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SMALL SYSTEMS — ON APPROXIMATION OF COMPACT SETS
OF MEASURABLE FUNCTIONS TO COMPACT SUBSETS
OF C,_(X)

ELiza WaJcH, Lodz

(Received July 12, 1989)

It was realized in |3, 10, 13, 17, 18, 21, 25] that a great number of theorems in
measure theory can be formulated in terms of some systems of “‘small” sets, without
using any measure. After extending the notion of the convergence with respect to
a measure to the convergence with respect to a small system (cf. [13] and [18]),
the classical theorem of Fréchet on compact sets of measurable functions (cf. [2, 6, 9])
was generalized in [10] to sets of measurable functions, compact in the sense of the
convergence with respect to a small system. Some connections between sets of Borel
functions which are compact in the sense of the convergence with respect to an upper
semicontinuous small system of Borel subsets of a perfectly normal compact space
and uniformly compact sets of continuous functions were brought out in [25].
The present paper, being a continuation of [25], deals with an upper semicontinuous
small system (s,) on a og-algebra .# containing the o-algebra of Baire sets of
a Tychonoff k-space X. The main purpose of this article is to answer the question:
Under what assumptions on .#, (,) or X is an arbitrary family @ of .#-measurable
almost everywhere finite real functions on X compact in the sense of the convergence
with respect to (1,) if and only if the following property:

“For any positive integer n, there exists a set @* of continuous real functions on X,

being compact in the compact-open topology and such that, whenever f € @, one

can find an [* € &* with {x e X: f(x) & f*(x)} € 4,”
holds?

Similarly as [25]. the theorems obtained here generalize Kisynski’s result of [15;
Th. 1, p. 228]. Moreover, they lead to many problems which seem to be open and
will be listed at the end of the article. Let us mention that if u is a finite o-additive
measure on .7, and 4, = {A € : u(A) < 1/n} for n e N, then (s,) forms an upper
semicontinuous small system on .#; thus, various conclusions for finite measures can
easily be drawn from this work.

0. Preliminaries. Let .# be a g-algebra of subsets of a nonempty set X. Suppose
we are given a sequence (s,) of nonempty subfamilies of .# which satisfies the fol-
lowing conditions:
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(I) for any n e N, there exists a sequence (k;) of positive integers such that if

A; €y, for ieN, then U 4;€ 4,;
i=1
(10) for any ne N, A€ g, and Be ./ such that B = A, we have Be s,;
() for any ne N, A€ s, and Be ﬂ J;, we have A U Be s,;
i=1
(IV) 4, @ uu4, foreach neN.
The sequence (.,) is said to be a small system on 4 (cf. [3, 10, 13, 17, 18, 21, 25]).
If, in addition, (u,) has the property
(V) for any ne N and any nonincreasing sequence (A4;) of members of # \ g,
we have () 4; #+ 0,
i=1
then it is called an upper semicontinuous (abbr. u.s.c.) small system (cf. [17; Def.
18.29]). ”
Let us put v = () 4,. Obviously, s forms a g-ideal on .#. One says that a property

n=1
holds .-almost everywhere (abbr. s-a.e.) on X if the set of points not having this
property belongs to . Denote by F[.#, 5] the family of all s-a.e. finite ./Z-measurable
real functions defined on X.

0.1. Definition (cf. [13] and [18]). A sequence (f,) of functions from F[.Z, s]
converges with respect to the small system (s,) to a function f e F[.#, 4] if, for any
¢ > 0 and any m € N, there exists n, € N such that

{xeX: |f(x) — f(x)| > ¢} € o,

whenever n = n,.

0.2. Definition (cf. [10]). A family ® <= F[.#, 4] is called:

(a) compact in the sense of the convergence with respect to the small system (a,)
(abbr. (4,)-compact) if each sequence of functions from & contains a subsequence
converging with respect to (1,) to some function from F[.#, 5];

(b) compact in the sense of the convergence with respect to the g-ideal s (abbr.
s-compact) if each sequence of functions from & contains a subsequence converging
s-a.e. on X to some function from F[.#, s].

It was observed in [ 10] that s-compactness is equivalent to (s,)-compactness if and
only if (4,) is u.s.c. Further, we shall apply the following characterization of (s,)-
compactness obtained in [10]:

0.3. Theorem. Suppose (s,) is u.s.c. A family ® < F[ M, 5] is (s,)-compact if
and only if it satisfies the following two conditions:

(a) for any n e N, there exists a positive integer t such that {x € X: |f(x)| > t} € 4,
whener fe @ (i.e. @ is (s,)-equibounded);

(b) for any ¢ > 0 and any n € N, there exist a finite subfamily 2 of # and a col-
lection {A;:fe ®} < g,, such that \) {P: Pe #} = X and, for any Pe 2P and

620



fe®, we have |f(x) — f(y)| £ & whenever x,ye PN A, (i.e. @ is (s,)-equimea-
surable).

