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Czechoslovak Mathematical Journal, 41 (116) 1991, Praha 

ON THE ZEROS OF SOLUTIONS OF NONHOMOGENEOUS 
THIRD ORDER DIFFERENTIAL EQUATIONS 

N. PARHi and P. DAS*), Berhampur 

(Received March 30, 1990) 

1. In this paper we study the oscillatory/nonosciilatory behaviour of solutions of 
third-order nonhomogeneous differential equations ofthe type 

(NH) (r(t)y")' + q(t)y' + p(t)y=f(t), 

where p, q, r and / є С([я, oo), Ř), a є R, such that r(t) > 0. The homogeneous 
equation associated with (NH) is given by 

(H) (r(t) / ' ) ' + 9(0 У' + P(t) У = 0 . 
The adjoint of(H) is written as 

(H*) [(r(t)yy + q(t)y]'-p(t)y = 0. 

Equations of the type (NH) arise in the study of the entry flow phenomenon, 
a problem of hydrodynamics which is of considerable importance in many branches 
of engineering (see [5]). Oscillatory/nonosciilatory behaviour of solutions of (H) 
with r{t) = 1 has been studied by Greguš [3], Hanan [4], Jones [6] and Lazer [9] 
and that of the complete equation 

y'" + a(t) y" + b(t) y' + c(t) y = 0 

has been considered by Erbe [1], Gera [2] and Hanan [4]. The purpose ofthis work 
is to relate the oscillatory/nonosciilatory behaviour of solutions of (H) to that of(NH). 

A function y e C([i7, oo), R) is said to be oscillatory if it has arbitrarily large zeros. 
Otherwise, it is called nonoscillatory. Equation (NH) or (H) is said to be oscillatory 
if it has an oscillatory solution. It is said to be nonoscillatory\ if all of its solutions 
are nonoscillatory. Equation (H) or (NH) is said to be disconjugate in [a, oo) if no 
nontrivial solution of(H) or (NH) has more than two zeros (counting multiplicities) 
in [я, oo). Following Hanan [4], equation (H) is said to be of Class I or Cl if any 
of its solution y(t) for which y(b) = 0, y'(b) = 0, y"(b) > 0, be(a, oo), satisfies 
y(t) > 0 for t є (a, b) and equation (H) is said to be of Class II or Cu if any of its 
solution y(t) for which y(b) = 0, y'(b) = 0, y"{b) > 0 satisfies y(t) > 0 for t > b. 

• 
*) This work was done under a scheme supported by the University Grants Commission, 

New Delhi under grant No. F. 8-9/87 (SR-HI). 
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By (NH) does not admit a solution haying (2.2) — distribution ofzeros, we mean 
that if y(t) is a solution of(NH) on [я, oo), then there exists no ti and t2 є [д, oo), 
tx < t2, such that y(t^ = 0 = yf(h)9 y(t2) = 0 = y'{h) and y(t) > 0 or < 0 for 
te(tu t2). In Section 2, sufficient conditions have been obtained in terms of coef­
ficient functions and the forcing function so that (H) is of C, and (NH) does not 
admit a solution having (2.2) — distribution ofzeros./(/) is assumed to be ofa func­
tion ofbounded variation in Section 3. 

2. In this section we obtain some results relating oscillatory/nonoscillatory be­
haviour ofsolutions of(H) to that of(NH). In some ofthe results we don't put any 
sign restriction on coefficient functions as well as on forcing term. We begin with 
a result from [12]. 

Theorem 2.1. Ifu(t) is a nonoscillatory solution of(H) and 

m (r|)4(#teM),=,, 
is nonoscillatory, then (NH) is nonoscillatory. 

Theorem 2.2. Suppose that (H) is of C{ or Cn andf(t) does not change sign for 
large t. Jf (H) is nonoscillatory, then (NH) is nonoscillatory. 

Proof. Equation (H) nonoscillatory implies that its adjoint (H*) nonoscillatory 
(Theorem 4.7, [4]). If u(t) is a nonoscillatory solution of (H), then from a result 
due to Jones [6] it follows that the equation 

(r(t) x'V fr(t) u"{t) + q(t) u(t) 
V u{t) ) V u\t) 

is nonoscillatory. Consequently (1) is nonoscillatory. The conclusion ofthe theorem 
follows from Theorem 2.1. 

Hence the theorem is proved. 

The following lemma due to Leighton and Nehari [11] is needed in the sequel. 

