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S. C. ArRORA and PAwAN BaLra, Delhi

(Received June 25, 1990)

An operator algebra o/ on a Hilbert space H is said to inherit finite strict multi-
plicity-n (FSM) [7] if the uniform closure of its restriction to every invariant sub-
space has finite strict multiplicity-n. .7 is said to be hereditarily strictly cyclic if the
uniform closure of its restriction to every invariant subspace is strictly cyclic [6].
The purpose of this paper is to study the properties of such operator algebras.

Throughout this paper, H denotes a separable (complex) infinite dimensional
Hilbert space, and B{H), the algebra of all bounded linear operators on H. By an
operator algebra o/ on H, we mean a strongly closed subalgebra of B(H)containing
identity I. If Te B(H), then .«/(T) denotes the algebra generated by Tand I. For any
subset 4 of B(H), Lat # denotes the lattice of all invariant subspaces of #. An
operator algebra # is said to be transitive if Lat # = {{0}, H}, and unicellular if
Lat 4 is totally ordered.

An operator algebra o is said to have finite strict multiplicity [3] if there exists
a finite subset I' = {x,, x,, ..., x,} of H such that

() ={Ax; + Ayx; + ... + A, X, A;ed} = H.

The minimum cardinality of all such sets I' is called strict multiplicity of o/. If of
has strict multiplicity 1, then o/ is said to be strictly cyclic [5]. & is said to satisfy
condition-S, [1] if A;x, + A,x, + ... + 4,x, =0, A;e o implies 4; = 0 for all
i=1,2,...,n. A vector x is said to be separating [5] for o if Ax =0, Ae s/
implies A = 0.

An operator Ton H is said to be of finite strict multiplicity if o/(T) is so. T'is said
to inherit FSM-n if «/(T|y) is of FSM-n for every invariant subspace M of T.
Operator T is said to be power bounded if there exists a positive real number M such
that |[T"|| < M foralln = 1,2,3,....

Eric J. Rosenthal [6] has proved that if T is a strictly cyclic operator, and M an
invariant subspace of T, then compression of Tto M* is strictly cyclic. He also proves
that if T is hereditarily strictly cyclic, power bounded with o(T) = {1,} where
|/{0| = 1, then T acts on a one dimensional space. Our first result carries the later
one to operators which inherit FSM.

Theorem 1. Let T inherit FSM-n and be power bounded. Let o(T) = {1,} where
|Ao| = 1. Then T acts on a space of dimension at most n.
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Proof. Replacing T by (1/4,) T, we may assume that A, = 1. As do(T) < o,(T*)
[3], 1 €6,(T*). Thus there exists a vector e, such that T*e, = e,. Let the decom-
position of T relative to the decomposition of the space H = V {e,} @ {e,}* be

[

If {e,}* # 0 then T, = T|,,,. has FSM-n and ¢(T,) = {1}. So there exists a unit
vector e, 1L e, with T*e, = e,. Let the decomposition of T relative to H =
= Vie, e;} @ {e, e,}" be

1 0] O
T={]l4 1

C D

L o] [t o
;t[_n/ll

This implies that 2 = 0. Hence

1 0] 0
I, 0
T=[01] :[2]
D C D

C

Now

If {e;, e;}* + {0}, we can repeat the process to get e; L {e,, e,} such that Ty'e; = e,
where T, = TJ,, ,,;». Decomposition of T relative to the decomposition H =
= V{ie,, e,.e3} @ {ey, e, e3}* gives

1 0 0f O
0 1 0
T= [ 2, 1
E
As Tis power bounded, |1 0 0] is also so. Again
1 0
Ay 2a 1
I 0 Of 1 0 0
0 1 0] =]0 1 0
Ay Ay 1 nly ni, 1

This implies that 4; = 0, 4, = 0. Hence

I, 0
T=|.
We claim that the process must terminate after n steps. For, if {e;, 5, ..., €,, €,4,}
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are mutually perpendicular unit vectors such that

T*e, = e, (Tlfml)* €, = €, '-'»(Tlte..cz

_ In+l 0
=[5 )
As Viejer..oe,ii)t €Lat T, Ty e, eroen.,y has FSM at most n [7]. But the
identity operator is of FSM-n only on a space of dimension-n. Thus {e,, e,, ..., e,}* =
= {0}. Hence H has dimension at the most ‘n’.
The proof of the following theorem follows using Theorem 1, [2, Theorem 1.3]

and the techniques developed by E. J. Rosenthal in [6, Theorem 2]. Hence we omit
the proof.

