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1. INTRODUCTION

Let ay > 0, B = [—bo,0] x [—by, b,], where by, by e R, R, = [0, 4+ ). For
any function z: [~ by, ag] X R— R and for a fixed (x, y) € [0, a,] x R we define the
function z(,,:B— R by z(,(t,5) =z(x + 1,y +s), (t,s) e B. For any metric
spaces X, Y by C(X, Y) we denote the set of all continuous functions defined on X
and taking values in Y.

Suppose that f:[0,a@0] x R x R x C(B,R) x R—> R, ¢:[—by,0] x R—>R
and let us consider the following Cauchy problem for the nonlinear differential-
functional equation of the first order

8} D.z(x, y) = f(x, ¥, 2(x, ¥), Z(xyy» Dyz(x, ¥))
() z(x, y) = o(x,y), (x,y)e[—bo0] x R.

A function u € C([ —bo,a0] % R, R)is a generalized solution of (1), (2) if

(i) u satisfies the Lipschitz condition on [0, a,] x R,

(ii) there exists a function Ae C((0,a,], R;) such that [I72[u(x,y + 1) —
~ 2u(x, y) + u(x,y = )] £ A(x), for (x, y) €(0,ap] x R, 1R, | %0,

(iii) u satisfies (1) a.e. (“almost everywhere”) on [0,a,] x R and the initial
condition (2) for all (x, y)e [—b,,0] x R.

Remark 1. If we omit the condition (ii) in the above definition, then the solution
is not unique. An adequate example for f without a functional argument is given
in [16].

Generalized solutions of nonlinear first order partial differential equations have
been investigated in a large number of papers by various authors. Theorems of
existence, uniqueness and continuous dependence upon Cauchy or boundary data
for quasilinear systems have been given by L. Cesari [7], [8], P. Bassanini [1]—[3]
and P. Pucci [18]. Quasilinear differential-integral systems and systems with a re-
tarded argument are considered in [4], [13], [14]. Nonlinear differential equations
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have been studied by M. Cinquini-Cibrario, S. Cinquini [9]. Generalized solutions
of quasilinear and nonlinear equations with operators of the Volterra type are in-
vestigated in [20]—[22]. Additional bibliographical information may be found
in [19].

Generalized solutions of nonlinear equations are also investigated in the case
when assumptions for given functions are sufficient for existence of classical solutions
(of class C"). For classical solutions we can prove only a local existence and therefore
to obtain theorems of a global existence we need generalized solutions. Theorems
of this type have been given by S. N. Kruzhkov [16] and for equations with a retarded
argument by Z. Kamont, S. Zacharek [15].

Classical solutions of nonlinear differential-functional equations or equations with
a retarded argument are discussed in [5], [6], [10]—[12].

In this paper we prove the global existence of generalized solutions of (1), (2)
extending the results of paper [16]. The proof is based on the difference method
(see also [17]).

2. ASSUMPTIONS AND DEFINITIONS

We denote by C,, (B, R) a set of all continuous functions from B to R which
satisfy the Lipschitz condition on B. Furthermore, for any te R, let Co4 (B, R, t) =
={ueCorr(B,R): |uflosr = |ulo + [Jull. < t}, where

Jullo = sup {|u(s, v)|: (s, v) € B} ,
[u], = sup {ls =3 + v =9[]]"" [u(s, v) — u3, 5)] (s,v), (3, 2)e B} .

Suppose that the function f:[0,a,] x R x R x C(B,R) x R > R of the
variables (x, y, p,w, q) is of class C%. By D,f, D,f, D.f, D},f, D,f, D},f, D},f,
D;,,f, D;qf we denote first or second order partial derivatives of f. D,,f is the Frechet
derivative of f i.e. D, f(x, y, p, w, q) € £(C(B, R), R), where £(X, Y) denotes a set
of all linear operators from X to Y. Symbols Dyzwf, Dﬁwf, quwf have the same meaning

as D, f while D2, f denotes the second order Frechet derivative i.e.
D..f(x, y, p, w, q) € Z(C(B, R), #(C(B, R), R)).