Lemma 2.3. Let u and v e C'((a, b), R) and let v be of constant sign in (a, b). 
If ot and ß (a < a < ß < b) are consecutive zeros of u, then there exists a nonzero 
constant k such that thefunction u — Àv has a double zero in (a, ß). 

Lemma 2.4. Suppose that y and z є С'((я, b), R) such that z is of constant sign 
in (a, b). If a and ß (a < oc < ß < b) are consecutive zeros of v\ then there exists 
a constant p. Ф 0 such that thefunction pz — y has a double zero at t' є (a, ß) and 
is of constant sign in (t\ ß\. 

Proof. Let y(t) > 0 for t e (a , ß) and z{t) > 0 for te{a, b). From Lemma 2.3 
it follows that there exists a X Ф 0 such that À z(t) — y(t) has a double zero at x0 e 
є (a, ß). If X z(t) - y(t) > 0 for t e (x0, ß], then we take fi = k and t' = x0. Other­
wise, since X z(ß) - y(ß) > 0, there exists xx є (x0, ß) such that X z(xx) - y(x^ = 0, 

]x = 0 
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À z(r) — y(t) > 0 for t є (xl9 ß] and there exists jc2 є [x0, xx) such that A z(x2) ~ 
— J>(*2) = 0 and Я z(ř) - y(t) < 0 for t є (x2, *i)- It is possible to find y ^ A and 
Гує(х2>*і] such that yz(ty) - y(ty) = 0 and yz(t) - y(t) > 0 for te(trß\ Set 
/' = infřy and ß = y(t')|z(t'). So ^z(f) - y(t) = 0 for ř = ť. Clearly, there exists 
a sequence <fyn> c (x2, x , ] such that //n ^ /' as n ^ oo, yn ^ A, yn z(řy„) - y(tïn) = 
= 0 and y,, z(i) - j;(r) > 0 for / є (t7n, ß]. So yn ^> fi as n ^> oo, ß ^ л and ^ z(t) -
- y(t) > 0 for fe(i ' , jS]. Next we show that ^z ' ( i ' ) - / ( i ' ) = 0. If possible, let 
pz'(t') - y'(t') < 0. So there exists a ô > 0 such that ^z'{t)- y'(t) < 0 for te 
є [i', ř' 4- č). Hence, for í є (ť, ť + č), ^ z(í) - y(t) < ß z(t') - y(ť) = 0, a con­
tradiction, suppose that ß z'(t') — y'(t') > 0. So there exists a č > 0 such that 
p z'(t) - y'(t) > 0 for t є (t' - ô, t']. This in turn implies that fi z(t) - y(t) < 0 for 
t e (t' — ô, t'). It is possible to choose є > 0 such that ju z(t0) — y(t0) + s z(t0) < 0, 
where t0e(ť — ô, t'). ^iz(t') — y(ť) + ez(t') > 0 implies that there exists a tx є 
e(ř0 , /') such that ^ z(tt) - y(t^ + e z(^) = 0 and ^ z(r) - y(t) + £ z(i) > 0 for 
te(tu t'), that is, (jj, + e)z(fj) - y(ti) = 0 and (^ + e)z(i) - HO > 0 for / є 
í є (tí9 t'). Since (^ + e) z(t) - y(t) > 0 for t є [i', ß], then (^ + г) z(t) - ^(0 > 0 
for t є (řl5 ^) . This contradicts the fact that t' is the infimum of ty є (x2, x t ] with the 
prescribed property. Hence ц z'(t') — y'{t') = 0. 

If v(0 < 0 for t є (a, ^) and z(t) < 0 for ř є (я, 6), then we set u(t) = -y(t) and 
u(t) = - z ( / ) . From the above discussion it follows that there exists a constant ^ > 0 
such that /i v(t) — u{t) has a double zero at t' є (a, ß) and ^ y(i) — u(t) > 0 for 
/ e (/', ß] , that is, Ц z(t) — y(t) has a double zero at t' e (a, ß) and ц z(t) — y(i) < 0 
for / є {t', ß] . Other two cases may be dealt with similarly. 

This completes the proof of the lemma. 

Remark . We may note that ц > 0 when both y(t) and z{t) have the same sign in 
respective intervals and ^ < 0 when y{t) and z(t) have opposite signs in respective 
intervals. 

Lemma 2.5. Suppose that (H) is of C{ and (NH) does not admit a solution with 
(2.2) — distribution of zeros. Then equation (NH) does not admit a solution with 
(1, l ,2) — distribution ofzeros. 