From now on, X will be a Tychonoff k-space, unless specified otherwise. The
symbol C._,(X) will stand for the algebra of all continuous finite real functions
defined on X, with the compact-open topology. By %(X), #(X), ¥*(X) and #*(X)
we shall denote the families of all open, closed, cozero and zero subsets of X, respec-
tively. The Borel c-algebra #(X) in X is the smallest g-algebra containing %(X),
and the Baire o-algebra #*(X) in X is the o-algebra generated by ¥*(X). Of course,
B*(X) = #A(X); however, the equality Z*(X) = #(X) need not hold. Other symbols
not defined here are standard. All topological notions used in this paper can be found
in [1, 5, 8, 22].

In the sequel, we shall always assume on the o-algebra ./ that it contains #*(X);
moreover, (.,) Wl” be a fixed u.s.c. small system on . Then C,_(X) = F[.#, J]

(recall that , = ﬂ J,,)

For a family <D < F[.#, ], denote by T(®) and T,(®) the following statements:
T(®): If & is (4,)-compact, then, for any n e N, there exists a compact set ¢* <
< C._o(X) such that, whenever fe &, there is an f*e ¢* with {xeX:

F(x) # [*(x)] € o
T,(®): If @ is s-compact, then there exists a sequence (®,) of compact subsets of
C._,(X) with the property that, for any sequence (f,) of functions from @,

L oG

there exists a sequence (f:) of continuous functions such that | | {x e X:
f.(x) # fX(x)} € s and f € @) for any ne N. m=1n=m
Let T~ '(®) and T, '(®) denote the implications converse to T(®) and T (¥), respec-
tively.
As it has already been mentioned, s-compactness is equivalent to (,)-compactness
because (.,) is assumed to be u.s.c., so one can expect that the following theorem
holds:

0.4. Theorem. T(®) <> T,(®) and T~ '(®) <> T, (P) for any & < F[.4, 5].
Proof. Consider any @ = F[.#, s]. By Lemma 1 of [18], there exists a sequence

(k,) of positive integers such that if A,€ s, for ne N, then |J 4, € s, for any
m e N. Suppose that, for any n € N, there exists a compact set @} = C,_,(X) with
the property that, whenever f € ®, we can find an f* € & such that {x € X: f(x) +

+ f*(x)} € 4. Let (f,) be any sequence of functions from . For each n € N, choose

£ e ) such that {x e X: f,(x) % f(x)} € . Then the set ﬂ U {xeX: f(x)
+ f7(x)} belongs to 4.

Conversely, assume that (&) is a sequence of compact subsets of C,_,(X) satisfying
the condition given in T,(®), and suppose that there exists n, € N having the property

that, for any n € N, there is an f, € @ such that {x € X: f,(x) * f*(x)} ¢ 4,, whenever

no
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f*e dF. Let £ e &} be such that the set 4 = ) U {x e X: f(x) + f(x)} belongs

m=1n=m

to s. Since | {xeX: f,(x) % f7(x)} ¢ 4,, for any m e N, the u.s.c. of (s,) implies

that A ¢ . The contradiction obtained, together with the equivalence of (,)-com-
pactness and s-compactness, completes the proof.

It follows from the above theorem that if & is a o-ideal on  such that Ty(®,)
(Tz (o), resp.) holds for some &, = F[.#, ], then T(®,) (T~'(®,), resp.) holds

for each u.s.c. small system (s,) on . such that & = () 4,. As was observed in [18],

n=1

there exist g-ideals which are not the intersection of any u.s.c. small system.

0.5. Remark. Let us put o" = {4 < X: there exists B(A4)es with 4 = B(A)},
s ={(ANB)UC: A€y, and B,Ces"} for neN, and #" = {(ANB)uU C:
Ae ./ and B. C e "} (in other words, .#* is the smallest g-algebra which contains
both .# and 4"). We shall call .#*, (5;) and 4" the completions of .#, (4,) and 4,
respectively. Without any difficulties one can check that (4, ) is an u.s.c. small system

@
on .#/" such that s = )4, ; furthermore, for any fe F[.#", "], there exists

n=1
geF[.#. ] with {xeX: f(x) + g(x)} € s*. Therefore, T~(®) (T:'(®), resp.) is
true for any @ < F[.4", 5*] if and only if T,(®) (T, '(®), resp.) is true for any
& < F[.4, 5]

In section 1 we shall give a necessary condition and a number of sufficient con-
ditions for .7, (4,) and X in order that T(®) be true for any ® < F[.#, 4], whereas
section 2 will bz devoted to sufficient conditions for ., (s,) and X in order that
T~ '(®) hold for any ¢ < F[4, 4].

