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1. INTRODUCTION

This paper is a continuation of the author’s previous works [ 11], [ 10], [12] which
try to generalize the well-known results concerning the properties and the role of
various connections in the autonomous mechanics of higher-order on T'M ([5],
[2], [3]. [6]) or in the non autonomous mechanics of the first order on R x TM
([4]. [1]). Our approach was introduced for the time-dependent higher-order
mechanics on general fibred manifolds with one-dimensional base.

Making use of the identification of the semispray distribution of type (r — 1)
on J'r with the connection of order (r + 1) on © we have proved in [ L1] the existence
and uniqueness of the so-called characteristic (Euler-Lagrange) connection on r
whose paths are just the extremals of the given regular lagrangian or, more generally,
of regular equations. The paper [10] is devoted to the description of the conditions
for connections on 7, ,_, to be associated to the connection mentioned above, i.e.
to have the same paths. These results made it possible to give another geometrical
characterization of the regular equations through the so-called strong and weak
horizontal distributions.

In this paper we show the whole class of the connections on =,,_, (and of the
corresponding f(3, —1) structures on J'z) canonically associated to the given con-
nection of order (r + 1) on n as a generalization of the corresponding objects on
R x TM (see [12]). As is to be expected, all structures are intrinsically related to the
geometry of underlying jet bundles, more precisely to the special class of natural
affinors (see [7] for R x T'M and [8] for J'x), consequently they are generated
by the volume forms on the base of the fibred manifold.

The structure of this paper is as follows. In Sec. 2 we introduce the notation used.
Sec. 3 sets up the known basic notions and the results of [11], [10] necessary for
Sec. 4, where we present the new results. For the sake of brevity we restrict our
exposition to the connections, their relation to the higher-order mechanics can be
found in [11] and [10].
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2. NOTATION

Throughout the paper, (Y, n, X) is a fibred manifold with dim X = 1, dim Y =
=1+ m; (J'n, n, Jrn)and (J'n, m,, X) are the obvious jet bundles induced by =,
Jn =Y, respectively. By (V, ), ¥ = (t,q°) we mean the fibre coordinates on

Ve Yy = (1494, ... q,) are the adapted coordinates on n,4(V) < J'm, i.e.
. _da
9y = F .

V,,m(J'n) and V, (J'n) are the 7, -vertical and m,-vertical subbundles of TJ'n, respec-
tively. Sy(m) is a module of local sections of m on U while #(U) is a module of local
real functions on U. J'y: U — J'n denotes the r-jet prolongation of y and (d/df) J7y
means the curve of tangent vectors to J"y. The Lie derivative of a (1, 1) tensor field S
with respect to { is denoted by 0,S. Finally, all structures and mappings are supposed
smooth and the summation convention is used.

3. VARIOUS CONNECTIONS AND RELATED STRUCTURES

A connection of order (r + 1) on n, r 2 1, is a section
Ir:Jn-J%"n
of the bundle n,,,,. Using a canonical bundle imbedding J"*'n G J'n, we can
consider I as a connection on 7. Owing to this fact the horizontal form of I is

a

¢ 0 0
hr=1{—+) q{; — + I, — | ®dt,
r ((’?t o (j+1) 6q(,-, (r+1) 6117,))

where I'7, ,, € #(J'n) are the components of I'. The dual notion to h, is a vertical
Jorm of T, given by
op=1—hp,

where I = Iy, is the identity endomorphism. Consequently,

4 . . d o o
or =3 — ®(dqf; — q(j+1,dt) + —- ® (dgg,, — I7,,,, dr).
=0 0qj) oq¢y

Hence the one-dimensional m,-horizontal distribution Im h, = ker v, is just the
semispray distribution A]_,[I'] generated locally by semisprays of type (r — 1)
on J'n. Thus I’ yields the decomposition

TS =V, Jn@®A_,[I].