Proof. If possible, let y(t) be a solution of (NH) such that y{a) = y{ß) = 0, 
У{°) = y'(v) = 0, where a < a < ß < a, and y(t) Ф 0 for t є (a, ß) and t є (ß, a). 
Let z(t) be a solution of(H) with z(a) = 0 = z'(a) and z"(ir) > 0. Since (H) is of C„ 
then z(t) > 0 for / є (a, a). From Lemma 2.4 it follows that there exists a constant 
/і Ф 0 such that ^ z(t) — ,y(r) has a double zero at ť є (a, ß) and is of constant sign 
in (/', j8]. So y(i) — ^ z(r) is a solution of(NH) with double zeros at t = t' and t = a. 
From the above remark it is clear that ц > 0 if y{t) > 0 for t e (a, ß) and fi < 0 
if y(t) < 0 for * є (a, ß). Further, y{t) < 0 for t є (ß, a) if y(t) > 0 for t є (a, 0) and 
y(i) > 0 for t є (i8, ex) if y(t) < 0 for t є (а, ß). Since z(t) > 0 for ř e (a, a), it is 
clear that y{t) - ц z(t) Ф 0 for t є (ß, a). So (NH) admits a solution y(r) J . ^ z( ř) 
having (2.2) — distribution ofzeros, a contradiction to the initial assumption. 
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Hence the lemma is proved. 

Theorem 2.6. Suppose that (H) is of C{ and (NH) does not admit a solution with 
(2.2) — distribution ofzeros. / / ( H ) is oscillatory, then (NH) is oscillatory. 

Proof. Ifpossible, suppose that (NH) is nonoscillatory. Let y(t) be an oscillatory 
solution of(H) and z{t) be a nonoscillatory solution of(NH). So there exists a b > a 
such that z(t) > 0 or < 0 for t ^ b. Suppose that z(t) > 0 for t >̂ b. The case z(t) < 
< 0 for t ^ b may be treated in a similar way. 

Let a and ß (b < a < ß) be consecutive zeros of y(t) such that y(r) > 0 for / є 
є (a, ß). From Lemma 2.3 it follows that there exists a Xi > 0 such that z(t) — At y(f) 
has a double zero at tx є(а , ß). Clearly, z(t) — At y(r) is a solution of (NH) and 
hence is nonoscillatory. We claim that there exists a point c > tt such that z(t) — 
- X1 y(t) > 0 for t ^ c. Indeed, if z(t) - kx y(t) < 0 for t ^ c, then 0 < z(t) < 
< li y(t) for t ^ c. This contradicts the fact that y(t) is oscillatory. 

Let a1 and ß{(c < ai < ß^ be two consecutive zeros of y(t) such that y(t) > 0 
for r e ( a j , ^ J . Hence there exists a / 2 > 0 such that z(t) — Á2 y(t) has a double 
zero at t2e(ccuß1\ Now z(t2)-)^y(t2)>0 and ^ ( ř 2 ) - l 2 < y ( ř 2 ) = 0 imply 
that A2 > Aj. This in turn implies that z(^) — 12 y{t^) < 0. However z(t) — k2 y{i) 
is positive at / = а and t = ß. Since z{t) — X2 y{i) is continuous, then it has at least 
two zeros in (a, ß). So (NH) admits a solution z(t) - X2 y{t) which has (l , 1, 2) -
distribution of zeros, contradicting Lemma 2.5. 

Thus the theorem is proved. 

Corollary 2.7. Suppose thatf(t) does not change signfor large f, (H) is of C, and 
(NH) rfoc5 /?o/ admit a solution with (2.2) — distribution of zeros. Then (H) is 
oscillatory ifand only i/ (NH) is oscillatory. 

This follows from Theorems 2.2 and 2.6. 

In the following we obtain sufficient conditions in terms of coefficient functions 
and the forcing term so that (H) is of C{ and (NH) does not admit a solution with 
(2.2) — distribution ofzeros. 

Theorem 2.8. Suppose that p(t) ^ 0, p'(t) ^ 0 , / ( i ) ^ 0 ahdf(t) й 0. / / 

(2) (r(t)z')' + q(t)z = 0 

is nonoscillatory, then (H) is ofCx and (NH) does not admit a solution with (2.2) — 
distribution of zeros. 

