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0. INTRODUCTION

Consider the two-dimensional nonlinear system
(s) X' =a(t) fi(x) 9:(y), ¥ = b(t)f2(x) 92(»)

where a, b :1 = [1, 0) > R* = (0, ©), f1,(—9g,) : R = (=0, ) » R* and
f2,91 : R > R are continuous; x f,(x) > 0 for x #+ 0, yg,(y) > 0 for y + 0. We
also assume that the solution of any Cauchy problem is unique and exists on I.

The following nonlinear systems are special forms of (S):
x'=a,(0) fi(y), ¥ = —ay(t)f2(x), (cf.[4]),
(r(®) x') + a(t) f(x) =0 (cf. [3], [5]),
x" + a(t) f(x)g(x’) = 0 (cf. [9], [2], [11], [12—14], [6—8]) .

The limiting system of (S)
(LS) x' = “fl(x) 91()’) , Y = sz(x) gz()’)

is also considered, where

Hy: lima(t) =a >0, limb(t)=4>0
t—om t=w
a, B const.

The purpose of the present paper is to establish necessary and sufficient conditions
for all solutions of(S) to be oscillatory, bounded, asymptotically periodic or vanishing
as t - oo, and for all orbits of (LS) to be periodic. We also find conditions assuring
that all solutions of (S) are almost asymptotically periodic or the trivial solution of (S)
is uniformly stable. Our results improve and extend some theorems in 1, 2, 5—13].

Research s_upported by NSERC Canada and the University of Alberta.
*) On leave from Ocean University of Qingdao, Gingdao, Shandong, P.R.C.
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1. OSCILLATION

In this section we give a necessary and sufficient condition for the oscillation of (S).
This is further discussed in the following sections.

Let M(7) = (x(t), y(t)) be a nontrivial solution of (S). x(¢) (or y()) is said to be
oscillatory if it has arbitrarily large zeros. M(t) is said to be oscillatory if x(t) and y(t)
are oscillatory. (S) is said to be oscillatory if all solutions of (S) are oscillatory.

It is easy to see that under the assumptions on (S), the oscillation of M(¢) is equi-
valent to that of x(r) or y(r) and that the zeros of x(¢) and y(t) separate one another.

To see this, suppose that y(¢) # 0 for t; < t < 1, and x(t;) = x(t,) = 0. Then

0 = X(t2) _ x(1;) f"x'y—yﬁ‘dzz
t

2

) vn) J, oy
_ J'” a(t) f1(x) g.(»)y — b(t) f2(x) g2(y) x

5 dt>0

t y

and this contradiction shows that the zeros of x(t) and y(t) separate each other.
In this section and the later sections we will need the following hypotheses:

H,:J a(t)dt = oo,

T

H,: J b(r)dt = oo,

T

H;: 0 < 4 < b(t)/a(t) < B, A, Bconst.,

H,: F(x) = x%u;du—»oo as |x| - o0,
o/J1\U

y
Hs: G(y) =J. 9:(v) dv—> —o0 as |y - .
0 gz(v)
Theorem 1. Suppose that H, and H; are satisfied. Then (S) is oscillatory if and
only if Hy and Hg hold.

Proof. Sufficiency: Suppose that (x(f), y(t)) is a nonoscillatory solution of (S),
so that x(¢) and y(7) are eventually of one sign. Let x(t) # 0, y(t) + Ofort = 7' = 7.
If x(t) > 0, y(t) > 0 for t = '. It is easy to see that x(r) is increasing and y(¢)
is decreasing, from which we have
lim x(f) = x(0), x(7') < x(0) £ 0,

t—= oo

lim y(t) = y(0), 0 = y(e0) < ¥(7').

t— o0

Integrating (S) from 7’ to ¢, and using H, we have

GLyv(1)] - G[¥(v)] 2 A{F[x(1)] — F[x()]}
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and hence
FLx(w0)]  FIX(E)] + %, (GD(e)] = G}

From this and H, it follows that x(o0) < co. Let

m=min f,(x).
X(t') S xS x(0)
Clearly, m > 0.
Integrating the second equation of (S) from t’ to t. We obtain

[t [ s s ar = m [ bip)ar

y(t') gl(v) 124

y()
J b(p)dp_--L-J’ Yo,

(') gZ(y)

so that

which contradicts H,.
If x(f) > 0, y(t) < O for ¢ > 7', then both x(t) and y(r) are decreasing. So we have
0 < x(0) < x(7'), —o = y(0) < ¥(7').
Integrating (S) from ¢’ to r and using H;, we have