The set of such connections is denoted by I',, , ,. A section y € Sy(n) is called a path
of'el,,,if

Iy =T 0
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on U. It turns out that y is a path of I' if and only if Jy is an integral mapping of
AT

By a dynamical connection on J'n we mean a connection I';on 7, ,_, i.e. a section

Iy J'TL’—)JTC

The horizontal form of I', is locally given by

P s
hry ==+ T{o—)®dt +
ot 6qm

0
+Z —‘®d‘1(1)+r(r,)). P ®dq(}.j)’

0 \24q(; 04¢r)
where (o), [ iy € F(Jm), 0< k <r—1, are the components of I',. Con-
sequently, I'y can be identified with the (rm + 1)-dimensional ,,_,-horizontal
distribution H,, = Im h,,. A section y € Sy(n) is called a (dynamical) path of I, if

g—t Jy < Hp,.

An endomorphism F: TJ'nm — TJ'n is called an f(3, —I) structure on J'm if
F? — F = 0. There is a canonical direct sum decomposition on TJ'n induced by
any such F. The eigenspaces corresponding to the eigenvalues 0, —1, +1 are
Im (F? = I), Im(F?> — F), Im (F? + F), respectively. The f(3, —1) structure is
called dynamzcal and is denoted by Fyif

- 0
Fd:<F(r,0) Zq(;+1)a >®dt+

aqgf) Jj=0 q(J)
r—1 (—3 .
= o~ ®dq(; — — ®dgg, +
i=0 0qg;, 5 CIO)

+ Z Fio s a, ® dag
aq(r)

in any fibre coordinates. The functions F(, o), F(, 1), € Z(J'n), 0 £ k < r — 1, are
called the components of F,. It can be demonstrated that Im (F; — F,) = V,__ J'n.
The rm- and (rm + 1)-dimensional eigenspaces Im (F; + F,) =: Hy, and H;, ®
® Im (F; — I) =: H}, are called strong and weak horizontal, respectively.

There is a one-one correspondence between the set of all dynamical f(3, —1)
structures and the set of dynamical connection on J'z. Any such F, and I', are called
associated if

Hp, = Hg,
which locally means

g
Fu-,k)). = %Ffr,k)).

726



for 0<k=<r—1and

r-1

a a a A
Tgoy = Fio + %Z F(r.k)ﬂ.q(k+ 1) -
k=0

Let now I'y be a dynamical connection on J'm associated to F;. The connection
rer,,,,, determined by its components

r—1 r—1

a e_ 70 o A . o 7
F(r+1) = F(r,O) + Z F(r.k);,q(k+1) = FGo t Z F(r,k)lq(k+1) s
k=0 k=0 :

is then called associated to I'y(F,). This coordinate expression globally means just
A:—![[] C:Iird’

and any dynamical I'; associated to I' has the same paths. In addition, I' generates
through any such I', or F, the direct sum decomposition

TIn =V, Ju®A_[Ie H,,,
where A]_,[I']| ® Hp, = Hy, = Hp,.

4. NATURAL DYNAMICAL CONNECTIONS

Although our main purpose is to describe the situation in the most general case,
we will first discuss the very limpid contingency of (R x M, =, R) with n = pr,
where M is an arbittary m-dimensional manifold.

Let us present (in accordance with [7]) all natural affinors (vector-valued one-
forms) on J'n = R x T"M. They create a linear subspace in the space of all tensors
of type (1, 1) on J'=, i.e. of all endomorphisms on TJ'n. An arbitrary natural affinor
has a form

where k; € Z(R); Iy and

r 2r
ki + Z kC2, ® dt + kaps tdpras + Kypialr s
=1

i=r+1

r—i+1

. ) o
J(i) = Z J T ®dq(j—l)
Jj=1 aq(i+j‘l)
for 1 < i < r are the unique natural affinors on T"M;
A
Ip= 2L ®dt,
t
and finally
r—i+1 (. . ~
— 1)
co='y UHi=Dr. 0 o 1<is<e

s (=1

are the absolute vector fields (or generalized Liouville vector fields) on T"M (see
also [5]). With regard to our purpose, the following objects are of particular im-

aq(ai+j—-l)

727



portance:

r

and

Definition 1. An affinor
SO =JP - ¢ @ dt
will be called the natural dynamical affinor on R x T'M.
The meaning of this affinor is substantiated by the following assertion.
Proposition 1. Let { be a semispray of type (r — 1) on R x T'™M, locally expressed
by

B R é 0
(== +24qGsny =5 + 0 —
at  j=o 297} oqg,
where ([, e #(R x T'M). Let T € I',, |, be the associated connection to , i.e.
hr=(®dt.