1. The implication T(®). The symmetric difference of sets 4 and B will be denoted
by AAB.

1.1. Defiaition. The small system (s,) is called:

(a) regular ((x)-regular, respectively) if, for any A e # and ne N, there exists
Fe #F(X)n 4 (F e F%X), respectively) such that F = 4 and ANF € 5,5

(b) weakly regular (weakly (x)-regular, respectively) if, for any Ae .# and neN,
there exists F e #(X) n M (F e #*(X), respectively) such that AA F € g,

1.2. Example. Let us observe that if u is a two-valued Borel probability on X,
then putting 5, = {4 € #(X): u(A) = 0} for any n € N, we obtain a weakly (x)-regular
w.s.c. small system (s,) on #(X) (for any A e #(X), it suffices to consider F = X
if u(4) =1 and F = 0 otherwise); however, (s,) need not be regular. Indeed, the
Dieudonné measure on ®, + | equipped with the order topology is a two-valued
Borel probability on w, + 1 which fails to be regular (cf. [7; Example 5.5]).

1.3. Proposition. (a) The small system (s,) is regular ((x)-regular, respectively)
if and only if, for any A€ M and n € N, there exist F € #(X) n M and G € 4(X) n
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N M (F e 7*(X) and G € 9*(X), respectively) such that F = A < G and G\ F € 4,.

(b) The small system (,) is weakly regular (weakly (x)-regular, respectively)
if and only if, for any A€ . and ne N, there exists G e 4(X) n M (G € F*(X),
respectively) such that A A G € j,,.

Proof. Let us fix A€ .# and n,€e N.

(a) Suppose that (,) is regular ((x)-regular, respectively). There exists m e N
such that Bu C € .,, whenever B, C € j,. Choose sets F, He #(X)n 4 (F,H e
e Z*(X), respectively) such that F < A, H © XN A, ANF e s, and (XN A)\H € 5,
IfG=X\H, then 4 = Gand GNF < [(XNA)NH] U (ANF), so G\F € ,,,

(b) Suppose (.,) is weakly regular (weakly (*)-regular, resp.). Let us take a set
Fe F(X)n .4 (Fe F*X). respectively) such that (X\A)A Feg,. Then, for
G =X\F, we have AAGc .

1.4. Lemma. If </ is the collection of all sets A € # having the property that,
for any neN, there exist Fe #*(X) and G e %*(X) such that F < A < G and
G\ F e, then o forms u o-algebra containing B*(X).

Proof. Clearly, 7 is stable under complements. To show that it is stable under
countable unions, let us fix ny € N and take a sequence (k;) of positive integers such

n

that |J E; € 5,, whenever E; €, for ie N. Assume that 4;e o/ for ie N. There
i=1

exist sets F;e #*(X) and G, e 9*(X) such that F; ¢ A; = G, and G; \F € oy, ,,

for i e N. It follows from thc u.s.c. of (4,) that there is an my € N for which ( U F)\

no mo i=1

\( U F)) ey, PutG = U G;and F = |J F;. Obviously, G € ¥*(X) and F e #*(X)

i=1 i=1 x
(Cf. [8, 1.10 and 1.14]); moreover, F = {J A; = G and G\FcU(G NF)u
i=1
UU(F \F).s0 G\NFe€ .

Now, let us observe that if fe C._(X), then f~'(R\{0}) = U f;'(0) where
i=1
fi = min {|f| = (1/i), 0} for i € N; hence the u.s.c. of (5,) implies that f~'(R\ {0}) \

N U f7'(0) belongs to ., for some m e N. Consequently, *(X) < <.

i=1

1.5. Remark. With Lemma 1.4 in hand, it is not difficult to show that (4,) is
weakly (*)-regular ((*)-regular, respectively) if and only if, for any A € .# and n e N,

there exists B € #*(X) such that A A Be 4, (resp. B = A and A\ Be 4,).

1.6. Lemma. Suppose (.,) is weakly (x)-regular. If & = F[ M, 5] is (a,)-compact,
then, for any ¢ > 0 and ny e N, there exist a collection {A;: fe ®} < 4,, a con-
tinuous function h: X — [0, 1] and a real nhumber § > 0, such that, for any fe &
and x, y € X\ A, we have |f(x) — f(y)| £ & whenever |h(x) — h(y)| < 6.

Proof. Let us fix ¢ > 0 and n, € N. Choose a sequence (k;) of positive integers
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such that if A; € 4, for i € N, then G A; € 5,,. By Theorem 0.3, there exist collections
{P\,....,P,} = .4 and {E,: fe ¢l}:<lz Jk,» such that k")' P; = X and, for any fe &
andi = 1, ..., m, we have ]f(x) - f(y)| <e wheneverlle, yeP;\E,. It follows from
the weak (*)-regularity of (J,) that there exist sets F,-e_ﬂ"*(X) such that P;AF;e
€ j,,, fori=1,...,m Put By = F; and B, = F;\ le)le for i =1,...,m. Ac-
cording to Lemma 1.4, there exist Z; € #*(X) such that AZ:,-Ic B;and B;\NZ; € 4, .,

for i=1,...,m. Let A; = Equ (P;AF)uU (B NZ) for fed. Clearly,
i=1

{A;: fe @} = 4, Since any two dlSjOlnt members of #*(X) are completely separated

and #*(X) is closed under finite unions (cf. [8: 1.10 and 1.15]), there exists a con-

tinuous function h: X — [0, 1] such that h(Z;) = {1/i} for i = 1,...,m. Let us
put & = 1/(2m(m — 1)) and observe that, for any fe &, if x, ye X\ A, and
|h(x) — h(y)] < 8, then we can find ije{l,....m} such that x, y€Z, A P, s

If(x) = f(y)] = &

Now, we are in a position to prove the main theorem of this section.