GLy(1] = 6lu(v)] 2z B{F[x(1)]] - F[x(z)]} .
Gly(0)] 2 G[y(x")] + B{F[x(0)] = F[x(z")]} -

From this and Hy it follows that y(o0) > —co. We write

Then

M= max g,y).

y(0)Sysy(e’)
Clearly. M < 0.
Integrating the first equation of (S) from 7’ to ¢ we get

.f:f() f a(p)a:l(p ]dP<Mf a(p) dp .

x(o0)
a(p)dp < ~J— —— <,
Jr x(x) f,(x)
which contradicts H, and Hj.

For the cases x(t) < 0, ¥(t) < 0 for t = 7" and x(t) < 0, y(t) > 0 for t = 7, the
proofs are similar. Therefore, the sufficiency is proved.

Hence,

Necessity: Suppose that F(o) < oo. Then for given y, > 0, there exists x, > 0
such that

e < G0
(1) F(o0) = F(xo) < "
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Let (x(¢), y(t)) be a solution of the Cauchy problem (S) with x(t) = x,, ¥(t) = y,.
By assumption, (x(1), y(t)) is oscillatory. Let T be the first zero of y(¢) on I. Tt is
easy tosee T < T < oo and x(t) > O for te [z, T].

Integrating (S) from t to T and using H;, we have

G[W(T)] - G[y(x)] = B{F[X(T)] - F[x(z)]} -

=G(yo) = B[F(0) — F(x,)] »
which contradicts (1). For the case F(— o) < oo, the proof is similar.

Suppose that G(—o0) > —oo. Then for given x, > 0, there exists y, < 0 such
that

() G(—0) + Glvu) < AF(x0).

Let (x(¢), y(t)) be a solution of the Cauchy problem (S) with x(t) = x,, y(z) = y,.
and let T’ be the first zero of x(t) on I. Clearly, t < T' < o and y(t) < 0 for
te[r, T'].

Integrating (S) from 7 to T’ and using H, we have

G[N(T)] = G[¥(1)] = A{F[X(T")] - F[x(x)]} .

—G(—) + G(yo) = AF(x,),
which contradicts (2). For the case G(o0) > — 00, the proof is similar. So the necessity

is proved. This completes the proof of Theorem 1.

Remark 1. Letting a(t) = 1, f,(x) = 1 and g,(y) = y in (S), Theorem 1 reduces
to Theorem 1 of Liang [7]. The sufficient condition of Theorem 1 extends Theorem
0.1 of Bhatia [1] and Theorem 2 of Utz [10].

Then

Thus

2. BOUNDEDNESS

In this section we shall establish a necessary and sufficient condition for all solutions
of (S) to be bounded as t — oo, and also conditions to insure that the trivial solution
of (S) is uniformly stable. For this, we first introduce some notation and three
lemmas.

Let (x(1), ¥(t)) be a nontrivial oscillatory solution of (S) with the sequences {t,,}
and {t,,,} of zeros of x(r) and y(t) respectively such that 1,, < t5,,; < 3,4,
(n=0,1,...), t, > 00 as n — co. Clearly, x(t,,,,) and y(t,,) are extrema of x(1)
and y(t) respectively forn = 0, 1, ... .

Integrating (S) from t,,_, to t,, and using the integral mean value theorem, we
obtain

(3) G[(1)] = — b(t20-1) Fx(t20-1)]

a(TZn— 1)

(tan-1 < Tapoy <tz n=12,..).
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Similarly, integrating (S) from t,, to f2,+1, We get

@ G[¥(t)] = — ”g’j) Flx(tzns1)]

(tzn < Tan < typyp, n=0,1,..).
We denote
s, = l:[ a(Tzk) b(TZk—I)’ s, = . ‘L(fzg;}—_g)_b(fzk—l)
k=1 a(Ty-q) b(tas) k=1 a(ta—1) b(tak—32)
(n=12..).
The sequences {s,} and {s,} are called characteristic sequences of the oscillatory
solution (x(f), y(t)). Clearly, we have

s = b(fz_n “(TQ) n =
) " e b (n=1,2..).

From (3) and (4) it follows that the extrema of x(¢) and y(r) satisfy
©  Flx{aee )] = L)) (1= 1,2,
and
(7) Gy(t22)] = G[y(te)] (n=1,2,...)

respectively. So we have the following lemma.