.....

ei)* €1 = €, then we can write

Theorem 2. A power bounded operator which inherits FSM, is similar to a con-
traction.

The following is an easy consequence of Theorem 2.

Corollary 3. A power bounded operator with is the direct sum of a finite number
of operators that inherit FSM, is similar to a contraction.

By H™, we mean the direct sum of n copies of H. For Tin B(H), T is the operator
on H™ defined by

T"(xy, X3y o0y x,) = (Txy, Txs, ..., Tx,) .

For a subset # of B(H), let 2" = {T™: Te #}. If M is a subspace of H®, then ith
kernel of M is the collection of all vectors in M whose ith coordinate is zero. If M €
€ Lat T™, then ith kernel of M is invariant under T™, and is isomorphic to an
element of Lat T"~ V. If #™ < B(H™) and M e Lat # then M is an invariant
graph subspace of 2 on the ith co-ordinate if M has the form

M = {(T,x, Tox, ..., T—x, x, Tiy1x, ..., T,x): x € D}

for some linear manifold D of H, and for all linear transformations T; with domain D
and range contained in H. The T,’s are called graph transformations for #. If M
is an invariant subspace of 4", then M is a graph subspace on the ith co-ordinate
if and only if its ith kernel is {0}; equivalently, if and only if the ith co-ordinate of
a vector determines the vector. Also the domain of a graph transformation for #
is invariant under # and the transformation commutes with every operator in 4.
In particular, if Tis a graph transformation, then so is T — Al for every scalar 4.

The following theorem is an extension of [8, Theorem 1].

Theorem 4. Let </ be a unicellular operator algebra which inherits FSM-n
together with condition-S,. Then Lat /"™ can be expressed as a span of at the
most m invariant graph subspaces whose domains are in Lat of.

Proof. Let MeLat /™. Let M =M, ®@M,® ... ® M,,. Then each M;e
€ Lat &/. As Lat & is totally ordered, we can choose iy such that M; € M, for all
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i=1,2,..,m Let o = .d|y,. o has FSM-n. Also
A = {TM: Te d} = {T™: Te d|y,} = L.

Thus 7™ = o/™|, where N = M. This implies that M is in Lat /. Hence
each M, and in particular M, is invariant under 7. By [4], M, = M. Thus M,
is closed.

Let {x,, X,, ..., x,} be a subset of M, such that (=, {x,}7_,) is an algebra of FSM
satisfying condition-S,. Let f,, f,,...,f, be vectors in M having if co-ordinates

as xy, X, ..., X, respectively. Let

Go =A™ [f1,fas o fu] = {ATf1 + ALy + .+ A, 2 A€ o)
and
G=A[f,fr s fu] ={A"f1 + Asfs + ... + Af, A€ A )

As o = J]M every element of G is a limit of elements of G,. Therefore G = G,.
Thus G is invariant under .&Z™.

We claim that G is graph on the iyth co-ordinate. To prove this, it is enough to
show that isth kernel of G is zero. Let (yy, y2, ..., V) in G be such that y; = 0.
There exist A,, A, ..., A, in o7 such that

A+ AT+ o+ A= (31 Vs )
Comparing iyth co-ordinates on both the sides, we get
Axy + Ayxy + ...+ Ax, =y, =0

Using condition-S, on o7, we get that (y,, y5, ..., y») = 0. Hence G is a graph sub-
space on the isth co-ordinate and domain of G is M;, which is in Lat /. Thus graph
transformations are densely defined and commute with .o7, an algebra of finite strict
multiplicity. By [3], graph transformations are bounded. This implies that G is
closed.

Let K be the iyth kernel of M. Then K is invariant under o/, Let x € M. There
exists y in G such that P, (x) = P;(y). This implies that (x — y)e K = isth kernel
of M. Thus x = y + (x — y)e G v K. Hence M = G v K.

We can perform the same procedure on K. As P; ;K = {0}, the index chosen will
be different from i,, and next kernel chosen will have at least two co-ordinate
projections which are {0}. We continue the process getting n invariant graph sub-
spaces of &(™_ As the number of zero co-ordinate projections increases at each
step, the process must terminate. M is the span of these subspaces. This completes
the proof of the theorem.

The authors are thankful to Prof. B. S. Yadav for having inspired in carrying out
this study.
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