Il

Assumption H. Suppose that
1° ¢ € C([—bo, 0] x R, R) and there are constants M, Le R, such that for
all (x, ), (x,7)e[—by, 0] x R we have

lo(x. 0| < 8, |o(x.y) = o(x. 7| = Ly = 3] ;
2° if by > 0, then there is a constant K € R, such that for all (x, y) € [ — by, 0] x
X R, leR, | + 0 we have I *[o(x, y + 1) — 2¢(x, y) + o(x,y — )] £ K;
3° f:[0,a,] x R x R x C(B,R) x R — R is of class C?;
4° there are a constant N = M and a nondecreasing functionVe C([M,N], R,),
(% dt/V(t) = ao. such that for all teR,, (x,y,p,w, q)e[0,a0] xR x[—1,]x
x C(B, R, t) x R we have |f(x, y, p, w, q)| £ V(1);
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5° there are constants N, =2 L, A > 0 and a nondecreasing function We

e C([L.N,], R+) [t dtf[(2t + 1) W(N + 3t)] = ao such that for all teR,,
(%, v, p,w, ) €[0,a5] x R x [-N,N] x Co,,(B,R, 1) x R we have

ID,f(x, . 2w, @) S A, |Dyf(x, ¥, p,w, q)| £ W(1),
ID,f(x, y. p.w, q)] £ W(t), [[Df(x. y,p.w, q)| < W(1);

6° for all (x,y,p,w,q)e[0,a0] x R x [-N,N] x Co,(B,R,N + 3N,) x
x [-N,N,], we C(B, R), w 2 0, we have Dwf(x Y, p,w, q) (W) 2 0;

7° the derivatives  Dj,f, Di,f. Dy.f. D},f, D},f, D}.f, DL f, D..f, D%L.f are
bounded and Dl f <0 on [0,a,] X R x [— N N] x Co4(B,R,N + 3N,) x
x [=N, N, s

8° if by = 0, then there are constants 5 € (0, ay], p > 0 such that D;qf < —uon
[0,8] x R x [=N,N] x Co4r(B,R,N + 3N,) x [-N, N,].

Let Z be aset of allintegers,and let 2Z be a set of alleven numbers. Now we introduce
a difference scheme for (1), (2). For h, k >0 we define x) = ih, i = 0,1, ..., n,
noh = a, and yY = jk, je Z. If by > 0, then there is an integer n, > 0 such that
—nh £ —by < (—=n, + 1) h. We define xV = ih, i = —n, +1,...,—1, and
x(7") = —b,.

Let U = {(h,k): A < k[h}, E* = {(x,yP): i=0,..,ny jeZ}. For i=
=0,...n9— 1, je2Z we write P;; =[x, x(+*D] x [U-D y0+V] 9, =

= U P;;. If v:E* > R, then we denote v/ = p(x(, 1), i =0,...,n9, j€Z.
Jje2Z

Let Ay, A, be operators defined by

IA

Ay = Il[u(in.j) _ v("'"’] , Al = Z_Ik[v(i.j+1) — 1],
I

Furthermore, let A0 = Ap(A; 00, 1, j =0, 1.

Let ¢y: [—bo, 0] x R = R be a function defined in the following way:

(i) If by > 0, then for each (x, y) e [ —b,, 0] x R there are i, —n, < i < 0 and
J €2Z such that (x, y) € [x, x0*+D] x [pU=D, yU0*D] Then we write @ulX, ¥) =
= (= J5D) o (x = x) g 07) 4 (3 = 3U71) Ao, 1) +
+ (x — x(")( (1 1)) A2 ‘P(x(') y(n)

(ii) If by = 0, then for each y e R there is j € 2Z such that ye[y¥~ D, yuto]
Then we write @ (y) = @(¥971) + (y — YU~ D) A0(y).

For any (h, k)€ U let us define the function uy: [—b,, a,] x R — R. We use
the mathematical induction in the following way:

(i) Leto® = 0(0.39).j € Zand uy(x, ) = (. 3) for (v, ) [ ~bo 0 X K.

(ii) If for some i, 0 < i < n, — 1 we have defined v'"?, je Z and Uy on
([—b0.0] x R)U QoU ...U @,_,, then

(3) v(i+1,j) = %(v(i.jﬂ) + v(i.j—l)) +
+ hf(x(”, yo, %(U(i‘ju) + U(i’j—“),(“hk)(xm,ym), Alv(i,j)), where jeZ,
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4) u(x, ¥) = 00770 4 (x = xO) AguITD 4 (y — YUY A 4

+ (x = xO) (y = yU=V)AZ 0", where (x,y)eP;;, je€2Z.
It is easy to see that (4) defines a continuous function on [—bg, ao] x R. In the
sequel we will write (uy,) ;. ;) instead of (up)(xcir,yiiry-

