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For a group G and a quasigroup Q(-) on the same underlying set define
dist (G, Q) = card {(a, b) € G®; a . b + ab} and gdist (n) = min dist (G, Q), where
G and Q are of order n = 2, G + Q(*).

Some estimates of gdist (n) can be found in [1] and [2]. The upper bound of
gdist (n) given in this paper seems to be the best one known up to now.

1. CONFIGURATIONS

Let P denote the set of all (i, j, k)e Z®, i + j + k = 0, Z being the set of all
integers. Forany ie Z let b, = {(i.j, k) e P; j,keZ}, ¢; = {(j.i, k) eP; j, ke Z}
and d; = {(j, k, i) e P; j, k e Z}. A finite subset s of b; (or ¢; or d;) is called a segment
iff it has at least two distinct elements and z € s holds for any x, y, z € P such that
z=ax+(1—a)y, 0<a<1, x,yes. Two segments s,¢ are called parallel
ifscb,tc bj(ors cc,tccorscd,tc d;) for some i, j € Z.

By a configuration we mean any finite set S of segments where s N t = @ for any
parallel s, t€ S, s + t. The meet S A T of configurations S, T'is defined by S A T =
={snt;seS, teT, card(snt) = 2}. The join S v T is formed by uniting the
overlapping segments of S U T. (Formally, define ~ as the transitive envelope of the
relation r, where (s, tyer iff s,teSUT,snt+0ands,t are parallel. Segments
of S v T are the unions of equivalence classes of ~.) Further S < T iff for any se S
thereis te T with s < ¢.

Obviously, each segment has exactly two extreme points. If x = (x;), ¥ = (),
1 £ i £ 3 are the extreme points of a segment s and s < b; (or sScors e dj)
for some jeZ, we define A(s) = |x, — y,| = |x3 — »3] (or A(s) = |x; — yy| =
= lxs - Ya' or A(s) = le - }'1] = |x2 - J’2|)-

We call x € P a vertex of the configuration S, if there is such se S that x is an
extreme point of s, or x e s N ¢t for some s, t€ S, s + t. For a configuration S define
[S] = {xeP; xes for some se S} to be the set of its points.

For (i,j, k)€ Z®, i + j + k + 0 we define the triangle © with coordinates
(i, j, k) to be the configuration of those (three) segments which have their extreme
points in {(i, j, =i — j), (i, =i — k, k), (—=j — k,j, k)}. We put A(t) = |i +j + k|
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and call the segments of the triangle its sides. We have A(t) = A(s) for any side s
of the triangle 7. If A(t) = 1, 7 is called a basic triangle.

Any finite non-empty set of basic triangles will be called a region and for any
region L we define Compl (L) = Vt; 7 € Lto be its complete configuration. A con-
figuration S is said to be covered by Liff S < Compl (L).

For any triangle © denote by Reg (7) the set of all basic triangles contained in t
(these are the basic triangles with vertices Y a,0,, 0 < a, £ 1,Ya, =1,1<r <3,
v, being vertices of 7).

A region Lis said to be triangulated by a configuration S iff there are triangles t;,
i € I such that

(R1) Reg(t;) n Reg(t;) =0 forany i,jel, i+ j,

(R2) L= Reg(t;), iel and

(R3) S A Compl (L) = Vx,, iel.

Loosely spoken, the triangles t; partition L, are contained in S and cover any
segment of S restricted to L.

For any segment s < b,, r€ Z define half-planes s*,s™ by s* = {(i,j, k) e P;
i>r}and s~ = {(i,j,k)eP; i <r}. Similarly define s* and s~ for s < ¢, and
s © d,. The half-planes s* and s~ will be known as half-planes determined by the
segment s.

A configuration S is said to be binary at x, iff there exists a half-plane U determined
by s € S such that x e s and [¢] < U for all t € S with x € t. A configuration S is said
to be binary, if it is binary at all its vertices.

A configuration S is called a t-configuration iff it is binary and there is a triangle
7 < S such that Reg (7) covers S and S triangulates t.