L7. Theorem. T(®) holds for any ® < F[.#, ;] if and only if (s,) is weakly
(*)-regular.

Proof. To begin with, let us take 4 € .# and ne N. Denote by y, the charac-
teristic function of A4 and observe that if fe C._(X) is so chosen that {xeX:
x4(x) * f(x)} € 5,, then AAf (1) € 4,

Sufficiency. Let us assume that (.,) is weakly (x)-regular. Suppose that a family
& < F[.4, J] is (4,)-compact and take an arbitrary ny, € N. Choose a sequence (k;)
of positive integers such that ) E; € 4,, whenever E; € , for i € N. By Theorem 0.3,

i=1
there exists a positive integer ¢ such that {x e X: [f(x)] > 1} € 5, for any fe ®.
Applying Lemma 1.6, we find collections {A}:fe @} < . ,. continuous functions
i+ X — [0, 1] and real numbers §; > 0, such that, for any i e N and f € ®, we have
]f( — f(y)| £ 1/i whenever x, y e X \ A} and |h(x) — h(y)| £ J,. Let us put

h(x, Z lh h()l for x,yeX,

and A; = {xeX: |f(x)| >I}UUA} for fe®. Obviously, A;€ s, for fed.
=1

Following the construction carried out in the proof of Theorem 1 from [25] (cf.
also [15; proof of Lemma 1, p. 228]), we can find a nondecreasing bounded uniformly
continuous function g: [0, +0) - R such that g(0) =0 and |f(x) — f(y)| <
< g(h(x, y)) whenever f € @ and x, y € X \ A,. Let us define

f*(x) = sup {f(») = g(h(x, y)): ye X\ A;} for fed and xeX.
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Similarly as in [25; proof of Theorem 1] (cf. also [15; proof of Lemma 1]) we show
that the family {/*: fe (b} is equibounded and evenly continuous. To conclude the
proof, it suffices to apply the Ascoli theorem (cf. [5; Th. 3.4.20]) and to observe
that {x e X: f(x) # f*(x)} = A4, for any fe &.

While the Baire sets can be defined in any topological space X, if X is not com-
pletely regular, there is generally no meaningful relationship between #*(X) and the
topology of X; however, it is worth noticing that Theorem 1.7 remains true if X
is a Hausdorff k-space (not necessarily Tychonof).

1.8. Corollary. If .#/ = B*(X), then (s,) is (*)-regular; hence T(®) holds for any
b < F[-ﬂ, ./].

1.9. Corollary. If X is normal and (s,) is regular, then (3,) is weakly (*)-regular;
thus T(®) holds for any & < F[., ;).

Proof. Let us fix 4€ .# and ne N. Take sets Fe #(X)n .4 and Ge 4(X) n A,
such that F ¢ A < G and G\ F € 5,. The normality of X implies the existence of
an feC,_(X) such that F = f7'(0) and X\G = f~'(1). Then AAf '(0)
< G\F, hence AAf'(0) € 4,

Let 5 be a family of subsets of X. We say that A = X is Souslin-5# if, for each
feN and each pe N, there are sets H(f | p) e # depending only on f [ p (i.e.

f1 p)=H(g | p) whenever f ' p = g [ p) and such that A = FiH(f I p)
(cf. [22] and [7; p. 1002]). feN© p=1

The following lemma can be regarded as a special abstract version of Choquet’s
capacitability theorem (cf. [4; Th. 1, p. 84] and [7: Th. 10.8]).

1.10. Lemma. Suppose that # is stable under the Souslin operation. Let # < M
be a family which is closed under finite unions and countable intersections. Then,
for each Souslin-3# set A = X and any n € N, there exists an H ¢ A with H € ¢
and A\NH e,

Proof We shall use the same notation as in [7: proof of 10.8]. Let 4 =
= ﬂ H(fl\ ) where H(f |" p) € o for any fe N and pe N. We may assume

feNw p=
that H(f |" P))pen is @ decreasing sequence. If p, ne N and s € N”, let (s, n) e N**!
be such that (s, n) }\p = s and {s, n) = n; moreover, we define a map {(n):1 - N
by letting <n) (0) = n. For f, g € N* (« £ w), we writef < g to denote that f(n) <

< g(n) for each n e a. For s € N?, we set A(s) = ﬂHf[\q) feN°, f[\p = s}
and B(s) = U {A(r): reN”, r § s}. Then A( ) U A(¢s, ny) and B(s) =
L_J B({s, n)). Furthermore A= U A((n)) B({n ) and B(r) < B(s) for each

r,se NP withr < s.
Take an m € N and choose m, € N such that E, U E, € ,, whenever E,, E, € 5,
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Inductively, we shall construct an h € N® such that A\ B(h > p) € 4,,, for each pe N.

