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NOTE ON LINEAR ARBORICITY OF GRAPHS WITH LARGE GIRTH

FiLip GULDAN, Bratislava

(Received April 4, 1990)

Harary [10] in 1970 introduced the notion of linear arboricity as one of the
covering invariants of graphs. A linear forest is a graph in which each component
is a path. The linear arboricity la(G) of a graph G is the minimum number of linear
forests whose union is G.

Akiyama, Exoo and Harary [l] introduced a conjecture which has a fundamental
importance in the study of linear arboricity.

Conjecture 1. The linear arboricity of a d-regular graph is

[(d + 1)/2].

Although this conjecture received great attention, until now it has been proved
only for the cases of d = 2, 3,4, 5,6, 8 and 10 (see [1], [2], [4], [5]. [7] and [13]).
As the problem of linear arboricity seems to be too difficult for complete solution,
some mathematicians began to investigate partial special cases. N. Alon [3] obtained
interesting results for graphs with large girth (the length of the shortest cycle in the

graph). The main tool in his work was the Lovész Local Lemma (for proof, see [6]
and [12]).

Lemma 1. (Lovasz Local Lemma). Let A,, A,, ..., A, be events in a probability
space. A graph T = (V(T), E(T)) on the set of vertices V(T) = {1,2,...,n} is
called a dependency graph for A, ..., A, if for all i, A; is mutually independent
of all A; with (i, j) ¢ E(T). Assume there exist n numbers x,, x,, ..., x, € 0, 1)

such that
Pr(4;) <x; [] (1 —x))

(i.J)eE(T)
foralli,1 <i < n. Then

Pr('/n\lﬁ,») > []1 (1-x).
In particular, the probability that no A; occurs is positive.
Using this nice probability tool Alon pr‘oved:
Theorem 1. Let H = (V,E) be a graph with maximum degree d, and let V =
= V,uV,u...UV, be a partition of V into pairwise disjoint sets. Suppose each
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set V; is of cardinality IV,[ > 25d. Then there is an independent set of vertices
W < V that contains at least one vertex from each V.
From Theorem 1 it was not too difficult to prove two results on linear arboricity.

Theorem 2. Let G be a d-regular graph, where d is an even integer, with girth
g = 50d. Then

la(G) = (d]2) + 1.

Moreover, the edges of G can be covered by 1d linear forests and one matching.

Theorem 3. Let G be a d-regular graph, where d is an odd integer, with girth
g = 100d. Suppose, further, that G contains a perfect matching. Then

la(G) = (d + 1)]2.

The aim of this paper is to prove somewhat stronger results in a little easier way.
First we improve Theorem 1.

Theorem 1A. Let H = (V, E) be a graph with maximum degree d, and let V =
=V,uV,u...uV, be a partition of V into pairwise disjoint sets. Suppose each
set Vi is of cardinality ]V,~| = 8d. Then there is an independent set of vertices W < V
that contains at least one vertex from each V.

Proof. Clearly we may assume that each set V; is of cardinality precisely g = 8d
(otherwise, simply replace each V; by a subset of cardinality g, and replace H by its
induced subgraph on the union of these r new sets). Now let us pick exactly one
vertex from each V;, randomly and independently. So each particular vertex ve V
is picked with probability p = 1/8d. Let W be the random set of all vertices picked.
The goal of the proof is to show that, with positive probability, Wis an independent
set of vertices. For each edge fe H, let A, be the event that W contains both ends
of f. Clearly, Pr(4,) = p? if the ends of f are in various V; and V; and Pr(4,) = 0
if both ends of f are in the same V;. So we have Pr(4,) < p*.

Now we can construct such a dependency graph for the events {A4,: fe E} that
each A -node is adjacent to at most 2.84 . d A -nodes. It follows from Lemma 1
that if we can find a number x € <0, 1) such that

(1) Pr(Af) é pl = (64]:.—‘1)5 < x(] _ x)lGd2
then Pr( A 4;) > 0.

