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0, Let G be a graph in the sense of [ l ] with vertex set V(G) and edge set E(G). 
Let u e V(G); we denote by V(u, G) the set of all u' e V(G) such that u and u' are 
adjacent; we denote by E(u, G) the set ofall e є E(G) such that e is not incident with u 
and at least one of the vertices incident with e is adjacent to u; if V(u, G) ф 0, then 
we denote by iVj(w, G) the subgraph of G induced by V(u, G); if E(u, G) ф 0, then 
we denote by N2(u, G) the subgraph of G induced by E(u, G). We say that G is 
locally connected if V(v, G) ф 0 and N^v, G) is connected, for each v e V(G); see [2] 
and [12]. We say that G is ІУ2-1оса11у connected if E(w, G) ф 0 and N2(w, G) is 
connected, for each we V(G); see [11] and [10]. As was shown in [10], if G is 
iV2-locally connected, then every edge of G which belongs to a cycle of length 
3 o r 4 . 

1. Let G be a graph, and let 0> be a partition of V(G). If 3$ Я. &, then we denote 
by E# the set of all e e E(G) such that the vertices incident with e belong to distinct 
elements ofJ?, and moreover, we denote by G(^) the subgraph of G induced by 

и«. 
Re® 

We shall say that 0> is a C-partition of G if \P\ ^ 2 and G({P}) is connected, for 
each Pe0>. 

The following theorem gives the first ofthe two main results ofthe present paper: 

Theorem 1. Let G be a 2-connected, N2-locally connected graph. Then 

(1) | ^ | ^ 2 ( H - 1 ) , 
for every C-partition 0* of G. 

Before proving Theorem 1 we shall prove the following lemma: 

Lemma 1. Let G be a 2-connected, N2-locally connected graph, and let 0і be 
a C-partition of G such that \&\ ^ 2. Then there exists 0t Ç 0> such that \0t\ ^ 2, 
G(^) is connected and 

(2) \Ea\ ^ 2(И - 1). 
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Proof. We first assume that there exist distinct P*, P** є ^ such that |£{P*,P**)| è 
^ 2. If we put m = {P*, P**}, we can see that Щ ^ 2, G(.#) is connected and (2) 
holds. 

We now assume that 

(3) |£{p*,p»}| é 1 , for any distinct P\ Pb e 0> . 

Since G is 2-connected and ^0 is a C-partition of G, we can see that 

(4) V(N2(u, G) n P Ф 0 , for every P є ^ and every u є P . 

Since G is AT2-locally connected, it follows from (3) and (4) that 

(5) if P є ČP and u є P such that u is incident with an tdgQ in E^, then there 
existdistinct P ( 1 ) , P ( 2 ) e ^ - {P} and ы ( 1 ) е Р ° \ и ( 2 ) є Р ( 2 ) , y e P -
- {u} such that uu{i \ м(1 }w(2), w(2b є E#. 

We shall define a sequence ^Pl5 . . . as follows. 
Consider an arbitrary P1 є 0>. Since G is connected and | ^ | ^ 2, there exists 

ut e ? ! such that u1 is incident with an edge in E&. According to (5), there exist 
distinct P[l\P[2)e0> - {P,} and u[^eP[^,u[^eP[^, vlePl - {u,} such that 
u1u[l\u[l)u?\u<?)v1eE,.Denoteat1 = {PuP[l\P[2)}andEi = {u^Ku^u'{K 
u[2)vt}. Obviously, G ( ^ ) is connected. 

Let n ^ 1. Assume that the members 0tu ..., 0tn ofthe sequence were constructed. 
We denote by âftn the set ofall R є $n with the properties that exactly one vertex of R 
is incident with an edge in En. \î$n = 0, we put Mn+l = Mn and En+l = En. Let 
0ln Ф 0. Let us choose an arbitrary Pn+ l eMn. There exists exactly one un+1 є P„ + ! 
such that un+1 is incident with an edge in En. As follows from (5), there exist distinct 
P < ^ , P ^ e ^ - {P„+1} and м і Ѵ і е Р І Ѵ ь ^ Л е Р ^ Л , ^ + 1 e P „ + 1 - {un+x} such 
that M.+ ^ i V i . t t i V i t t i ï i ^ i ï i ^ + i e ^ . Denote ^ + ! = ^ , u { P < V i , P i + M a n d 

£„+i = £„ u K+iwi+V " i V X + V м і ї ї ^ + і } . Clearly, в(Яп+1) is connected. 
Tt is easy to see that there exists exactly one m ^ 2 such that Em_ x Ф Em = Em+ x. 

We now prove that 

(6) \Ek\ ^ 2\.%\ - \3k\ - 1 , 

for each k є {1, ..., m}. 
We proceed by the induction on k. The case when k = 1 is obvious. Let A: ̂  2. 

Accordingtotheinductionassumption, \Ek^x\ ^ 2 | ^ _ t | — | ^ f c - i | — l.Obviously, 
РкЄ&к-і - ^fc- Denote e(1) = w*w<*>, <?(2) = w[ 2 4 a n d / = w [ u ^ 2 ) . Let i e { l , 2 } . 
It is clear that if Р^ф^к.І9 then P(

k
i)eäk-äk„l and e{i\feEk-Ek_x. 