3. PROPERTIES OF A SOLUTION OF THE DIFFERENCE EQUATION
Lemma 1. If fe C([0,a,] x R x R x C(B, R) x R, R), and conditions 1°, 4°
of Assumption H are satisfied, then for all i = 0, ..., ny, j € Z we have
(5) [P < N .
Proof. It follows from (3) that for i = 0, ..., ny — 1, j € Z we have
Joli+1:D] < gJoli+ 1) 4 pi=D) 4
+ R, O, Ho D T 0) () o AU
Let o = sup {]u("f’[: —ny £t =i, jeZ}. The boundness of ¢ implies that
) < 400, From the condition 4° of Assumption H we have #(0+1D < 5 4
+ hV(5%), and hence

(6) ]1 [66+D — 6] < VW), i=0,....no — 1.
1

Let us consider the Cauchy problem
(7) D, w(x) = V(w(x)), w(0)= M.
If w is a solution of (7), then it is a nondecreasing function and hence D,w is a com-

position of two nondecreasing functions. Thus w is a convex function and from (6)
we see that i) < w(x"), i = 0, ..., n,. We also have that w satisfies

J‘““"’ dt
a V()

From the condition 4° of Assumption H we have then w(x) < N, x € [0, a,]. There-
fore we have i < N, i = 0, ..., ny, which is equivalent to (5).

Lemma 2. If f:[0,a,] x R x R x C(B,R) x R — R is of class C', (h,k)eU
and conditions 1°,4°, 5° of Assumption H are satisfied, then for all i =0, ..., n,,
Jj€Z we have
(8) |A D] < Ny

Proof. It follows from (3) that for i = 0, ..., n, — 1, j € Z we have

Alv(i+l.j): %(Alv(i.j-!-l) + Alv(i.j—~1)) +

+ éllé [f(x(l)’ .V(I"-”’ %(UU.I*IZ) + U(’J))! (uhk)(i,j+1)’ AIU(“!*—”) -
- _f(x(i)’ yu-n, %(U(i.j) + D(i.j—l)), (uhk)”’j_l)’ Alv(i,j-—l))]'
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Using the Lagrange theorem we obtain

. . 1 h .
A U(i+1»1) = A v(_l,j+l) ~+2-D P(l.]) +
1 o [L g B o)

- 1 h .
+ A=D1 2 p f(pGED +
1 [2 2%k qf( )]

+ hD,f(P%)) + ’—; (ApI* D 4 Api=Dy pf(PEDY) +
+ hD, f(PD)(r; ),
where P/ is an intermediate point, and r, ; is defined by
1
Tij = % ()i, 1y = (ndii-n] -

Let 2 = sup {|A,v™?|: —n, < v < i, je Z}. From (5) it follows that z¢) < + oo.
Since |D,f(P%7)| < A and (h, k) € U, we have

. 1 h . . 1 h ..
A ptit | = 4+ —D pC.d) + A pi=n 2 7 p f(pED
|3 G DA |+ A0 [ D e

Thus the above inequality, (5), the condition 5° of Assumption H and ||r; ;o <
yield

IIA

z(,

O}

|
N

2+ < (1 + 2hW(N + 32(“)) PAQRES hW(N + 3z“’) s
and hence

—li;[z("“) - 0] <229 + ) W(N +329), i=0,...,n5—1.

Taking into consideration the Cauchy problem
Dow(x) = (2w(x) + 1) W(N + 3w(x)), w(0) = L,
and using the same arguments as in the proof of Lemma 1 we obtain (8).

Lemma 3. Suppose that Assumption H is satisfied and that (h, k) e U. Then for
sufficiently small k, h there is a constant N, € R, such that

9) Aflv("'j)é;l\%, for by=0, i=1,..,n,, jeZ,
(10) A2 00D < N,, for by>0, i=0,..,ny, jeZ.