Proof. Let y(t) be a solution of(H) with y(cc) = / ( a ) = 0 and y"(a) > 0, а > a. 
We claim that y(t) > 0 for t є (а, а). If not, there exists a point ß e (a, a) such that 
y(ß) = 0 and j( i ) > 0 for í є (ß, а). So there is a point c є (ß, а) such that / ( c ) = 0 
and y'(t) < 0 for te(c,oi). Now multiplying (H) through by y'{t) and integrating 
the resulting identity from c to a, we obtain 

о = [КО/(0/Ш = 
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= Гс [КО (/V))2 - 4(t) (y'(t))2] àt - Гс p(<) ><') y'(t)àt > 
>i:[r(t)(y"(t)Y-c,(,)(y'(t)r]dt>o, 

since (2) is nonoscillatory (see [10]), a contradiction. Hence (H) is of c , . 
If possible, let y(t) be a solution of (NH) with y(u) = 0 = / ( a ) and y(ß) = 0 = 

= y'(ß), a < oc < ß. Let v(i) > 0 for t e (a, ß). Now multiplying (NH) through 
by y'{t) we get 

(3) [r(t) /(t) y"(t)]' = r(t) (y"(t)Y - q(t) (y'(t)f + 

+ f(t)y'(t)-p(t)y(t)y'(t). 

Integrating (3) from a to ß, we have 

0 = [r(t) y'(t) y"{t)t = 11 [r(t) (y"(t)f - q(t) (y'(t)Y] dt + 

+ lU{t) y'(t) dt - JJ p(t) y(t) y'(t) dt > [f(t) y(i)]J -

- Jf/'(r) y(t) dt - i[p(t) y\t)l + i j ; p'(t) y*(t) dt > 0 , 
a contradiction. If y(t) < 0 for r e ( a , ß ) , then there exists а ce(ot.ß) such that 
y'(c) = 0 and / ( f ) > 0 for t є (c, ß). Now integrating (3) from c to ß, we get 

o = [r(t)y'(t)y''(t)]* = j? [K0(/'(0)2 - <?(0(/(0)2]d' + 

+ j f / ( 0 / ( i ) d r - ^ p ( O K O / W d ' > o , 
a contradiction, which completes the proofofthe theorem. 

Remark . Theorem 2.8 holds iff(t) ^ 0 is continuous and f'(i) exists almost 
everywhere with f'(t) g 0 whenever it exists. 

The following result is analogous to a result due to Skidmore and Leighton [14] 
in second order case. 

Theorem 2.9. Suppose that p{t) ^ 0, p'(t) ^ 0,/(f) ^ 0 andf'(t) ^ 0. 77ien 

(4) j / " + p ( O v = / ( 0 

admits an oscillatory solution. 
Proof. From Theorem 2.8 it follows that y'" + p(t) y = 0 is of C, and (4) does 

not admit a solution with (2.2) — distribution ofzeros. Since j 0 0 p(t) ât = oo,. from 
Theorem 1.3 due to Lazer [9] it is clear that the equation y'" 4- p(t) y = 0 is oscillato­
ry. Hence (4) is oscillatory (by Theorem 2.6). 

Following examples illustrate above results. 

Example 1. Consider 

(5) y»-Ly> + t2y = e-*9 ,g> 1 . 

r 
Clearly, 1 

y'" - - y' + t2y = o 
r 

is oscillatory (Theorem 1.3, [9]). So (5) admits an oscillatory solution. 
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E x a m p l e 2 . Consider 

(6) y"+^y' + ty = e-', t^2. 
r 

Clearly, 

z" + - z = 0 
t3 

is nonoscillatory (p. 45, [l5]). 
Since 

DH]d'-»' 
from Theorem 5.12 due to Hanan [4] it follows that 

У'" + \ У' + ty = 0 
ř3 

is oscillatory. Consequently, (6) is oscillatory. 

Theorem 2.10. Suppose that p{t) g 0, p'(t) ^ 0, f(t) ^ 0, / ' ( / ) ^ 0, r'(i) ^ 0 
and 2 p(t) — q'{t) > 0. If(2) is nonoscillatory, then (H) is of C, and (NH) does «o/ 
admit a solution with (2.2) — distribution ofzeros. 

Proof. The proofthat (H) is o fC, is similar to that ofTheorem 2.2 due to Hanan 
[4] and hence is omitted. 