Moreover, it is not difficult to see that if P[i} efflk-x ~ àk9 then P£° є ^ л - 1 - &k 

and e(í), / є £ л — Ек_г. These observations imply (6). 
Recall that m ^ 2. Since &.m = 0, it follows from (6) that |£m | ^ 2 | ^ , | - 1. 

Put 0t = mm. Since £w s £^, we have that (2) holds. Since |ář| ^ 2 and £(,«) is 
connected, the proof of the lemma is complete. 
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Proof of T h e o r e m 1. There exists a C-partition ^ * of G such that 

(7) 2( |^* | - 1) - \E,.\ Ž 2(\<?'\ - 1) - |E , , | , for every 
C-partition &' of G 

and 

(8) 2( |^* | - 1) - \Ep*\ > 2 ( |^" | - 1) - \E9>\ , for every C-partition ?" 
of G with the property that j ^ " | < | ^* | . 

Let first | ^* | ^ 2. According to Lemma 1, there exists Ä . S ^ * such that [.#| >̂ 2, 
G(#) is connected and | £ л | >̂ 2 ( |# | - 1). Denote 

P* = U # 
ReJ? 

and ^* = (&>* -0t)Kj {P*}. Clearly, ^ is a C-partition of G and |.^*| < |^* | . 
Since £,̂ * = E^s u £^ and £^* n £^ = 0, we have that 

2(H*| - 1) - \EA = 
= 2(|^*f - 1) - | £ И | + 2(|Л| - 1) - | £ я | g 

g 2(|.^*| - 1) - |f,.| , 

which is a contradiction with (8). 
Let now \&*\ = 1. Then \Ep.\ = 0 - 2 ( |^* | - 1). It follows from (7) that (1) 

holds for every C-partition gP of G. Thus, the proof ofthe theorem is complete. 

2. The upper embeddability belongs to important notions ofthe theory ofembed-
ding (pseudo)graphs into surfaces; cf. [13] or Chapter5 in [ l ] . A connected pseudo-
graph G with p vertices and q edges is said to be upper embeddable if there exists 
a 2-cell embedding of G into the orientable surface of genus 

[(q - p + l)/2] . 

I fF is a pseudograph, then we denote by b(F) the number ofcomponents H o f F 
such that | £ (# ) | — | ^ ( # ) | is even, and we denote by c(F) the number of all com­
ponents ofF. 

Theorem A. Let G be a connected pseudograph. Then the following statements 
are equivalent: 

(a) G is upper embeddable; 
(ß) there exists a spanning tree Tof G such thatfor at most one component H 

ofG - E(T), \E(H)\ isodd; 
(y) \A\ ^ b(G - A) + c(G - A) - 2, for every A Я E(G). 
The equivalence (o t )o (ß ) was proved independently in [5], [6] and [14] (but the 

result in [5] was formulated rather differently). The equivalence (ß) <=> (y) was 
proved independently in [4] and [8] (the result in [4] was formulated rather dif­
ferently). 

It was proved in [7] that if G is connected, locally connected graph, then G is 
upper embeddable; the proof in [7] was based on the equivalence (a) o (ß). We 

733 



shall now prove that if G is connected, N2-locally connected, then G is upp e r embed-
dable; for the case when G is 2-connected, the proof will be based on the equivalence 
(a) o (y). 

Lemma 2. Let G be a 2-connected, N2~locally connected graph. Then G is upper 
embeddable. 

Proof. Obviously, there exists A0 <= E(G) such that 

(9) b(G - A0) + c(G - A0) - 2 - \A0\ ^ 

^ b(G - A') + c(G - A') - 2 - \A'\ , for every A' c E(G) 
and 

b(G - A0) + c(G - ^o) - 2 - \A0\ > b(G - A") + 

+ c(G - A") - 2 - \A"\ 

for every A" Я E(G) with the property that |A"| < \A0\. It is not difficult to see that 

(10) \V(H)\ ^ 2, for each component H of G - A0, and 

(11) e is incident with vertices of distinct components of G — A09 for each 
eeA0. 

According to (10) and (11), there exists a C-partition 0> of G such that Pe& if 
and only i fP is the vertex set ofa component of G — A0. Thus £^ == A0. Theorem 1 
implies that \A0\ ^ 2(c(G — Л0) — 1). As follows from (9), the proof of the lemma 
is complete. 

As was shown in [10], if G is connected, ЛГ2-1оса11у connected graph, then at most 
one block of G is cyclic. Therefore, if we combine Lemma 2 with Theorem 1, we 
easily get the following result: 

Theorem 2. / / G is connected, N2-locally connected graph, then G is upper 
embeddable. 

Theorem 2 is a generalization ofthe theorem in [7]. Another results more general 

Fig. 1 
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than the theorem in [7] were proved in [3] and [9]. In [3] Glukhov proved that if G 
is a 2-connected multigraph such that each edge of G belongs to a cycle of length 
at most 3, then G is upper embeddable. In [9] the present author proved that if G 
is a connected graph with the property that there exists і є {l, 2} such that V(uh G) ф 
Ф 0 and iVi(w,-, G) is connected, for every pair of adjacent vertices ux and u2 of G, 
then G is upper embeddable. 

Fig. 1 presents a 2-connected graph, say a graph G1? such that each edge of Gv 

belongs to a cycle of length 3 or 4. We can see that there exists j є {l, 2} such that 
E(vj, Gj) ф 0 and N2{vj, Gt) is connected, for every pair of adjacent vertices vv 

and v2 of Gx. It is easy to show that G{ is not upper embeddable. 
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