Restating (R1—3) we get that S is a t-configuration provided it is binary and there
are a triangle 7 and triangles t;, i € I such that

(T1) Reg(t;)n Reg(z;) =0 forany i,jel, i +j,

(T2) Reg(z) = U Reg(x;), iel and

(T3) S =Vr, iel

The concept of the t-configuration is crucial for this paper and its study will be
resumed in the subsequent sections. In the rest of this section some easy observations
and auxiliary results will be formulated.

First, note that the definitions of a segment and a configuration might be extended
to the infinite case. Define an i-segment s to be a subset of b; (or ¢; or d;) such that
it has at least two distinct elements and z € s holds for any x, y, z€ P with z = ax +
+(l —a)y, 0<a<1,x,yes. Define an i-configuration to be any set S of i-
segments, where s N t = 0 for any parallel and distinct s, t € S. The definitions of A
and v might be directly extended to include the meet and join of i-configurations.
Now, it is easy to check that the i-configurations form a distributive lattice with the
minimum element @ and the maximum element I = {b,, ¢;, d;; i € Z}. The sublattice
of all configurations is generated by the atoms of this lattice. For any i-configuration S
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there exists (a unique) i-configuration S° such that S A S°=0 and Sv S° =1L
The set of i-configurations is therefore a Boolean algebra and we shall henceforward
use this fact. For configurations S and T we shall write S\ T instead of S A T°.

For a region L define its boundary by Bound (L) = V(o A 7), where ¢ € L and
T ¢ Lare basic triangles. Clearly, Bound (Reg (7)) =  for any triangle .

1.1. Lemma. Let L be a region, let s e Bound (L) and let x € s be an extreme
point of s. Then there exists t € Bound (L) such that s # t and x e 1.
Proof. Consider all six basic triangles with the vertex x.

1.2. Lemma. For any regions L,M we have Bound (Ln M) < Bound (L) v
v Bound (M).

Proof. If ¢ and t are basic triangles with 6 e Ln M and t¢ Ln M, then o € L
and T¢ M.

1.3. Lemma. For any two distinct triangles o,t with Reg(c)n Reg(t) + 0
there exists a segment s such that either {s} < o, {s} A1 =0 and {s] <
< Compl (Reg (7)), or {s} < 7, {s} A ¢ =0 and {s} < Compl(Reg(c)).

Proof. Consider ¢ = Bound (Reg(c) n Reg(t)) and denote o = o\ 1. By 1.2
¢ < Bound (Reg (¢)) v Bound (Reg(z)) <o v 1. Hence a <0, a A 7=0 and
o < ¢ < Compl (Reg (6) N Reg (1)) < Compl (Reg (7). If « * 0, choose any seg-
ment sea. Let now o\t = 0 = ¢\ o and let x, y be the extreme points of a segment
tep. Then ¢ £ o A 7 and hence by 1.1 x and y are vertices of both ¢ and 7. This
implies A(g) = A(t) and ¢ = 1, a contradiction.

A lIA

1.4. Lemma. Let t be a triangle and for x € P let r(x) = card {o € Reg (7); x is
a vertex of o} > 0. Then t(x) = 1 if x is a vertex of 7, r(x) = 3 if xe[t] is not
a vertex of v and r(x) = 6 if x ¢ [1].

Proof. This is obvious.

1.5. Lemma. Let K, L be such regions and S, T such configurations that

(i) S triangulates K and T triangulates L,

(i) KnL=09,

(iii) S\ Tis covered by K and T\ S is covered by L.
Then LU K is triangulated by Sv T and (S\T) v (T\ S) is covered by LU K.

Proof. Let (o;), i€l and (t;), je J be the hypothetized triangulating sets,
U Reg(o;) = K and J Reg(r;) = L. The union of these sets obviously satisfies
both (R1) and (R2). By (iii) TN\S < T A Compl (L) and hence (S v T) A
A Compl(K) = (S v (T\S)) A Compl(K) = (S A Compl(K)) v (T\S) <
< (S A Compl(K)) v (T A Compl (L)) = M. Similarly, (S v T) A Compl(L) <
< M, so that (R3) is satisfied as well. The rest is clear.