Let (k;) be a sequence of positive integers such that (J E; € 4,,, whenever E; € g,
i=1

for ie N. Since 4 = U B((n)) and B((n)) = B({n + 1)), it follows from the u.s.c.
of (s,) that there ex1sts n, e N with AN B((n;)) €. As B({n)) = U B((nl, ny)

and B({ny, n)) = B({n,;, n + 1), the u.s.c. of (4,) implies the ex1stence of n,eN
with B((n,»)\ B({ny, n,») € 4,. In this way, we can inductively define a sequence
ny, N, ... of positive integers such that B({ny, ..., n,))\B({nys ..o n,y D)€ 5,
for any peN. Let h(p — 1) = n, for peN. Then B(h |\p B(<{ny,....n,») and

ANB(h [ p) = [ANB({n))] v U [B((nl, e M)NB((nyy oo ni )], so

ANB(h [ p) € g, for any peN. The set H, = U {H(f ' p): feN".f < h} (peN)
belongs to #; moreover, A(f[*p) = An H for each fe N with [ < h (cf. [7;
proof of 10.8]). Consequently, B(h > p) = A~ H,, and hence, AN\ H € 3, for any

peN.Put H = () H,. Of course, H € # . Similarly as in [7; proof of 10.8] we show
p=1

that H < A. Since H,,; = H, for any pe N, it follows from the u.s.c. of (,) that

there exists poe N with H, \He€g,,. Then ANH = (ANH,)u (H, N H), so

ANH e g,

mo*

1.11. Lemma. Let &/ denote the family of all sets Ae 4 having the property
that, for any neN, there exists F e F*(X) with AAF € ;,. Then o/ forms a o-
algebra.

Proof. Let fix nye N and take a sequence (k;) of positive integers such that

U E; € 5,, whenever E; € j, for i € N. Consider any A € o/. There exists F € # F*(X)
i=1

with A AFej,. By Lemma 1.4, we can find He #*(X) such that H ¢ X\F
and(X\F)NH e 4,. Then XN A)AH < (AAF)U[(XNF)NH],s0(X\NA)AHe
€ 4,, and &/ is stable under complements.

To show that 7 is stable under countable unions, let us take A; € o/ (ie N) and
choose F; e ”'*(X) such that 4; A F; € s,, . for ie N. As (,,,) is u.s.c., there exists

mernth(UF) (UF)e% Then(UA)A(UF) U(A AF)u

i=1
m

u[(UF) (UF] therefore UA e.safbecause(UA)A(UF)GJ,,0

Let us recall that M, (a7 and ~ denote the completlons of M, (3,) and o,
respectively (cf. Remark 0.5).

1.12. Theorem. Suppose that # = B(X) has the following property:
(S) forany A < X, there exists Be #" such that A = Band B\ C € 5" whenever
Cedl” and A = C < B.
If, for any Ge%(X) and ne N, there exists a Souslin-F*(X) set H such that
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G A H € 3, then (3,) is weakly (x)-regular; thus T(®) holds for any & < F[.4, J].

Proof. It follows from [22; Th. 2.9.2, p. 41] that .# " is closed under the Souslin
operation. For G € @’(X) and ny € N, take a Souslin-ﬁ]*(X) set H such that GA He
€ g,, Wwhere m € N is so chosen that A U B € 4,, whenever A, B € 5,,. By Lemma 1.10,
there exists F € #*(X) such that F < H and H\F € ,,. Then GAF = (GAH)u
U (HNF), so GAFeg,,. Using Lemma 1.11, we obtain that (s,) is weakly (*)-
regular.

1.13. Theorem. Suppose that # = B(X) has the property (S) defined in Theorem
1.12. If, for any G € 4(X) and ne N, there exists a Souslin-F(X) set H such that
H < G and GNHe ), then (4,) is regular. Consequently, if we additionally
assume that X is normal, then T(®) holds for any & < F[.M, 5].

Proof. Arguing similarly as in the proof of Theorem 1.12, we deduce that, for
any G € 4(X)and n € N, there exists F € #(X) with F < Gand G\ F € ,,. Following
the proof of Lemma 1.4, we show that (4,) is regular. The proof will be completed
if we apply Corollary 1.9.