Let y(t) be a solution of (NH) with y(oc) = 0 = / ( a ) and y(ß) = 0 = y'(ß), 
a < oc < ß. Let y(t) > 0 for t є (а, ß). There exists а c є (a, ß) such that / ( c ) = 0 
and y'{t) > 0 for t є (a, c). Now integrating (3) from a to c, we get 

0 = [r(t) y'(t) y"(t)l = Ц [r(t) (y"(t)Y - q(t) (y'(t)Y] ât + 

+ %f{t) y'(t) àt - ц p(t) y{t) y'(t) dt > о , 

а contradiction, Ify(t) < 0 for t є (а, ß), then we integrate the identity (3) from a to ß 
to get 

0 = [r(t)y'(t)y"(t)]i = ff [r(t){y"{t)f - q(t)(y'(t)Y] d, + 

+ ttf(t)y'(t)dt-ttp(t)y(t)y'(t)dt> 

> iAt)y(t)I - tf'{t)y{t)dt - ì[p(t)y2№ 
+ ittp'(t)y2(t)dt>0, 

а contradiction, which completes the proof of the theorem. 

Example . Consider 

(8) / + 7 / - V - c ' , ^ 1 . 
r r 
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Clearly, the equation z" + (2|t3) z = 0 is nonoscillatory (p. 45, [l5]) and 2 p(t) — 
— q'(t) = 4/ř4 > 0 for t ^ 1. So the homogeneous equation associated with (8) 
is ofC, and (8) does not admit a solution with (2.2) — distribution ofzeros. 

Proposition 2.11. Suppose that (H) is of C,. Equation (NH) admits a solution y(t) 
on [a, oo) satisfying y(ot) = 0, y(ß) = / ( ß ) = 0, я ^ a < ß. 

Proof. Let y(t) be а solution of (NH) on [a, oo) satisfying y(ß) = y'(ß) = 0. 
If y(oc) = 0, then y(t) is the required solution. Suppose that y(ot) Ф 0. Let z(t) be 
a solution of (H) satisfying z(ß) = z'(ß) = 0, z"(ß) > 0. Since (H) is of C„ then 
z(i) > 0 for t є (а, ß). Setting Я = y(a)|z(a) and x(í) = y(í) - Я z(i), we see that 
x(t) is a solution of (NH) with x(a) = 0 and x(ß) = x'(ß) = 0. Thus x(t) is the 
required solution. 

Hence the proposition is proved. 
If {uu u2, u3) is a solution basis of(H), then the particular solution yp(t) of(NH) 

is given by 

yJti = - Г -
)aW{$ 

M,(i) U2(t) M3(ř) 
M i ( s ) "2(s) M3(s) 
M',(s) u ; ( s ) M3(s) 

/(s) às, 

where 

W(t) = 
ui(t) 
*t(t) 
ru'[{t) 

u2(t) 
u2(t) 
ru'2(t) 

иэ(0 
"i(0 
^3(0 

Clearly, vp(a) = 0, y'p(a) = 0 and ^ ( f l ) = 0. 

Remark . From Proposition 2.11 or from the above observation, it is clear that 
the equation (NH) is not disconjugate in [a, 00). 

Theorem 2.12. Suppose that (H) is of C, and (NH) does not admit a solution with 
(2.2) distribution of zeros. If (H) is oscillatory, then every solution of (NH) with 
two zeros (counting multiplicities) is oscillatory. In particular, yp(t) is oscillatory. 

Proof. Let y(t) be а solution of (NH) on [a, 00) such that y(oc) = 0 = y(ß)9 

a ^ a < ß. If possible, let y(t) be nonoscillatory. So there exists a b > ß such that 
y(t) Ф 0 for t ^ b. Let z(i) be a solution of (H) on [a, 00) with z(a) = 0 = z(ß). 
From Theorem 3.4 due to Напап [4] it is clear that z(t) is oscillatory. Let tl and 
t2(b < tx < t2) be two consecutive zeros of z(t). So there exists a constant k 4= 0 
such that y(t) — À z(t) has a double zero at a є (ř,, ř2)- Thus (NH) admits a solution 
>'(/) — X z(t) with (1, 1, 2) — distribution ofzeros, contradicting Lemma 2.5. 

If y(t) is a solution of (NH) on [я, oo) with j;(a) = 0 = / ( a ) , a ^ a and ^(i) ф 0 
for t ^ ò > a, then we choose z(i) to be а nontrivial solution of (H) with z(a) = 
= 0 = z'(a). In this case (NH) admits a solution y(t) — X z(t) with double zeros 
at a and a. Ifj>(f) - Я z(ř) Ф 0 for t є (a, c), then (NH) admits a solution with (2, 2) — 
distribution of zeros. If y(t) — Я z(t) admits zeros in (a, a), then y(t) — Я z(i) has 
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( l , 1, 2) — distribution ofzeros. In either case we obtain a contradiction. Hence y(t) 
is oscillatory. 

