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LATTICE ORDERED GROUPS WITH UNIQUE ADDITION
MUST BE ARCHIMEDEAN

JAN JakuBik, KoSice

(Received November 28, 1990)

In the present paper we will give an affirmative solution to a question proposed
in a recent paper by Conrad and Darnel.

The linearly ordered groups with unique addition were identified by Ohkuma
in [4]. Lattice ordered groups with unique addition were studied by Conrad and
Darnel [1] and by the author [2]. The analogous notion for cyclically ordered groups
was investigated in [3].

In [1], p. 19 it is remarked that every example thus far of a lattice ordered group
with unique addition is an archimedean lattice ordered group, and that it is an open
question whether or not a lattice ordered group with unique addition must be
archimedean. The same question was proposed in [5], p. 266 (Problem 16).

It will be shown below that the answer to this question is ‘YES’.

1. PRELIMINARIES

We recall the following definition (cf. [1], [2]):

A lattice ordered group G, = (G; <, +,) is said to have a unique addition if,
whenever G, = (G; <, +,) is a lattice ordered group such that the neutral element
of the group (G; + ) is the same as the neutral element of the group (G; +,), then
the operation +; coincides with the operation +,.

L.1. Lemma. (Cf. [1], Corollary 2.) If G, = (G; <, +,) is a lattice ordered
group with unique addition, then each automorphism t of the lattice (G; <) with
0t = 0 is a group automorphism.

The following assertion is easy to verify (cf. also [1]).

1.2. Lemma. Let G, = (G; <, +,) be a lattice ordered group with unique
addition. Then the group (G; +,) is abelian.
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2. AUTOMORPHISMS OF THE LATTICE (G; <)

Let G, = (G; <, +) be a lattice ordered group. As usual, we put
G*={geG:g=20}.
In this section some auxiliary results on the automorphisms of the lattices (G; <)

and (G*; <) will be established.
If x, ye G and x A y = 0, then the elements x and y are called disjoint.

The following lemma can be verified by a routine calculation.

2.1. Lemma. Let x and y be disjoint elements of G. Then the element x — y is the
(uniquely determined) relative complement of the element 0 in the interval [ —y, x].

2.2. Lemma. Let ¢ be an automorphism of the lattice (G*; £). For each x e G
put Y(x) = ¢(x v 0) — @(—(x A 0)). Then ¥ is an automorphism of the lattice
(G; =) with y(0) = 0.

Proof. Since ¢(0) = 0, the relation y(0) = 0 obviously holds.

Letx, ye G,x < y. Then we have x v 0 < y v 0, whence ¢(x v 0) < ¢(y v 0).
Analogously we obtain that —¢(—(x A 0)) £ —@(—(y A 0)). Thus ¥(x) < ¥(p).
Hence y is isotone.

Let t;,1,€G, Y(t;) < Y(t,). Tt is well-known that the elements t; v 0 and
—(t, A 0) are disjoint. Since ¢ is an automoprhism of (G*, <), the elements
o(t; v 0) and o(—(t; A 0)) are disjoint as well. Hence in view of 2.1, the element
Y(t,) is a relative complement of the element 0 in the interval [ —¢(—(t; A 0)),
o(t; v 0)]. An analogous assertion holds for y(t,). Hence

Y(t)) v 0= o(t; v 0), Y(t;) A 0= —o(—(t; A 0)),
Y(t) v 0= o(t, v 0), Y(t,) A 0= —o(—(t, A 0)).
Since Y(t,) < ¥(t,) we obtain that the relations

olty v 0) < ot v 0), —o(=(t; A 0)) < —g(~(t; A 0))

are valid. Thus 1, v 0 <t, v Oand t; A 0 £ t, A 0. Therefore ¢, < ¢,. In parti-
cular, if y(#;) = ¥(,). then 1, = t, and hence ¥ is a monomorphism.

Let xe G. Denote ¢ '(x v 0) = x;, ¢ '(—(x A 0)) = x,. The elements x,
and x, are disjoint. Put t = x; — x,. Then in view of 2.1 we have t v 0 = x, and
t A 0 = —x,, whence

Y(1) = o(x;) — o(x)) =(x v 0) + (x A 0) = x.
Thus  is an epimorphism.
In the remaining part of this section we assume that G; = (G; <, +,)is an abelian

lattice ordered group which fails to be archimedean. Thus there are elements a and b,
in G such that

0 <na<b,
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is valid for each positive integer n; this situation will be denoted by writing a < b,.
Let an element a with the described property be fixed. Denote

B, ={beG:a < b}.
Next, for each positive integer n we define by induction a subset B, of G* as follows:

B, is the set of all elements y € G* having the property that there exists ze B, _,
with z<yvz=<z+a.