To obtain one more consequence of Theorem 1.7, we need the following

1.14. Definition. (cf. [7; Def. 2.3]). The small system (s,) is called t-additive
(weakly t-additive, respectively) if any family ¥~ = 9*(X), such that U{V: Ve v} e
e M (respectively |) {V: Ve ¥} = X), has the property that, for each n e N, there
exists a finite subfamily %} of ¥~ such that the set (U{V: Ve 7"} )\U{V: Ve 4} isa
member of s,

1.15. Proposition. If ./ = #*(X), then the weak t-additivity of (s,) is equivalent
to the t-additivity of (a,).

Proof. Suppose that (s,) is weakly t-additive. Let E € #*(X) and let E =
= {V: Ve ¥} for some ¥ = ¥*(X). Fix nye N and take m € N such that AU B e
€ 4,, Whenever 4, B € 4,,. By Lemma 1.4, there is F € #*(X) with F ¢ Eand EXF e
€y Then X = J {VU(X\F): Ve?}, so there exists a finite family # < ¥
with the set H = X\ {VU(X\F): Ve#} belonging to 4,. Then ExU {V:
Ved} = Hu (ENF), hence EX{J {V: Ve} is a member of ,,.

1.16. Theorem. Suppose that M = B(X). If (3,) is t-additive, then it is weakly
(*)-regular; consequently, T(®) holds for any ® < F[M, s].

Proof. Consider any G € 4(X) and ny e N. Choose m € N such that AU Be o,
whenever A, B € 4,,. As the space X is Tychonoff, there exists a family ¥~ = *(X)
such that G = |J {V: Ve ¥}. By the t-additivity of (s,), we can find a finite sub-
family % of ¥~ such that G\ H € 4,, where H = |J {V: Ve #}. By Lemma 1.4, there
exists F e #¥(X)with F « Hand H\ F € ,,. Then,since G\ F < (GNH) U (HNF),
we have G\ F € 4,,. Lemma 1.11 implies the weak (x)-regularity of (s,,).

Let us conclude studying the implication T(®) with the observation that various
abstract versions of the Lusin theorem on approximation of a measurable function
to a continuous function can easily be deduced from the results of this section. In
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particular, we obtain the following generalization of Theorems 3 and 4 of [21]
(cf. also [17; Th. 18.36]):

1.17. Theorem. Let (3,) be a weakly ()-regular u.s.c. small system on a c-algebra
M of subsets of a topological space X (not necessarily a Tychonoff k-space) such
that B*(X) = M. Then an s*-a.e. finite function f:X - Ry {+ o0} is M"-
measurable if and only if, for any ne N, there exists a continuous function
fur X = Rwith {xeX: f(x) * f,(x)} € 5.

The proof of the above theorem is similar to that of Theorem 1.7. Obviously, the
assumption of the weak (*)-regularity of (s,) is necessary in Theorem 1.17.

2. THE IMPLICATION T~ (&)

2.1. Theorem. If (s,) is weakly t-additive, then T~ '(®) holds for any & <
c Fl.#, J].

Proof. Let @ = F[.#, ;] have the property that, for any m e N, there exists
a compact set @, = C._ (X) such that to each fe ® we can assign some f,, € &,
with {x € X: f(x) #* f,(x)} € 4,. We shall show that & is (3,)-equibounded and (s,)-
equimeasurable (cf. Theorem 0.3).

Let us fix no € N and ¢ > 0. Choose m € N such that A U B € 5,, whenever 4, Be
€ Jp. As @, is compact in C,_,(X), it follows from the Ascoli theorem (cf. [5; Th.
3.4.20]) that, for each x € X, there exist a set V, € #*(X) and a positive integer t,,
such that xe V¥, and, for any fe® and yeV, we have |f,(y)| £ t. and
|fm(x) = fu(¥)] < /2. The weak t-additivity of (s,) implies that there exists a finite

k
Vs ooos Vi) of {V,: x € X} such that the set A = X\ U V,, belongs
i=1
to g, Let us put t = max{t,,....,t,} and A, = AU {xe X: f(x) * f.(x)} for
fe®. Of course, for any fe @, we have A, €q,, {xeX:|f(x)| >t} = 4, and
|[f(x) = f(v)] < & whenever x,ye V., NA; (i =1,...,k). Therefore & is (s,)-
equibounded and (s,)-equimeasurable. In view of Theorem 0.3, ® is (4,)-compact.

subcollection {

2.2. Proposition. If X has the Lindeldf property, then (s,) is weakly t-additive;
consequently, T~'(®) holds for any ® < F[M#, s].

Proof. It suffices to observe that if # = ¥*(X) is a countable cover of X, then,
since (4,) is u.s.c., for any n € N, we can choose a finite collection % < % such that
the set X \{J {W: We#"} belongs to 4,

2.3. Lemma. Let n, € N be fixed. Any point-finite family of M\ s, is finite.
Proof. Suppose &/ < . \ s, is infinite. Let {4,, 4,, ...} be an infinite countable

subfamily of «/. Since U A; ¢35, for any neN, the us.c. of (gn) implies that @ #
+ () U 4;, so & cannot be point-finite.

n=1i=n
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2.4. Proposition. Any point-finite family o/ < M \ s is countable. In particular,
any family of pairwise disjoint members of M \ s is countable, i.e. the pazr (A, 5)
satisfies the countable chain condition.