This completes the proofofthe theorem. 

Theorem 2.13. Suppose that (H) is of C, and (NH) does not admit a solution with 
(2, 2) — distribution ofzeros. / / ( H ) is oscillatory, then (NH) admits a nonoscillato-
ry solution with a single zero. 

Proof. It is possible to define (see Proposition 2.11) a sequence (yn(t)} ofsolutions 
of(NH) on [я, oo) satisfying yn(a) = 0 and y,,(n) = 0 = y'n(n), where n is a positive 
integer greater than a. Since (NH) does not admit a solution having (2.2) — or 
(1, 1, 2) - distribution of zeros, y'n(a) Ф 0 and yn(t) Ф 0 for t e (a, n). 

We may write, for t e [a, co), 

yn(t) =s vP(t) + Kn tti(0 + /2n w2(0 + hn «з(0 , 

where AlM, A2„ and А3и are constants. Choose a constant ^n > 0 such that 

/<,, = (l +A?B + AL + AU"1 / 2-
Setting x,,(i) = ^,, y„(r), we may write 

(9) x„(i) = A, yp(r) + cln u,(t) + c2„ w2(r) + c3n M3(ř), 

where c/w = ^„At„, / = 1, 2, 3. Clearly, 0 < /:„ g 1 and |c,-,,| ^ 1, 1 = 1, 2, 3, with 

^2 + с\щ + с|и + c\n = 1 . 

We may note that xn(a) = 0, x'n(a) ф 0 and xn(t) Ф 0 for ř є (a, n). Clearly, each of 
the sequences < ,̂,> and <£t„X * — 1> 2, 3, has a convergent subsequence. Thus <.x„> 
has a subsequence which converges uniformly in [a, 00). If x(t) = lim x„k(r), then 
from(9)weget Ик"°° 

jc(0 = fi yp(t) + Cj ut(t) + c2 w2(0 + c3 u3(t), 

where ^ is the limit of <^„k>, ct is the limit of <c(,lk> and p2 + cf + c\ + c\ = 1. 
Moreover, <Xk> converges uniformly to x'. Clearly, x(a) = 0. 

We may note that x(i) ф 0. Indeed, if x(t) = 0 and jw = 0, then from linear 
independence of uu w2, w3, we get cl = 0, c2 = 0 and c3 = 0, a contradiction. 
Ifx(*) = 0 and ß ф 0, then yp(t) is a solution of(H) and hence/(i) = 0, a contradic­
tion again. 

If p = 0, then x(t) is a solution of (H). Consequently, x(t) is oscillatory (see 
Theorem 3.4, [4]). If^u Ф 0, then x(t)|p is a solution of(NH). From Theorem 2.12 
it is clear that x(t) is oscillatory if x'{a) = 0 or x(b) = 0 for some b e(a, 00]. In 
what follows we show that x(t) oscillatory leads to a contradiction. Let a and ß 
(a < ot < ß) be two consecutive zeros of x(t) such that x(t) > 0 for t є (a, ß). We 
claim that x'(ß) Ф 0. If not, let x'(ß) = 0. If p = 0, then x{t) is a solution of (H) 
with x(ß) = 0 = x'(ß). So x(i) ф 0 for t < ß, a contradiction. If fi ф 0, then 
x(t)|y. is a solution of (NH) with (1, 1, 2) — distribution of zeros, a contradiction. 
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So our claim holds. Consequently, it is possible to find tx and t2 (t1 < ß < t2) such 
that x(fj) > 0 and x(t2) < 0. From the uniform convergence ofthe sequence <*„k> 
to x it follows that there exists an integer N > 0 such that x^(t^) > 0 and xnk(t2) < 0 
for nk > N. So xnk(t) has a zero in (tu t2). Thus y„k(t) is a solution of (NH) with 
(1, 1, 2) — distributionofzeros,acontradiction.Hence^ ф 0,x'(a) Ф 0andx(i) Ф Ö 
for ie( tf ,oo). Thus x(t)|fi is the required nonoscillatory solution of (NH) with 
a single zero at t = я. 

Hence the theorem is proved. 

Exa mple . Consider 

(10) y"' + y = 3>Q-<, i ^ 0 . 