Proof. We will first prove (9). From (3) it follows that for i = 0,...,ny — 1,
j € Z we have

A2+ L) = (A2 T+ 4 A2 D)

’ (2}11)2 [F(x@, yI+ 2, 30T 4+ 0CTED) () g2y A 2) +

- 2f(x(i)’ y(j)’ %(U(i.j*.l) + v(i'j_l))’ (uhk)(i,])’ Alv(i'j)) +
+ A, YU, 30 GBI () A D))
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Let r; ; have the same meaning as in the proof of Lemma 2 and let

9i,; = [(un)iiz+2) = 2y + () j-2)] s

(2k)2
QUi — (x®, yO), (D 4 v(i.j-n), (uhk)“’j), Aty

From the relations
oI HD = (v =D 4 ) = 2k(A 0l 4 Ayl -2y,
Alv(i-i'*l-l) A, U’ =1 — 2k AZ (i J)

and from Taylor’s formula we obtain
ALt = 0| D) + k(o) +
+ = (A o+ 1 AwD) DL F(0F)) + hDZ,f(04) (ruﬂ) +
- Aflu“vf-“[; = 32 D(QT) + WDjF(Q ) +

h . . 0 iy
+ 5 (00D + A,08I7) DLF(OED) + hDLA(QS) (riy ) | +

+ 2 (300070 4 AL D) D,(Q0) 4 KD, F(Q1) (g, ) + R,

where Q{"”, 0" are intermediate points and
ok .
RG.J) — 5 [Diyf(Q(l 1)) + D f(Q(U))] +
LA 1 ) () +
+ (A v(11+2) + A v(x))) Dpf(Q(i,j))] +
# P00 4 2 D (080) 4
+ (Aot 4 A=) D2 £(Q4] +
+ h[%D wf(Q(l J)) (r11+1) + D f(Q(‘I)) +
A 1 A DO 1 01) +

+ h[ADL,A(Q5) (ris-1) + Dy f(Q57) +
(A + A D) DS )] (i) +

h g i L b e .-
+ 3 [810I O D) + 2 [AL5~ U Di(gg)
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We will first estimate A7 vt-) for i such that x() < §, where & is the constant from
the condition 8° from Assumption H. Fori = q, ..., no — 1, j € Z we write

AFD = DLF(QUP) + HAWET 4 A ) D2A(00) +
+ quwf(Q(liJ)) (rij+ 1) + %Dpf(Q(li’j)) s
ASD = DLF(QE) + 4(Ar™ + A,e?) Dl f(05) +
+ quwf(Q(zl'j)) (h-,j— 1) + %Dpf(Q(zi'j)) .
There are constants d,, d, e R,, d; > d,, and
¢ = min (£ , A -]—tj’—h
2 2N,
such that
AED p AGD < dy, ROD < dyh — A 00D Ailllv(i.j—l)] W

Let h, k be sufficiently small so that
1 + ji D f(Q(i.j)) + hA(li’j) 0, 1 _ ]L D f(Q(i.j)) + hA(zi'j) >0
20 2k " 2 2k " =

We introduce the following notations

v

SED = max {A], 0D, AT 07D 0},
89 =sup {S©:0<1<i, jeZ).

From (5) it follows that §¢) < + co. Therefore we have
A2 D < SGD[1 + dyh] +
+ WN + 3N,) §Dh + dyh — ¢(SED)? b

From the inequality

A2 o) = A,l; (A I+ Alv(i,j—l)) < N, ,
k k
and from conditions A < k/h and ¢ < A(1 + d,h)[2N, we obtain
D 1+ dh
11 Aj i < 21
() T ek

Let us consider the polynomial H(y) = y(1 + d,h) + W(N + 3N;) S8©h + d,h —
— chy? Itiseasytoseethat D, H(y) = 1 + dih — 2chy = Ofor y < (1 + d,h)/2ch.
By force of (11) we derive then

Aottt < SOM1 + (dy + W(N + 3N,)) k] + dyh — o(§D)2 b,
The right hand side of the above inequality is positive, which gives

S6+D < SO[1 + (d, + W(N + 3N)) h] + dgh — o(S9)? b
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Hence for @ = §® 4+ 1 we have
S§E+D < §OM1 + (dy + W(N + 3N,) + 2¢) h] +
+ dyh — (dy + W(N + 3N,) + ¢) h — c(S@)? h,

Using the condition d, > d, and putting d = d, + W(N + 3N,) + 2¢ we obtain

S+ < §O(1 1 dh) — ch(SV)?.

Let h be so small that dh < }. Then multiplying the last inequality by (1 — dn)i*t

and putting W = (1 — dh)’ $© we get

With < WO — ch(WP)2 (1 — dh)™*t < WO — (WD) >0,

W < o) _ ch(W“”)z (1 _ Jh) <wo _ ¢ (W(O))Z
= —_ 2 b
and hence
(12) 1 [wi+) — w] < — ¢ (W2
h 2
Let us consider the following Cauchy problem
D, w(x) = — g wi(x), w(0) = W,

The solution of this problem is given by

w(x) = - .
Cey L
2 ¥ W

We see that w is convex and then by force of (12) we have

W(i)éw(x("))= ——————————— <-—7, i>0.