2.5. Proposition. If X is paracompact and the set {G e 9*(X): Gea} belongs
to 5*, then (s,) is weakly t-additive, so T~ '(®) holds for any ® < F[M, 5].

Proof. Consider any cover ¥~ = ¥*(X) of X and any n,eN. Let # = 9*(X)
be a locally finite refinement of ¥, By virtue of Proposition 2.4, the family # \ s
is countable. Since (.,) is u.s.c., there exists a finite family #" < % \ s such that the
set A=(U{U:Ueu)\NU {W: We#} be longs to 4,,. To each We# assign
some Ve~ w;th W< Vi, and put B =) {Vy: We#}. Then X\Bc Au
v {Ue«: Uce .}, s0X\Be jn. This implies that X\ Beag,, because X\ Be /.
Hence (J,) is weakly t-additive.

Since each open cover of a metacompact space has a point-finite open refinement,
applying Proposition 2.4 and arguing similarly as in the proof of Proposition 2.5,
we obtain the following

2.6. Proposition. Suppose that M < B(X) and X is metacompact. If the set
U {G e %(X): Ge .} belongs to s, then (3,) is weakly t-additive; thus T~ '(®) holds
Jor any & < F[.4, J].

It is known that, under the assumption of MA + T1CH, every locally compact
metalindeldf space satisfying the countable chain condition is Lindeldf (cf. [7; Coroll.
4.9]). Using this property, we shall prove

2.7. Proposition (MA + T1CH). Let X be a locally compact metalindeldf space.
If M = A(X) and the set \J {G e %(X): Ge s} belongs to s, then (s,) is weakly
t-additive; consequently, T™'(®) holds for any & < F[.4, 5].

Proof. Denote A = |J {G e 9(X): Ge s} and Y = X \ 4. Of course, Yis a locally
compact metalindz16f subspace of X. By Proposition 2.4, Y satisfies the countable
chain condition, hence Y is Lindelof. If ¥~ is an open cover of X, then there exists
a countable subfamily % of ¥~ which covers Y. For any n e N, we can find a finite
family %" < % such that the set (J {U: UeZ})\U {W: We #°} belongs to s,
then X \ | {W: We #} is a member of ,.

We shall say that a cardinal % carries a o-saturated o-ideal if there exists a o-ideal &
on the g-algebra #(x) of all subsets of %, such that each countable subset of % belongs
to £, x ¢ & and any family of pairwise disjoint members of 2(x)\ & is countable.

A cardinal »x will be called upper semicontinuous if there exists an upper semi-

@
continuous small system (&,) on () such that x ¢ ﬂ #,and () &, contains each
countable subset of . n=1 n=1
It follows from Proposition 2.4 that every upper semicontinuous cardinal carries
a o-saturated o-ideal. Of course, every real-valucd measurable cardinal (cf. [7;
p. 972] and [12]) is upper semicontinuous. Let us mention that in the ZFC set
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theory the statements ““there exists a real-valued measurable cardinal” and “there
exists a cardinal which carries a g-saturated o-ideal” are equiconsistent (i.e. if one
is consistent with ZFC, then so is the other) (cf. [12]). K. L. Prikry proved in [19]
that if the existence of a real-valued measurable cardinal is consistent with ZFC,
then it is consistent with ZFC that there exists a cardinal which carries a o-saturated
o-ideal without being real-valued measurable.

Let us recall that X is a weakly O-refinable space if each open cover of X has an

0
open refinement (J %, such that, for any x € X, there is a positive integer n, with

n=1

1= |{Ue,: xeU}| < o(cf. [1]).

2.8. Theorem (cf. [7; Th. 10.2]). Let X be a weakly O-refinable space. If M >
o %(X), and X contains no discrete subspace of upper semicontinuous cardinality
(in particular, if X contains no discrete subspace of cardinality carrying a o-
saturated c-ideal), then (s,) is weakly t-additive; consequently, T~ '(®) holds for
any & < F[ M, 5].

