTOPHI jleslaeT OTHOCHTRILHYIO OLEHKY HecMeleIon.

1) Ilo aura. ,,ratio estimate‘.
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