From the above inequality we derive
(1 —dn) (89 + 1) £ 2|
ex®
and hence from the condition dh < 1 we have
" 1[2 — 1 (2 .
< |41 - i L2 _ ) - 1/andin
S0 s [c (1 — an) ,h] < {c [(1 — dn)=177

where

N, =2exp(c751n4)~5‘
c
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For i such that x( > § we analogously derive
SE+Y < 891 + (dy + W(N + 3Ny)) h] + d,h .

By force of the mathematical induction we have
e = d
(13) §® < exp (day) ST + —az [exp (da,) — 1],

whered = d; + W(N + 3N,)and [¢] denotes the integral part of . Supposing that h
is so small that h < §/2 and putting

~ 2N d
N, = max {NZ,TZ exp (da,) + EZ [exp (day) — 1] we get (9).
In order to prove (10), let us adopt the previous notations r; ;, q; ;, 09, Q{"”,
Q4D RGD AD | 4051 and let h, k be so small that
1 h . - 1 h - -
-4+ —D,f DY 1 pAYED >0, - ——D,fl Q(w) + hASHD >0.
o Daf(Q07) + L= 5 Daf(Q%) +
There are constants d, d, such that
AP + AYD <dy, RYD < dyh.
Using the previous arguments we prove that
S+ < SO + (dy + W(N + 3N,))h] + dyh, i=0,...n,—1,
where §@ = sup {A};0"): —n; <t < i, jeZ}. Now, analogously like (13) we
obtain (10) with
~ d, d,
N, =K + =) exp(day) — =,
where K is the constant from the condition 2° of Assumption H. This ends the proof.

Let B be some constant such that B > 4. By U we define the set {(h, k): 4 <
< k/h £ B}.

Lemma 4. Suppose that Assumption H is satisfied, (h, k) e U, 0, Y > 0,0 < i < n,
and additionally i > afh in the case b, = 0. Then there is a constant C = C(Y, a)
for by = 0, or C = C(Y) for by > 0 such that ‘

(14) Y 2k|AT 0 £ C.

JIZY/k
Proof. Let by =0, 4 2 N,Ja and u? = Ao — Zjk. Using (9) for any
i > a/h, je Z we have
wlI+D @i = A Ui+ A =D e =
N,

= 2k(A} 0 — A) < 2k <‘—h - A> <0.
1
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If b, > 0, then we take A = N, and by force of (10) we obtain the same estimate
fori =0,..., ngy, j€Z. From this we have

R R I R R E

lilsY/k 1iISY/k
< 4 max |ut| < 4N, + AY),
lilsY/k

and
Y WAL = T A A =

lil=Y/k JI=Y/k

= Y JuGtD — g0 40k < Y 2k|AuGD] +
lilsY/k [il=Y/k

+ 4AY + 24Ba, .
Thus (14) is satisfied with C = 4N; + 84Y + 24Ba,.

Remark 2. The analogous properties to that proved in Lemmas 2—4 we may
obtain also for the operator A, defined by A,v(") = (1/k) [p¢") — p®J=17,

For any 1 <i=<n, jeZ 0=n=<i—1let Ujn)={seZ:s—j+i-—
— ne2Z}.

Lemma 5. If f:[0,a,] x R x R x C(B,R) x R — R is of class C', (h,k)eU
and conditions 1°,4°, 5° of Assumption H are satisfied, then there are constants

G5z 0 iy i=1ng jeZon =0, i1, seUyn), j—(i-n<s <
<j + (i — n), such that

Jjt(i—m)

jt(i—n)
ij) __ n,s n,s) n n,s
At = 3 @i A oy, Y oai=1,
s=j—(i-n) s=j—(i—n)
seU;j(n) seU;j(n)

il < (i = n) hey
where ¢, = W(N + 3N,) (1 + 2N,).

Proof. Analogously like in Lemma 2 we get
i ie1. 1 h io1
All)( 'l)ZAIU( 1'I+1)|:§+2’7chf(P( 1’”)] +

o 1 h PRI i—
+ Attt 1)[5 by D,f(P¢ 1’”)] + Mt

where
ni;' = hD,f(PY~"D) +

+_g(A1U(i—l.j+l) + Alli(i_l'j_l)) Dpf(P(i—l,j)) +

+ hD, f(PY" 1)) (riey ) s ln::'l < hey .