Put B =) B, (n =0, 1,2,...). From the definition of B -we immediately obtain:

2.3. Lemma. B + 0, and the element 0 does not belong to B.
Let us consider the mapping ¢: G* — G* which is defined by

o(x)=x+a if xeB, and
o(x) = x otherwise .

2.4. Lemma. Let n€{0,1,2,...}, yeB,, y,€G, y < y;. Then y € B,.

Proof. We proceed by induction on n. The assertion obviously holds for n = 0.
Let n > 0 and suppose that the assertion is valid for B, _. Let z be as in the definition
of B,. Put

Z=z+(y, —).
Then in view of the induction assumption we have z’ € B,_;. Next,
Z<y,vzZ=z+a,

whence y, € B,.

2.5. Corollary. Let ye B, y, € G, y < y,. Then y, € B.

2.6. Lemma. The mapping ¢ is isotone.

Proof. Let y,, y, € G*, y, < y,. If either both y; and y, belong to B or both y,
and y, belong to G* \ B, then clearly ¢(y,) < ¢(»,). If ¥, € B, then in view of 2.5 the
relation y, € B is valid. Thus it suffices to consider the case y, ¢ B and y, € B; hence

e(y)=yi <y, <y, +a=0o(,).

2.7. Lemma. Let n€{0,1,2,...}, ye B,. Then y — a€B,.

Proof. The assertion obviously holds for n = 0. Let n > 0 and assume that the
assertion is valid for B,_,. Let z be as in the definition of B,. Put z’ = z — a and
y =y — a.Then z' € B,_{ and

Z <y vzZ<=z+4+a,
whence y’ € B,.
2.8. Corollary. Let ye B. Then y — a€ B.

2.9. Lemma. The mapping ¢ is a surjective monomorphism.
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Proof. Let ye G*. If y ¢ B, then ¢(y) = y. Next, suppose that y belongs to B.
Then in view of 2.8 the relation y — a € B is valid. Thus ¢(y — a) = y. Hence ¢
is surjective.

Let y,, y, € G*, y; * y,. Ifeither yy, y, € Bor yy, y, € G* \ B, then we obviously
have ¢(y;) # ¢(y,). Assume that y; € B and y, ¢ B. Then in view of 2.5, ¢(y,) =
= y1 + aeB. Next, ¢(y;) = y, ¢ B. Thus ¢(y1) + ().

2.10. Lemma. Let y,, y, € G*, ¢(y1) < o(y,). Then y, < y,.
Proof. If either y,, y,€ B or y;, y,€ Gt \ B, then y; < y,. Next, 2.5 and 2.7
yield that for each t € G* the relation
teB<¢(t)eB
is valid. Hence in view of 2.5 it suffices to consider the case y; ¢ B and y, € B. Thus
there exists n e {0, 1,2, ...} such that y, € B, and
o(y) =y, o(y2) =y, +a.
Therefore y, < y, + a. Clearly y; + y,.
Assume that y; <« y,. Then
Y2 <)yirVy; =y, +a.
Therefore y, € B,,; S B, which is a contradiction.

2.11. Lemma. The mapping ¢ is an automorphism of the lattice (G*; <).
Proof. This is a consequence of 2.6, 2.9 and 2.10.

3. UNIQUE ADDITION

3.1. Proposition. Let G, = (G; <, +) be an abelian lattice ordered group.
Assume that Gy fails to be archimedean. Then there is an automorphism  of the
lattice (G; <) with y(0) = O such that y is not a group automorphism.

Proof. Let ¢ be as in Section 2. By means of ¢ we construct the automorphism
as in 2.2. In view of this construction,

Y(x) = ¢(x) foreach xeG*.
Next, let the element a € G be as in Section 2. In view of 2.3, there exists b € B.
Then according to 2.5 we have 2b € B and thus
Y(2b) = 2b + a * 2b + 2a = 2 y(b);
hence ¥ is not a group automorphism.
3.2. Theorem. Let G, = (G; <, +) be a lattice ordered group with unique
addition. Then G, is archimedean.
Proof. According to 1.2, G, is abelian. By way of contradiction, assume that G,

fails to be archimedean. Let y be as in 3.1. By applying 1.1 we arrive at a con-
tradiction.
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