Let a > 0. Clearly, y(t) = (t — a)e~* is a nonoscillatory solution of (10) with 
a single zero at t = #. From Theorem 2.8 it follows that (10) does not admit a solution 
with (2, 2) — distribution of zeros and y'" + y = 0 is of C,. Further, y'" + y — 0 
is oscillatory (see Theorem 1.3, [9]). 

3. In this section we assume/ to be a continuous function of bounded variation. 
f(t) is allowed to change sign. Our object is to show that oscillation of (H) implies 
oscillation of(NH). We begin with the following lemma. 

Lemma 3.1. Suppose that p{t) ^ 0 and q{t) ^ 0. / / y(t) is a solution of (H*) 
with y(oc) = 0 = / ( a ) and {ry')' (a) > 0, а є [a, oo), then y(t) > 0, y'(t) > 0 and 
(ry')'(t) > 0for t > a. 

Proof, (ry')'(t) continuous and (ry')'(oc) > 0 imply that there exists a ô > 0 
such that (ry')' {t) > 0 for / є [а, а + ô). This in turn implies that y'(t) > 0 in 
(a, a + ô) and hence y(t) > 0 for / e (a, a + ô). 

We claim that y(t) > 0 for t є (а, oo). If not, there is a ß > a such that y(ß) = 0 
and y(t) > 0 for te(oi,ß). So (r(t)y'{t))' + g(f)>'(i) is nondecreasing in [a ,ß) . 
Hence {r(t) y'{t))' > 0 for t є [а, ß] . On the other hand, there is a t\ є (а, ß) such 
that y'{tx) = 0. Consequently, there exists a Г 2 є ( а , ^ ) such that ( r / ) ' ^ ) = 0, 
a contradiction. Hence our claim holds. This in turn implies that y'{i) > 0 and 
(ry')' (t) > 0 for / є (а, oo). 

Hence the lemma is proved. 
We have assumed {ui9 u2, u3] to be a solution basis of(H). Suppose that 

u,(a) = 1 , u[(a) = 0 , u[(a) = 0 , 

u2(a) = 0 , u2(a) = 1 , u2(a) = 0 , 

u3(a) = 0 , u'3(a) = 0 , r(a) и"ъ{а) = 1 . 

So W{t) = t. Suppose that (H) is oscillatory. So u2(t) nad u3(t) are oscillatory solu­
tions of(H)(Theorem 3.4, [4]). Clearly, W{(t) = u2(t) u3(t) - u3(t) u'2(t) is a solution 
of (H*) with Wx(a) = 0, W[{a) = 0 and (rW[)' (a) = 1. From Lemma 3.1 it follows 
that W^t) > 0 and W[{t) > 0 for t > a. Uy(t) is a solution of(NH) such that y(t) = 
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3 
= yP(t) + Yj ci w t(0' where cu c2 and c3 are constants, then it is easy to see that y(t) 

i= і 

is a solution of 
(11) (R(t)x')'+Q(t)x = F(t), 

where 

R(t) = ^ - , 0 ( 0 = q{t) WÁt) + (r(t) m ) ' W W2(t) *K} r{t)Wt{t) 

and 

m = ^ ^ ^ i c ^ r a f ( s ) W ^ s ) d s ] . 

r(t) W, {t) 

Further, u2(t) and u3(t) are solutions of 

(12) (R(t) х'У + 0 ( 0 x = 0 . 

Hence (12) is oscillatory. 
Theorem 3.2. / / p(t) ^ 0, q(i) й 0, f{i) ^ 0 a«J J " / ( i ) d i = °°> then еѵегУ 

nonoscillatory solution o / (NH) is positivefor large t. 
Proof. Let y(t) be a nonoscillatory solution of (NH). On [a, oo). If possible, 

3 

let y(t) < 0 for t ^ b > a. lfy(t) = yp(t) + Y< ci M/(0> where c l5 c2, c3 are constants, 
i = i 

then y(t) is a solution o f ( l l ) . Hence y(t) satisfies 

(13) (я(()х')' + Г е ( 0 - ^ 1 * = 0 

for í ^ b. Now, for í > b, 

|lf(s) W,(s) ds > J*/(s) Wtfs) d5 + Wtfft) f , / (s) d5 , 

because И і̂'(і) > 0 for ř > a. So from the hypothesis it follows that 

Ci + f . / ( i ) W i ( s ) d s > 0 

for large ř. Since 

e(0 < e(0 - ^ 
n0 

for large t and (12) is oscillatory, then (13) is oscillatory for large t. Consequently, 
y(t) is oscillatory for large t. This contradiction completes the proofofthe theorem. 