1.6. Lemma. Let S and T be two binary configurations and let W be the set of
vertices of S v T. Further, let A= Wn [S\T] and B=Wn[T\S]. Sv Tis
binary iff it is binary at each point of A N B.
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Proof. Choose x € Wand put L= {s; xes and A(s) = 1}. Obviously, S v Tis
binary at x iff (S v T) A L is binary (at x). If x¢ 4, then (Sv T) A L=TA L
and if x¢B, then (Sv T)AL=S AL TaALand S A L are binary by the
hypothesis.

2. QUASIGROUPS

2.1. Lemma. Suppose that a configuration S triangulates the region L. The
triangulating set (t;), i € I is then determined uniquely.

Proof. Let (t;), k€ K be another triangulation and let k € K, i e I be such that
7; # o, and Reg (1;) N Reg (a,) #+ 0. We may assume by 1.3 that there is a segment s
with {s} < 0, < S A Compl(L), {s} A t; = 0 and {s} < Compl (Reg(z;)). By (R1)
Compl (Reg(1;)) A 1; < 1, for any jel, and hence {s} < t; — which is a contra-
diction.

For the rest of this section let S be a t-configuration triangulated by (t;), i 1.
The triangle © with Reg(t) = U Reg(t;), i eI is also determined uniquely and we
denote it by 7(S). Further, we put deg (S) = card (I) and A(S) = A(z). The number
deg (S) will be known as the degree of the t-configuration S.

2.2. Lemma. Let x be a vertex of S and let d(x) = card {se S; x € s}. Then d(x) =
= 3if x is no vertex of 1(S) and d(x) = 2 if x is a vertex of ©(S).

Proof. Suppose that x is no vertex of 7(S) and choose x € S and a half-plane U
determined by s so that x € s and [t] < U whenever xeteS. Letog;, 1 i <3 be
all basic triangles with x € [o;] = U. Because x is not a vertex of 7(S), we have g, €
€ Reg (7(S)) and hence o, € Reg(r;,) for some j,el, 1 <i < 3. We put g, = 1;,
and it follows from the definition of U that [¢;] < U. For any 1 £ i < 3 consider
now the number r; = card {n € Reg(¢;); x € [n]}. By [#] = U we have r; < 3 and
r; = 3 implies o, € Reg(g;) for 1 £ k < 3. In such a case x would be no vertex
of S and so we have r; = 1 by 1.4. Hence x is a vertex of g; and ¢;, 1 < i < 3 are
pair-wise distinct triangles. The rest is clear.

2.3. Lemma. Let x be a vertex of S and let x € t{ and x € t, for segmentst, t, € S,
t, = t,. Then there is exactly one segment ty € S such that there are segments
s; St 1 <0 < 3with {s, 55,53} = 1, for some jel.

Proof. If x is a vertex of 7(S), consider the only 7;, j € I which has x as its vertex
Suppose now that x is not a vertex of (). To prove the existence, choose a segment s,
a half-plane U and triangles o, ¢;, 1 < i < 3 in the same way as in the proof of the
preceding lemma. For any k € {1, 2} there are two distinct j € {1, 2, 3} and a segment
5.,; such that s, ; < 1, and s, ; is a side of g;. Hence there exists j € {1, 2, 3} such that
sy,; €ty and s, ; S t,. Then g; is the sought triangle. If ¢ = {s,, s, 53} is another
such triangle, then x is a vertex of o, [¢] < U and ;. € Reg (o) for some 1 < j’ < 3.
Therefore ¢ = g;- and it is easy to see that j' = j.
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For a positive n € Z denote Z, = Z[nZ and let ¢ = ¢, be the natural projection
¢: Z — Z,. Further, assume that n = A(S). We easily obtain

2.4. Lemma. If s, t are two parallel segments of S, s < b;, t = b; (or s = ¢,
t<Sc;ors<d,tcd)), then §(i) = ¢(j) implies i = j.

We shall define now a new operation on Z,. We define ¢(i) * ¢(j) = ¢(k) if there
is a triangle 1,, r € I with the coordinates (i, j, —k), and ¢(i) * ¢(j) = ¢(i) + ¢(j)
if there is no such triangle.