SeE

One can easily check that x = 1/32d? satisfies (1). Indeed,

1 1 \'%* 1 16d? 1
i\ T n) T s ‘“_i>=—z=l’2%f’f("f)-
32d 32d 32d 32d 64d

This implies that Pr( A 4;) > 0, i.e. there exists such a choice of W that W is a set
SeE

of independent vertices.
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Theorem 1A then implies the following results:

Theorem 2A. Let G be a d-regular graph, where d is an even integer, with girth
g = 16d. Then

la(G) = (d[2) + 1.
Moreover, the edges of G can be covered by 1d linear forests and one matching.

Theorem 3A. Let G be a d-regular graph, where d is an odd integer, with girth
g = 32d. Suppose, further, that G contains a perfect matching. Then
la(G) = (d + 1)/2.
The proof of these two theorems is the exact copy of proofs of Theorems 2 and 3
made in [3] and we will not do it again. The condition in Theorems 2 and 2A that
one of the linear forests has to be a matching is a little luxurious and not necessary

for a partition of a graph into linear forests. If we omit this condition we can obtain
a little better result again:

Theorem 2B. Let G be a d-regular graph, where d is an even integer, with girth
g = 7d. Then

la(G) = (d2) + 1.
The proof of Theorem 2B is based on the following modification of Theorem 1A:

Theorem 1B. Let H = (V, E) be a graph with maximum degree d, and let V =
= V,u VouU...UV, be a partition of V into pairwise disjoint sets. Suppose each
set V; is of cardinality ,V,, > 7d. Then there exists a set of vertices W < V con-
taining at least one vertex from each V; and such that the maximum degree of the
induced graph {W) is 1, i.e. (W consists only of isolated vertices and independent
edges.

Proof. This proof is very similar to the proof of Theorem 1A. First we prove the
assertion for d even. Similarly as before we may assume that each set V; is of car-
dinality precisely g = Zd Let us pick exactly one vertex from each V;, randomly
and independently. Each particular vertex v is picked with probability p = 2/7d.
LetW be the random set of all vertices picked. Let T be the set of all triples ¢ of vertices
such that the induced graph <{t) contains at least two edges. For each triple teT
let A, be the event that W contains all three vertices of t. Clearly Pr(4,) = p? if all
three vertices are in different sets V; and Pr(4,) = 0 in the other case. So we have
Pr(A4,) < p*. Now we can construct such a dependency graph for the events {4,: t € T}
that each A,-node is adjacent to at most 3.(3d).d .d other A,-nodes. It follows
from Lemma 1 that if we can find a number x € <0, 1) such that

3
2 Pr(4,) < p* = <%> < x(1 = x)> 2

then Pr( A 4,) > 0. One can easiy check that x = 1/21d* satisfies (2). Indeed,

teT
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2

1 1 \ev»e 1 2 1
T 1 - 3 > 3 1 - 3 > T = p3 = PI'(A,)
21d 21d 21d 21d° (3d)

This implies that Pr( A 4,) > 0, i.e. there exists such a choice of W that the induced

teT
graph (W’ consists only of independent vertices and independent edges.

The validity of Theorem 1B for odd d clearly follows from the validity of Theorem
IB for evend + 1.

The proof of Theorem 2B is then quite similar to the proof of Theorem 2 given
in [3] The only difference is that the last linear forest is no more a matching but
may contain also paths with two edges. In the conclusion we introduce one more
modification of Theorem 1:

Theorem 1C. Let H = (V, E) be a graph with maximum degree d, and let V =
=ViuV,u...uV, be a partition of V into r pairwise disjoint sets. Suppose
each set V; is of cardinality [Vil = Zd. Then there exists a set of vertices W< V
that contains at least one vertex from each V; and that the induced graph {W)
contains no triangles.

The last result can be proved by a small modification of the proof of Theorem 1B.
We can show for x = 2/15d* that Pr(4,) < x(1 — x)¥/2C/% where 4, is an event
that (W) contains the triangle 1.
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