Thus the lemma holds for n = i — 1. Assume that the lemma holds for some n < i,
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we will prove it forn — 1. For i = 1 No, j € Z we have

i+ (i=m)
A v(f.f) — ! (Zl " an,.f A ) n
1 = ij Apps) 4 ni; =

s=j=(i—n)
seUij(n)

jt(i-m)

= o Z a?:;{Alu("‘l,s+1) [1 + _h_ qu(P(n ls))]

s=jo Ti=m 2 2%

seU;j(n)

. 1
(n—1,s—-1) | - _ - n—1,s ~S n
+ A [2 qu(P( ! )):I + ’71,;} + i
where
~ n—1,s h n—
fiij = hDyf(P( 1 )) + 5(Alv( 1.5+1) + Alv(n—l.s—l)) Dpf(})(n-l,s)) +
+ thf(P(n_I’S)) (rn—l,s) .

1,

We define constants a7 ;'**, n7;" in the following way:

n—-1,s n,s—1

a. . v =a;"” [1 h Df(P(" 1,5— l))]+
v S PIY

1
+ a?j+1 I:5 2k qf(P(n l\+1)):|

S=j_(i_n)+],...,j+(i—n)—1,

n=1j-(i-m=1 _ _nj—(i-m| 1 h (n—1,j—(i-n
a;’; = a;} - P WJ=(i=n)) ,
; A LY )

a:xll JHGi=m+t a;r’,’j'#(i—n) I:_l + _2%( qu(P(n—l,j+(i—-n))):] ,

2
Jj+(i—-n)
n—1 __ n S~S
Nij = Z 11'7‘]+'111'
s=j—=(i—n)
seU;j(n)

For these constants we have

jH-my+1
AIU(I,J) — Z :l]l sA v(n 1,s) + '7
s=j-(i—-n)—1
seU;ij(n—1)
j+(i-n)+1
a'e =1,

s=j—(i-m)—1
seUij(n—1)

M5 < (i = n+ 1) hey,
which completes the proof of Lemma 5.
Lemma 6. Suppose that Assumption H is satisfied, (h, k)e U,0,Y>0,1<i <

< ny, 0 < n <i—1and additionally i > afh, n > a/h in the case by, = 0. Then
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there is a constant L = L(Y, «) for by = 0, or L= L(Y) for by > 0 such that
(15) Y 2k|A T — A" < Lh(i — n) .
lilsY/k
Proof. We will first prove (]5) for the case i — p e2Z. By force of Lemma 5 we

have
Y 2k|A D — A <
liI=Y/k
j+(i—n)
< ¥ Y oalAppe — AP 2k +
iISY/k s=j—(i=n)
seU;j(n)
+ (4Y + 2Bag) cy(i — n) h <
J+(i=m) J+(Gi—m)

n,s e+ -
ai’; Z IAIU(" b _ AT ”] 2k +
lJISY/ks=j—(i—n) r=j-—(i—n)

seU;j(n)

+ (4Y + 2Bay) cy(i — n) h <
< [2(i = n) + 1] 2k Y |Aptnrst) A
1Pl ¥kt (i-m)

+ (4Y + 2Bag) cy(i — n) h .

Using (14) with C = C(Y + Bay, a) for b, = 0, or C = C(Y + Ba,) for b, > 0 we
get (15) with the constant L= 6BC + 4Yc, + 2Bayc,. From Remark 2 we obtain
(15) for i — n¢2Z.

4. THE SEQUENCE OF APPROXIMATE SOLUTIONS

Lemma 7. Suppose that f:[0,a,] x R x R x C(B,R) x R > R is of class C'
and that conditions 1°, 4°, 5° of Assumption H are satisfied. Then there is a sequence
{(h,, k)}o21, (hy, k) € U, lim h, = lim k, = 0, and a function iie C([0, a;] x R, R)

such that lim u,, (x, y) = d@(x, y) almest uniformly on [0, ay] x R.

This lemma follows from Lemmas 1, 2 and from Remark 2.

Let us define sequences {u™},, {VO )2, (WO . We put u® = u,, . If
(x,¥)e[0,a,] x R, then there are i,j, 0 < i < n, — 1, j€2Z such that (x, y) e
€ [x(i)’ x(l'+l)) X [y(j‘l), y(j+])). Let

VO x, y) = ApD 4 (x — x) A0
W(v)(x’ y) — on(i‘j—-l) + (y —_ y(i—l)) A(Z)lv(i-i) ,

where the difference operators are defined for h = h,, k = k,. If i = ny — 1, then
we replace in the above definitions the interval [x(, x¢*1) by [x®, x¢*D]. Thus
we have V), W®:[0,a,] x R— R and V(x,y) = Du®(x,y), W(x,y) =
= Du®(x, y) a.e. on [0,a,] x R.
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By Var [V®(x, )] we denote the variation of the function V"'(x, +) on [— Y, Y],
Y> 0.