Let t,, r €I have coordinates (i, j, —k) and t,., ' € I coordinates (i, j’, —k'). If
8(i") = 9(i) (or 9(7') = #(i) or $(K') = $(k)), we get = i (or J' = j or k' = k)
by 2.4. If i’ = i and j' = j, we have k' = k by 2.3. The operation * is therefore
correctly defined.

If u,v,weZ, are such that u * v = u *w and v + w, then either u*v ¥+ u + v
oru*w + u + w. Assume the former case occurs, and let the triangle z,, r € I have
the coordinates (i, j, —k), where ¢(i) = u and ¢(j) = v. If u x w % u + w, then there
is a triangle 1,., ¥ €I with coordinates (i’, j’, —k’) and ¢(i") = ¢(i), ¢(k') = (k).
As above, we get i’ = i, k' = kby 2.4andj’ = j by 2.3. Thenv = ¢(j) = ¢(j') = w
and we may assume u * w = u + w. Consider now the point x = (i, k — i, —k) e P,
which is a vertex of 7,. If x is not a vertex of 7, then we have x € s < ¢,_; for some
s € S by 2.2. Moreover, by 2.3 then there exist ' € I, k" € Z such that t,. has coordi-
nates (i, k — i, —k’). From u * v = u + w we obtain w = (u*v) — u = ¢p(k — i),
and hence ¢p(k) = u* v = u*w = ¢(k’). By 2.4 we get k = k', which is a contradic-
tion, as i + (k —i) —k =04+ i+ (k—i)— k'. If x is a vertex of 7, we use
another vertex of t to get a similar contradiction. Therefore u * v = u * w implies
v = wand we see that Z,(x) is cancellative. As it is finite, it is a quasigroup.

Let (i, j, —k) be the coordinates of 7,, reI. Then —k = i + j and ¢(i) + ¢(j) =
= ¢(k) iff |i +j — k| = n. This is the case iff card (I) = deg(S) = 1. (In such
acase Z,(x) = Z,(+).)

We denote Z,(*) by Z(S) and conclude

2.5. Theorem. Let S be a t-configuration with deg(S) > 1 and A(S) = n. Then
Z(S) is a quasigroup on Z, and dist (Z(S), Z,(+)) = deg(S).

3. TRAPEZOIDS

A configuration 3 will be called a trapezoid if there exist two distinct triangles o
and 7, which have a common vertex, Reg (o) < Reg(z) and 9 = (t\0) v (o\ 7).
Note that ¢ \ 7 contains only one segment, we shall denote it by s(9). The extreme
points x, y of s(9) are the obtuse vertices of 3 and we denote by m(3) = (x + y)/2 the
middle point of s(3). The other vertices of 3 are called acute and we put p(9) = A(o) =
= A(s(9)) and q(8) = A(r) — A(o). (The triangles  and o are clearly determined
uniquely for any trapezoid 9.) The segments of 3 are called its sides and we define
Reg (9) = Reg(7) \ Reg (o).
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We will extend any trapezoid 9, p(9) # q(9) to a configuration Z(9). The con-
figuration Z(9) contains a trapezoid z(9) distinct from 9 and this makes a repeated
use of the extension (it will be called the Z-extension) possible.

Let s = s(9), t, u, v be the segments of 3 and suppose that ¢ is parallel to s. (We
have p(9) = A(u) = A(v).) To define Z(9), three cases are distinguished:

A.

(A1)

(A2)

(B1)

(B2)

(1)

(©2)

Let q(9) < p(9). Define a segment w to be parallel to v and with extreme points
in snu and wn t. Denote by ¢, the triangle with sides u and w. Define
a segment y to be parallel to u and with extreme points in wn ¢t and y N s.
Denote by ¢, the triangle with sides w and y and let 2(9) =%vo voe =
= {s,t,u, v, w, y} and z(3) = {v, vy} U ({t} N o,) U ({s} N\ ¢,). Observe that
Z(9) = z(9) v o, Vv 0,, Reg(9) = Reg(o;) U Reg(o,) U Reg(z(9)) and
Reg (0,), Reg(g,) and Reg (z(9)) are pair-wise disjoint.

q(z(9)) = q(9) and p(z(9)) = p(9) — q(9).