Theorem 3.3. Suppose that p(t) ^ 0, p'(t) ^ 0 and q(t) ^ 0. Let f(t) be a con-
tinuousfunction of bounded variation withf(a) ^ 0 and Ĵ 0 | / ' ( 0 | dt < oo. / / ( H ) 
is oscillatory, then (NH) is oscillatory. 

Proof. Since/ (0 is a function ofbounded variation,/(a) ^ 0 and j"^0 | / ' (0 l ^ < 

< oo, then it is possible to write f(t) = gt(t) — g2(t), where g^t) and g2(t) are 
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nonegative monotonie decreasing functions. Further, f(t) continuous implies that 
gx{t) and g2(t) are continuous. Setting fi(t) = 1 4- gx(t) and f2(t) = 1 4- g2{t), 
we see that/ j(r) and / 2 ( i ) are positive, monotonic decreasing, continuous functions 
such that 

/(O=/1(O-/2(O> 
tfh{t)at = « and tf/2O)d'= «>• 

Now we consider two equations. 

(NH,) {r{i) у")' 4- q(t) y' 4- p(t) y = f,{t) 

and 
(NH2) (r(t) y")' + <y(i) y' + p(i) j ; = / 2 ( 0 . 

From Theorem 2.8 it is clear that neither (NH t ) nor (NH2) admits a solution with 
(2, 2) - distribution ofzeros. Further, each o f ( N H j and (NH2) admits a nonoscil-
latory solution (see Theorem 2.13) and this nonoscillatory solution is positive for 
large t (see Theorem 3.2). Let these solutions be y^t) and y2(t) respectively. Let 
yt(t) > 0 and y2(t) > 0 for t ^ b > a. 

Let u(t) be an oscillatory solution of (H). Let a t and ß^b < aí < ßx) be two 
consecutive zeros of u(t) such that u{t) > 0 for t e (oq, ßi). So there exists a XY > 0 
such that the function y^t) — Xl u(t) has a double zero at t1 efaußi). Further, 
let a2 and ß2(b < a2 < ß2) be two consecutive zeros of u(t) such that u(t) < 0 for 
/ є (a2, ß2). So there exists а Я2 > 0 such that the function y2(t) 4- X2 u(t) has 
a double zero at ř2 є (a2, ß2). Let Я = max {Я1? X2}. Now y^tx) — X u(t^ ^ Уі(*і) — 
- І ! M(rO = 0, yfa) - Я u(aO = У і ( а 0 > 0 and ^(jS,) - Я w()80 = yi(ßt) > 0 
imply that the function y^t) — X u(t) has at least two zeros (counting multiplicities) 
in (a j ,^ i ) . Similarly, the function y2(t) 4- Xu{t) has at least two zeros (counting 
multiplicities) in (a2, ß2). From Theorem 2.12 it is clear that each of y^t) — X u(t) 
and y2(t) 4- X u(t) is oscillatory. 

Clearly, y^t) — y2(t) is a solution of (NH) and hence y^t) — y2(t) — Xu(t) is 
a solution of (NH). We claim that y^t) — y2(t) — X u(t) is oscillatory. If not, 
J>i(0 ~ 3^(0 - Л, w(0 > 0 for large t. Since y2(i) > 0 f ° r l a r S e ř> then y^t) -
— Я м(г) > y2(t) > 0 for large t, a contradiction to the fact that y^t) — Я w(ř) is 
oscillatory. If y^(t) - y2(t) - X u(t) < 0 for large ř, then 0 < y^t) < y2(t) 4-
4- Я u(t) for large i, which contradicts the oscillatory nature of the function y2(t) 4-
4- Я u(i). Hence our claim holds and this proves the theorem. 

Remark . In Theorem 3.3,/(r) is allowed to change sign. 

The following example illustrates the above theorem. 

Example . Consider 

(14) y'"-\y' + t2y = ^ , tZa, 
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where a = 2n + £я. So / ( a ) > 0. Clearly, 

fl( ч Cos ř 3 Sin ř ( / v, 1 3 
/ '(0 = ^ i ^ - and | / ' ( , ) | g - + _ . 

So/ ( / ) is a continuous function of bounded variation with 

\: |/'(0| d/ < » . 
From Theorem 1.3 due to Lazer [9] it is clear that the homogeneous equation 

y'" - 1 / + *V = 0 
r 

is oscillatory. Hence (14) admits an oscillatory solution. 
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