Lemma 8. If Assumption H is satisfied and a, Y > 0, then for each x € (a, a,],
(x €[0, ao] in the case b, > 0) and for any integer v we have Var [V®(x, +)] < 3C,
where C is the constant from (14).

Proof. For any x € [0, ao] there is i, 0 < i < n, — 1 such that x e [x®, x('+1),
Since V(x, -) is a constant function on intervals [y¥ ™", yU*V) je 27, we have

Var,[V®)(x, -)] = Y PO(x, pUtD) — YO (x, U 1) <

€2z kol <Y
< Y AR 4 (x — xO) AZ plI D A G
VERS
—(x = XD)AZ WD < T [JApI D — AT
S

)
X — X . . A . . oo
e AU AT A D A D] <

L — x oy -
< Y 2k AT 00| 4 XTI 2k AT 01D 4 2k, A2, 06 ))]
e v
The above inequality and (14) complete the proof of Lemma 8.
By L(Y) we denote a set of all Lebesgue integrable functions y: [0, a,] x
x [=Y, Y] - R with the norm ¢/, = [&* [y [¥(x, y)| dx dy.

Lemma 9. If Assumption H is satisfied, then there is a sequence {v,}?, and
a measurable function v:[0, ag] x R — R such that lim |V — By = 0.
s

Proof. Let Y > 0, 2 € (0, a,) and let {x,},2, be a sequence of all rational numbers
from the interval [a, a, . It is easy to see that for any integer v we have |V"(x, y)| <
< 3N,, (x,y)€[0,a,] x R. From this and from Lemma 8 it follows that assump-
tions of Helly’s theorem are satisfied. Hence for any x € [a, a, ] there is a subsequence
of the sequence {V(x, -)};_, which is convergent on [ —Y, Y]. If we apply the
diagonal process, then we obtain a subsequence of {V'}_ |, which is convergent
on the set {(x, y)e[a, a,] x R: x = x, for some r}. We denote this sequence by
{V®}, again.

We will prove that
(16) lim [Ty [V (x, y) — VO(x, y)|dy =0,
uniformly with respect to x € [o, ao].

For each ¢ > 0 there is a finite subset {x,,,..., x,, } of the sequence {x,};-, such
that the distance between any two successive elements of this set is less then 8/5L,
where Lis the constant from inequality (15). For sufficiently large v, s we have

Py VO, y) = VO(x, o 0| dy < efS, IT=1,...m.

For each x € [zx, ao] thereis , 1 =1 < msuchthat 0 < x — x,, < s/SL. Forany v, s
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we have then
ISy VO, p) = VO p)[dy < [1y [VO(x, p) = VO, »)] dy +
+ [Ty VO ¥) = VOAx,,, )| dy +
+ Ly VO y) = VO, )] dy
Using the definition of V) we get
Ly [V, 9) = VOA(x,0 p)] dy <

- VU .
R [T B

je2z, TGkl <Y v

>

— X
- [A,u“"f’ + _.),(’,L,,hAX,., (Al 1) A,v“"“)]

v

where i = [x/h,], i’ = [x,,/h,]. Hence by force of (15) we have
Ty VO, p) = VO(x,, 0)|dy < 2k[[A 00 — Apol)] +

1i1=Y/ky

+ 'Alv(i+l,j) . Alv(i.j), + lAlv(i’+l.j) — Alv(i’.j)l] §

< Lh, ([ﬂ - [’;]) + 2Lh, < L(x — x,,) + 3Lh, < ic,
1, 1,

for v sufficiently large. Finally, we obtain
[Ty [VEO(x, y) = VO(x, p)|dy < &,

for s, v sufficiently large. This ends the proof of (16).
Since the convergence in (16) is uniform on [«, a, ] for any a € (0, a,) we obtain the
almost uniform convergence on [0, a,]. From this we have lim |V — v®|, == 0.

v, 50

The completeness of L{Y) completes the proof of Lemma 9.

Remark 3. If b, > 0, then it is not necessary to consider the interval [rx, ao],
a > 0, because (16) holds uniformly with respect to x € [0, a,].