Let 2p(9) = q(9) > p(9). Define a segment w to be parallel to v and with
extreme points in s N u and w N t. Denote by ¢, the triangle with sides u and w.
Define a segment y to be parallel to u and with extreme points in s n v and
y 0 w. Denote by g, the triangle with sides s and y and let Z(9) = 9 v ¢, v
Vo, ={s,t,u,v,w,y} and z(9) = {y, v} U ({t} N o) U ({w}\g,). Observe
that

Z(9) = z(9) v 01 v 0,, Reg(9) = Reg(o,) U Reg(o,) U Reg(z(9)), and
Reg (¢,), Reg(0,) and Reg(z(9)) are pair-wise disjoint.

q((3)) = p(9) and p(z(8)) = q(9) — p(9)-

Let q(9) > 2p(9). Define segments w and y so that they meet at a common
extreme point, w is parallel to v, y is parallel to u and the other extreme point
of w (or y)isin u n s (or v N s). Denote by ¢, the triangle with sides y and w,
and g,, 03, respectively, the other triangle with the side w, y, respectively.
Define a segment m to be parallel to s and ¢, and such that mnynw % 0
and the extreme points of m are in mnu and mnv. Let Z(9) = 3 v ¢, v
Vo,Vos=9%Vvo,Vvos=/{stuuvwy m}andz9) = {t,m}u

U ({u} N 0,) U ({v} N 03). Observe that m n y nw = {m(z(9))} and

Z(9) = z(9) v ¢; v 0, V 03, Reg(9) = Reg(o,) U Reg(g,) U Reg(03) U

U Reg(z(9)), and Reg (o), Reg(o,), Reg(e;) and Reg(z(9)) are pair-wise
disjoint.

q(z(8)) = a(¥) — p(8) and p(z(8)) = 2p(9).

Now we will list several properties of the Z-extension, all of which may be checked
easily:

3.1. Lemma. Let 3 be a trapezoid with q(9) + p(9).
(i) If x is a vertex of Z(9) and t’ such a segment that x e t' and t = 1’ for a seg-

ment t € Z(9), then x € 1.

(i) If x is an obtuse of z(9) and x € t € Z(9), then there is s < t such that x€s

and s is a side of z(9).
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(iti) If x is an obtuse vertex of z(9) and x is also a vertex of 9, then x is an obtuse
vertex of 3. Moreover, if then s is a side of 3 with x € s, then we have x e s' =
c s for a side s’ of z(9).

(iv) If x is a vertex of $ and x € [z(9)], then x is a vertex of z(9).

(v) If x is a vertex of Z(9) and x is neither a vertex of 9, nor a vertex of z(9),
then x = m(z(3)) and q(9) > 2p(9).

32. Lemma. Let § be a trapezoid with q(3) # p(9). Then Z(9) is a binary
configuration.

In the rest of this section we shall deal with trapezoids $ such that 2q(3) > p(9).
They satisfy some additional properties:

3.3. Lemma. Let $ be a trapezoid with q(9) + p(9) and 2q(9) > p(9) and let
n = z(9). Then 2q(n) > p(n). Moreover, from 2p(8) = q(9) it follows that q(n) =
z p(n).

Proof. Check directly the individual cases A, B and C.

3.4. Lemma. Let 3 be a trapezoid with p(9) + q(%) and 2q(9) > p(9). Then

m(9) ¢ [z(3)] and m(3) is never a vertex of Z(9).

Proof. Consider the set s(3) N [z(9)]. By the definition of Z(9) it is empty in the
case C and contains only one point in the case B — this point is a common vertex
of 3 and z(9). We have s(z(9)) = s(9) in the case A and s(z(9)) and s(3) have
a common extreme point. Moreover, A(s(z(9)) = p(z(%)) = p(9) — q(9) < p(9)/2 =
= A(s(9))/2, which implies m(9) ¢ [z(9)].