Then
1
F=——1[(r—=1)ov — 288"
s= [0 = e - 2057)

is a dynamical f(3, —1) structure on R x T'M associated to T.

Proof. By direct calculation in coordinates. []

Corollary 1. Any semispray { of type(r — 1) on R x T"M generates in a canonical
way the associated dynamical connection I'y on R x T'"M. The components of
this T'y are

- _k+1 9,
r,ky: —
r+ 10qG.41,
for 0k =r—1, and

r—1

4 __ yo 4 4
r(r,()) =&y — Z r(r,k)}.q(k+ 1) -
k=0

Definition 2. The f(3, —1) structure F, and the connection I'; from the previous
assertions will be called the natural dynamical f(3, —1) structure and the natural
dynamical connection associated to {, respectively.

Remark that the case r = 1 is described in [12].
Let again (Y, 7, X) be an arbitrary fibred manifold with one-dimensional base.

Let Q be a volume form on X; locally

Q=owdt
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with w € #(X). Then one can define (according to [8]) a natural dynamical affinor
of type Q on J'n, compatible with the bundle structure. This vector-valued one-form
is locally expressed by

-1 . . j
, r t + 1\ &’ 0 o o
S}z’ = Z (J s ’. )_a')_,a ® (dq(n - q(i+l)dt) ’

2 i3
j+i=0 ! dt’ 0q(visny

where i, j are non-negative integers and d°w/dt® = w. Let T'e T, ,; (V.Y), ¥ =
= (1. ¢°) any fibred chart on Y. Let { € A]_,[I'] be any local semispray on an open
subset W < i, o(V). This means '

0 0
(——f(ﬂ( +2qu+|)aa +r(r+|)6_>'

o

q(j) 9ir)
Then

~8,SP = fwGY,

where the (1, 1) tensor field G’ contains derivations of w by ¢, but it is independent
of f, hence also of the choice of the semispray (.

Proposition 2. An endomorphism
1
F Q] = —— [(r = 1) or + 2GJ]
r+1
is the dynamical f(3, —1) structure on J'n associated to I

Corollary 2. Any connection I of order (r + 1) on © generates in a canonical way
the whole class of the associated dynamical connections on J'n. For any volume
form Q on X, the components of T,[Q] are

o e L[ (ke ar,,
= T 5o j+1 w aqz\k+j+l)

r+1 wt ke
_ - &
r—k+1 o

for0<k<r—1and

1
Ioy = Tvry + ——

rl

Tfr+ N\ oY A j w(" org.,, ;
. N T q r -J - ' —Q 1 q
[jgl (/ + I) w rat=h kZO j=§+l (k + ]-> w aq(j) U .

Definition 3. The f(3, —1) structure F,[Q] and the connection I',[Q] from the
previous assertions will be called the natural dynamical f(3, — 1) structure of t1ype Q
and the natural dynamical connection of type Q associated to I', respectively.

Remarks. (i): Let » = L. Then the components of the natural dynamical con-
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nection I',[ Q] on J'r associated to the connection I' of order 2 on = are

and

. l/org, do 1 _,
rg= 1 (fa _del,
2\0q¢y, dt o

1 /dw 1 ore¢
ra I—va - o qo (2) ql ,
7 (dt o Y aqfy, o

which can be compared with the analogous result of Saunders in [9] and [8].
(ii): It is apparent that using a canonical volume form dr on R one obtains the
situation on R x T"M; thus S = S{) etc.
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