5. THE MAIN THEOREM

Theorem 1. If Assumption H is satisfied, then there is a function u € C([ = by, ao] %
x R, R) which is a generalized solution of (1), (2).

Proof. It follows from Lemma 7 that there is a sequence {(h,, k,)}: , (h,, k,) € U
such that the sequence {u™};_, u® = u, . is uniformly convergent to a function #
on [0, ay] x R. By force of Lemma 9 there is a subsequence of {V®}_, which is
convergent in the L(Y) norm to &. The sequence and its subsequence we denote by
the same symbol for simplicity. Let #(x, y) = ¢(x, y) for (x, y)e[—by, 0] x R.
Then the sequence {@,, )i~ is uniformly convergent to & on [—bo, 0] x R. For
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(x, »)€[0, ay] x R we write
FO)(x. ) = ™ v v
f (x’ }) - f(x’ y’ u (X, y)’ uz,\‘ry), V( )(X, y)) >

w(x, ) = f(x, y, i, ), ey, 5(x, ) -
We will prove that lim [W® — |, < 0, ¥ > 0. From

v oo

” we) — W”L(y) < ” W — f(V)"L(y) + "f(v) _ WUL()') .

lim [|[f® — w|., =0,
we see that it is sufficient if we prove
(17) lim [W® — &, =0.

If « > 0, then for each x € [«, ao] there is i, 0 < i < n, — 1 such that xe

€ [x(‘), x("“’). (If b, > 0, then we take x e [0, ao]~) We have then
Foy WO(x, p) = 7O, y)| dy <

T o0 = O, ) +
Je2Z,jkv| £Y
— D o .
+ y—-y- - [AIU('H‘” _ A,U("”] dy <

h,
éI ‘I<ZY/k ;,:j::; lf(x(i’, yon, oD + o2, u{;zl),y(l‘l))’ Aptii=Dy -
JEY/ky
_ f(v)(x, y)l dy + z 2k, %(u("'j’ 4Dy v(i'j“l){ N
|

il£Y ke h,
2

(2k,) AU+ — A oD

1Yk h,
Using the Lipschitz condition for f, Lemmas 1—3 and Remark 2 we see that the
first component of the right hand side of the above inequality tends to zero if v — oo.
From Remark 2 we obtain that there is a constant C, such that

Y 2k [& 040 < G,

liI=Y/ky

and hence

_Z_Ev H(v(i,j) + v(i.j—Z)) — v(i‘j—l)l < Bcokv«
/1S ke h,

Futhermore, from Lemma 6 we have
2
(2kv) lAlv(iH.j) _ Axv(i-i)l < ZBth.
i1s¥k  h,
Finally, we obtain
lim ¥, IW“”(x, y) = FO(x, y)l dy =0,

v o0

almost uniformly with respect to x € [0, ao], from which we have (17).
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From Lemmas 1,2 and from Remark 2 we obtain that & satisfies the Lipschitz
condition on [0, ao] x R, and hence the derivatives D,ii, D, i exist a.e. on [0, a,] x
x R. Since the sequences {V®™}7_,, {W®}” | are equibounded and convegent in
the L{Y) norm to &, w respectively, it follows that D& = W, D,ii = va.e.on[0, a,] x
x [—Y, Y] for any Y > 0. Thus & satisfies (1) a.e. on [0, a,] x R. From the defi-
nition of & we see that the initial condition (2) holds. Furthermore, it is easy to prove
the existence of a constant M > 0 such that for any (x, y)e[0,a,] x R, I€R,
I £ 0 we have

I72[a(x, y + 1) = 2d(x, y) + ii(x,y — )] <M if by =0,
I72[a(x, y + 1) = 2d(x, y) + d@i(x, y — )] £ M|x if by >0.
Hence u is a generalized solution of (1), (2), which ends the proof.

Remark 4. Using the same methods as in the proof of Theorem 1 we obtain the
existence of a generalized solution of the following differential-functional system
of first order partial equations

D.zi(x, ¥) = filx, ¥, 2(x, ¥), Z(e s Dyzilx, ¥)) s
Z,-(X, y) = (pi(x’ ."‘) s (X, y) € ["bo, 0] X R N

where i =1....m, z=(z,....2,), ® = (¢1,..., 9,) :[=Dp, 0] x R > R", f =
= (f1, s Sw) 1[0, 0] x R x R™ x C(B,R™) x R — R™.
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