We shall construct now a t-configuration T(9) for any trapezoid $ with 2q(3) >
> p(9). Suppose that ¢ and t are the triangles with Reg(7)\ Reg(c) = Reg(9).
Put 9, = 9 and for i = 0 define 9,,, = z(9;) whenever q(%;) + p(3;). Then p(9;) +
+q(9;) > p(3:+1) + q(%;41) > 1 and therefore p(9,) = q(9,) for some k = 0.
Let sy, 5,, 53 and s, be the segments of 9, suppose that s; = s(9,) and s, is parallel
to s;. Then A(s;) = A(sy) = A(s3) = q(9) = p(9) and A(s,) = 2q(%). Let o;,
1 £ j < 3 be the triangle with one side equal to s; and Reg (¢;) = Reg(9,). We have
(D1) 9 = Ve, Reg(9,) = U Reg(e;) and Reg(o;) are pair-wise disjoint, 1 <

sj=s3
(D2) Q(‘gk) =p(%) = A(Qj)* l=j=3
For any 0 < j <k we put Z; = Z(9;) and Z, = Vp;, 1 £i = 3. We define
T(9) = (VZ;) v r, where 0<j<k, To=tv I and T;,, =(VZ)vr 0=
<i<j<k

3.5. Lemma. The following conditions hold for any 0 < j < k.
(i) Reg(t)\Reg(9;) is triangulated by T; and T;\ 9, is covered by
Reg (7) \ Reg (9;).
(i) [T [2,] = [9,] and T, 7 2, = 9,

(iii) If x is a vertex of T;,, which is not a vertex of T;, then x is a vertex of Z,.
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Proof. (i) For j = 0 we have Reg (t)\Reg (%) = Reg (o) and Ty\ 9, < 0. We
shall use induction for k = j > 0. By the definition of Z;_y, T;—; and by the in-
duction hypothesis we have 3, < T,_, A Z;, | < (Compl(Reg () \ Reg (9,_,)) v
v 9;_;) A Compl (Reg(9;-y)) = 9;_y. Hence T;_,\Z;_, = T;_y\9;_{ and
Z; NTj_y=Z; N3 Reg (SJ_,)\Reg (9;) is by (A1), (B1) and (Cl) trian-
gulated by Z;_, and it covers Z; ,\ 9,_,. Using the induction hypothesis we get
from 1.5 that Reg(7)\ Reg(9;) = (Reg(7)\ Reg(9;_,)) U (Reg(9;,-;)\ Reg(9,))
is triangulated by T; = Tj—y vV Z;_and T;\9,_, = (T;_(NZ;_,) V (Z;-(\T;_)
is covered by Reg (z)\ Reg(9). It follows from (A1), (B1) and (C1) that 3,_,\ 8,
is covered by Reg(9;_,)\ Reg(9,).

(ii) Obviously 8; < T; A Z; and Z; < Compl (Reg(9,)) for any 0 <) < k.
By (i) we have T;\9; < Compl (Reg(7)\ Reg(9;)) and the rest follows from
[Compl (Reg (9;))] n [Compl (Reg (r) \ Reg (9;))] = [9;]-

(it [T;+,] = [T] U [Z;] as T;,, = T; v Z,. If x is neither a vertex of T,
nor a vertex of Z;, then x € [T;] n [Z;] = [9,]. If x is not a vertex of [9,], then there
exists a segment s such that xes, {s} A 9; = 0 and either {s} < T, or {s} < Z,.
However, then xesn tforaside tof 9, < T; A Z;.

Note that up to now we have not used the assumed fact that 2q(9) > p(9).

3.6. Lemma. The following conditions hold for any 0 < j < k.

(i) 2a(9;) > p(9)),

(ii) if x is a vertex of T; and x € [9;], then either x is a vertex of 3;, or x = m(3;).

Proof. (i) follows from 3.3. To prove (ii) we use induction — the condition ob-
viously holds for j = 0, let it hold for some k > j = 0. If x is a vertex of T}, ,, then x
is a vertex of Z; or x is a vertex of T; by 3.5 (iii). If x € [9;,,] and x is a vertex of Z,
then x is either a vertex of 9;,, or x = m(9;,,) by 3.1 (iv) and (v). If x € [9;,,] is
not a vertex of Z;, then x is a vertex of T; and by 3.5 (ii) we have x € [9;],as [9;,,] =
< [Z,]. By the induction hypothesis x is now either a vertex of 9;, or x = m(9;).
In the former case x is a vertex of 9;,, by 3.1 (iv). In the latter case x ¢ [9,,,] by
3.4 — a contradiction.