Proof. Let us consider any open cover ’1/' of X and any n, e N. By [1; Th. 3.6].
we can find families ¥"; = %(X) such that U ¥, is a refinement of ¥~ and, for each
x € X, there is a positive integer i, with |{Ve“//' : er}| JIF X = {xeX:

[{Vev :xeV}| =1}forieN,then X = U X ;. Furthermore, since the sets {x € X:

i=1
|{Ve v xe V}| = k} (i, ke N) are open in X, we have X, € #(X) for ie N. Let
us put ¥; = {Vn X, Vev;and Vn X;es} for ie N and suppose that Y; e
for any i € N. In view of Proposition 2.4, each of the families ¥, = {Vn X;: Ve v,
and Vm X ¢ 4} is countable, so, by the u.s.c. of (a,,) there exists a finite family
W < U W such that the set E = (| {W: WEU "//f,})\U {W: Wwe#} belongs

i=1

9y, 1O each We ¥ assign some Vy € ¥ w1th W< VW Then the set F =
=X\ U {Vy: We ¥} is a member of 4,, because F < E U U Y.

i=1
Suppose now that Y;, ¢ s for some iy € N. Since the family 2 = {Vn X, : Ve ¥,
and 0 + Vn X, € 1} con51sts of nonempty pairwise disjoint open subsets of X,O,
by assigning to each P e 2 some xp€ P, we obtain a discrete subspace D =
= {xp: P e 2} of X. The proof of the weak t-additivity of (,) will be completed by

showing that the cardinality of D is upper semicontinuous. Bearing this in mind, let
us define

={AcD:J{Pe?:xpcA}es,) for neN.

Without any difficulties one checks that (4;) forms a small system on #(D). If (4,)
is a nonincreasing sequence of members of 2(D) \ a,’f,o for some m, € N, then letting
B,= {Pe?: xpe A,} for neN, we obtain a nonincreasing sequence (B,) of
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members of Z(X)\ ,,. As 0 & () B,and any two distinct sets from £ are disjoint,
n=1 0

we have 0 # () A4,; hence ()) is u.s.c. Obviously, ) s¥ contains each countable

n=1 x n=1
subset of D for 2 < 4; moreover D ¢ () .y because Y; ¢ s. Consequently, |D| is
upper semicontinuous. n=t
Finally, let us note that only those parts of our theorems to whose proofs the
Ascoli theorem is applied require X to be a k-space.

3. OPEN PROBLEMS

3.1. Question. Do there exist a Tychonoff k-space X and an u.s.c. small system

(4n) on Z(X), such that T~'(®) holds for any ¢ = F[#(X), () 4,] but (s,) is not
weakly t-additive? n=1

3.2. Question. Can the assumption of the regularity of (y,) be replaced by the
assumption of the weak regularity of (u,) in Corollary 1.9?

3.3. Question. Does Theorem 2.8 remain true if we replace the assumption that X
contains no discrete subspace of upper semicontinuous cardinality by the assumption
that none of discrete subspaces of X is of real-valued measurable cardinality?

3.4. Question. Is every upper semicontinuous cardinal real-valued measurable?

3.5. Question. If a cardinal x carries a g-saturated o-ideal, is % upper semicon-
tinuous?

3.6. Question. Does there exist a' weakly Borel measure-complete Tychonoff
space X (cf. [7; Def. 7.1]) such that some u.s.c. small system on #(X) is not weakly
t-additive?

3.7. Question. Does there exist a measure-compact space X (cf. [7; Def. 14.3])
such that some u.s.c. small system on #*(X) is not t-additive?

3.8. Question. What are necessary and sufficient conditions for a o-ideal v on
a g-algebra ./ of subsets of a set X in order that an u.s.c. small system (g,) on &

exist, such that v = () 4,?
n=1
3.9. Question. What are necessary and sufficient conditions for a g-ideal s on the
Borel o-algebra #(X) of a Tychonoff space X in order that a regular ((*)-regular,
weakly regular, weakly (x)-regular, t-additive and weakly t-additive, resp.) u.s.c.

0

small system (s,) on #(X) exist, such that v = ) 9,?

n=1

3.10. Question. Do there exist a g-algebra .# of subsets of a set X and an u.s.c.
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small system (.;,) on .#, such that, for any finite o-additive measure p on .#, we have

(Ae.tt: p(A) =0} + N 5,2
n=1
3.11. Question. What are necessary and sufficient conditions for an u.s.c. small
system (,) on a c-algebra . of subsets of a set X in order that a finite o-additive

o0
measure 1 on . exist, such that {4 e .#: p(4) = 0} = () 4,?
n=1

It is not difficult to see that if (1,) is an u.s.c. small system on a g-algebra . and

if J¥ < ./ is a o-ideal on ./ that contains 5 = () .,, then, by putting
n=1
oy ={AUB: A€y, and Be.s*} for neN,
o
we obtain an u.s.c. small system (}) on . such that s* = () ,¥. In connection with
the above remark one can ask the following n=1

3.12. Question. Suppose that ; and ,* are o-ideals on a g-algebra .# of subsets
ofaset X.If s = s*and s = {A e #: u(A) = 0} for some finite o-additive measure p
on ., does there exist a finite o-additive measure p* on . for which J* = {A e ./:
w*(A4) = 0}?

Most of our questions are related to the general problem of the existence of a finite
strictly positive measure on a Boolean algebra (cf. e.g. [ 11, 14, 16, 20, 23, 24]).
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