3.7. Corollary. If x is a vertex of both T; and Z;, 0 < j £ k, then it is a vertex
of 9;.

Proof. From 3.5 (ii) we obtain x € [3;] and by 3.6 (ii) the only case to be considered
is x = m(9)). As Z; = Z(9,), it follows from 3.4 (if j < k) and from (D1) (if j = k)
that x is not a vertex of Z;.

3.8. Lemma. Let 0 < j < k. If x is an obtuse vertex of 3; and x €t for some
te T;, then there is a side s of 3; with s = 1.

Proof. For j = 0 such a side obviously exists, so we may proceed by induction
and assume 1 < j < k. If {t} A Z;_, + 0, then by 3.1(i) xe ¢, for some segment
ty€Z;_y, t; <t and 3.1(ii) may be used. If {t} A Z;_, = 0, then te T;_, and
x€[Z;-1]n[T;-,] = [9;-1] Thenx et n s, foraside s, of §;_, and x is therefore
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a vertex of T;_,. By 3.7 it is also a vertex of 9, and by 3.1 (iii) it is an obtuse vertex
of 9;_ . We obtain the assertion from the induction hypothesis and 3.1 (iii).

3.9. Lemma. T; is a binary configuration for any 0 < j < k + L.

Proof. We shall again proceed by induction, the case T, being obvious. Let us
assume that T; is binary for some j, 0 < j < k. Since T;,; = T; v Z;, we may use
1.6, as Z; is binary by 3.2 for 0 < j < k and Z, is binary too. We have [T;] n [Z;] =
< [9;], so by 1.6 only the vertices in [9;] need to be considered. Let x be such
a vertex and put L= V({s}; x e s and A(s) = 1). If x is not a vertex of 9,, it is by
3.5 (iii) and 3.7 either a vertex of T}, or a vertex of Z;. We have T; A L= T;,, A L
in the former case and Z; A L= T;,; A Lin the latter case, which implies that T;, ;
is binary at x in any case. Let now x be a vertex of 9; and s, ¢ the sides of 3; with
xes, xetand s # t. If x is an acute vertex of 9;, then Z; A LS T; A Land T},
is binary at x by the induction hypothesis. For x an obtuse vertex of 3; denote by U
and V those halfplanes determined by s and ¢, respectively, which have [Z;] « U
and [Z;] = V. By 3.8 and the induction hypothesis we obtain [T; A L] = U or
[T; A L] = V, and hence [T;,; A L] c U or [Tj4y A L] = V.

3.10. Proposition. Let 3 be a trapezoid with 2q(9) > p(9). Then T(3) is a t-con-
figuration.

Proof. T(%) = T,,, is binary by 3.9. From 3.5(i) and (D1) we obtain that
Reg (1) \ Reg(9,) is triangulated by T,, Reg($9,) is triangulated by Z,, T,\Z, =
= T,\ 9 is covered by Reg(7)\ Reg (%) and Z, is covered by Reg(%,). It follows
then from 1.5 that Reg (z) is triangulated by T(9), and as Reg (7) obviously covers
T(9), we conclude the proof.

3.11. Corollary. Let k = 0 and let p;, q;, a; be positive integers, 0 < i < k,

such that the following conditions are satisfied.
(i) 29; > p; forany k2 iz 0.

(ii) q; # p; for any k > i 2 0 and g, = p,.

(iii) ao = 1.

(iv) If q; < p;, then qiyy = Qis Pis1 = Pi — 4; and a; = 2.

(V) If 2p; = q; > pi, then qiyy = piy, Piv1 = q; — p; and a; = 2.

(vi) If q; > 2p;, then qiy = q; — Pi Pi+1 = 2p; and a; = 3.

Then there exists a quasigroup Q on Z,, n = p, + qo, such that dist (Q, Z,) =
=3+ Ya;, 0<i=< k. Moreover, for any positive integers p,q with 2q > p
there exist uniquely determined sequences p;, q;, a; satisfying (i—vi) and p, = p,
9o = 4.

Proof. Consider a trapezoid 9 with p(9) = p, and q(9) = g,. Then T(9) is a t-
configuration by 3.10 and 2.5 may be used. Hence p; = p(9;) and q; = q(9;). The
sequence a; expresses how many triangles of the final triangulation have been
constructed at a given step — cf. (Al), (B1) and (C1). As Z, by (D1) adds three
further triangles, we have deg (T(S)) =3+ Zai, 0<iZk
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4. SEQUENCES

Let p;, q;, a;, 0 < i < k be positive integers satisfying conditions (i—vi) of 3.11
and define u; = p; + q; and n = uq = py + qo.

4.1. Lemma. For any 0 < i < k the following implications hold:

(i) if q; < pi» then 3u;,, < 2u,,

(ii) if 2p; = q; > p;, then 3u;,, < 2u; and

(iil) if q; > 2p;, then u;yy = u,.

Proof. (iii) is obvious, (i) follows from 2q; > p; and (ii) from 2p, > q,.

4.2. Lemma. Let 0 < iy < i, < k + 1 be such that q; < 2p; for any i; < j < i,.
Then i, — iy < log, u, where u = u;, = u;.

Proof. Let r = p;;, s = p;, and m = i, — i;. Because s = 2™r and s[r < s +
+ 1 < u, we have m = log, (s/r) < log, u.

Put now j, = 0 and suppose that j; is defined forany 0 < i < sand 0 < j, < k.
If ujy > uy, let joog = min {0 <j<k;u;<u;}. If u; = u,, j; is the last member
of the sequence (j;) and we put r = s. Further, we put v; = u; forany 0<i=r.
Obviously, v; is a subsequence of u; and for any 0 < j < k there is exactly one
0<i<r with v, =u; Finally, for any 0<i=<r let g,=Ya, helheZ;
0<h<kandu, =v;}.

Using 4.1 we now list several properties of j;, v; and g;.

Mogj,<jyLkand n=uy=vy2v;> v, 2 u, =0, whenever
0Zi<h<Zr.

(2) vipqfv; £ 2/3 forany 0 < i < r.

(3) For0<i<rand 0= <k wehave ) g, = D a,.

It follows from 4.2 that j; ., — j; < log,v; for any 0 < i < r (set j,,, = k + 1
for this case). Hence g; < 3(log, v; — 1) + 2fori > Oand g, = 3(log, v, — 1) + 1.

By (3) we now have
(4) Ya; +3 <33 logyv) —r+2 where 0Sj<kand 0<i<r

By (2) v; < (2/3)" n, which implies Y log, v; = log, [ ] v; < log, n"*1(2/3) ¢+ /2 =
= (r + 1) (logy n + (r/2) (1 — log, 3)). Further, n = (3/2)" v, and from v, = 2 we
get r < (log, n — 1)/(log, 3 — 1). Therefore Y a; + 3 < 3(r + 1) (log, n — tr[2) —
—r+2=3logyn+2+r(3log,n —3 + rf2 =312 — 1), where t = log, 3 —
— 1> 0. For n = 3 we may choose py, go so that » > 1, and hence Zai +3 <
<3log,n + 2+ r(3log,n — 3t —1) < 3log, n + 2 + (log, n — 1) (3 log, n —

— 3t — 1))t = 3log3[t — 4log, nft + (5t + 1)/t. With respect to 3.11 we may
conclude:

4.3. Theorem. For any n =3 we have gdist(n) < Alogin + Blog, n + C,
where A = 3|t, B = —4/t, C = (5t + 1)/t and t = log, 3 — 1.

The constants A4, B, C can be computed and we obtain 4 ~ 5.13, B~ —6.84,
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C =~ 6.71. However, the exact values of A, B, C are probably not so important.
There are reasons to hope that gdist (n) < K log n for some K > 0. Note that by [1]
gdist (n) > elogn + 3 for any odd n = 3 and gdist (n) = 4 for any even n > 2.
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