Lemma 1. Suppose that (x(t), y(t)) is an oscillatory solution of (S). Then the
characteristic sequences {s,} and {s,} of (x(t), y(t)) satisfy (5); the sequences
{x(t2n+1)} and {¥(t,,)} satisfy (3), (4), (6) and (7).

Lemma 2. Suppose that H; and H, hold. Then all bounded solutions of (S) are
oscillatory.

In fact, the proof of Lemma 2 is similar to that of the sufficiency of Theorem 1,
so we omit the proof.

Lemma 3. Suppose that Hy and the following condition Hg hold.

Hg: b(t)/a(t) is a function of bounded variation on I.
Then the characteristic sequence {s,} of every oscillatory solution of (S) is con-
vergent and s, = s, > 0 as n - .

In fact, the convergence of the infinite product
= 17 420 blrae-1).

k=1 a(ty ) b(t)
is equivalent to that of the series

o- 5 [Hen) b(m)] o)

a(‘fzk 1) a(TZk) a(TZk)

N

0
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By H; and Hg we get
- b(Tzk—l) _ b(t2) /b(TZk) < ]_ < [b(rans1) _ b(ra)

a(tu- ) a(t)ll a(ty) ~ AxS |a(taue ) alta)
which implies that the series o is absolutely convergent, and hence s, is convergent.
From s, > 0 we get s, > 0, so Lemma 3 is proved.
We need the following hypothesis:

k)

H,: (S) is oscillatory and the characteristic sequence {s,} of every nontrivial solution
of (S) is bounded. '

The main result of this section may now be stated:

Theorem 2. Suppose that H, and Hy are satisfied. Then all solutions of (S) are
bounded as t - oo if and only if H,, Hs and H; hold.

Proof. Sufficiency: By H; we know that any solution (x(t), y(t)) of (S) is oscil-
latory, s, < s < oo (n=1,2,...) and hence by Lemma 1, (5)—(7) hold. By (5)
we get s, < (B/4)s = 8" < co. From (6) and (7) we get

F[x(t3,41)] < sF[x(t,)], G[¥(t2s)] < s'G[¥(t0)] -
From this and H,, Hs, it follows that the extrema sequences {x(t,,,)} and {)(t,,)}

are bounded. So (x(¢), ¥()) is bounded. Thus the sufficiency is proved.

Necessity: Let (x(t), y(t)) be a solution of (S). By Lemma 2 (x(t), ¥(1)) is oscil-
latory, and hence by Theorem 1 we know that H, and H; hold.
From the boundedness of (x(t), y(t)), we can assume that [x(t)] < m for tel.
From (6) we have
s, < C[F[x(t;)] < o

where C = max F(x) > 0 and so H, holds. This completes the proof of Theorem 2.
Ix1<m

In general, it is difficult to verify H,, so we introduce some conditions which are
easier to apply.

Corollary 1. Suppose that H,, Hy and Hg are satifified. Then all solutions of (S)
are bounded as t - oo if and only if H, and Hs hold.

In fact, using Lemma 3, it is easy to deduce the conclusion from Theorem 2.

Corollary 2. Suppose that H,, H; and the following condition Hg are satisfied.

[b(0)/a(t)]- = max {0, ~[b(1)a()]} -
Then all solutions of (S) are bounded as t — o if and only if H, and Hs hold.
In fact, from Hg it follows that the characteristic sequence {s,} of any oscillatory
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solution of (S) satisfies

e ] s T W O

no et I'b t)/(l(t ]__ [b(t)/ P ] 0 .
Sexpy o, b(Dfa(t) <CXPJ, b(ofal) "

From this and Theorem 2 the conclusion follows.

Remark 2. Letting a,(t) = 1, fi(x) = 1 and g,(y) = y in (S). Theorem 2 reduces
to Theorem 2 of Liang [7]. The sufficient conditions of Corollary 1 and Corollary 2
also improve and extend some of the theorems due to Bihari [2], Kroopnick [5],
Liang [6], Wong and Burton [11] and Wong [12, 13].

Theorem 3. Suppose that Hy holds and there exist 6, > 0, 6, > 0 such that the
solution (x(1), y()) of any Cauchy problem (S) with x(t') = xo, (') = yo, T 2 1,
Xo + ¥ < 9, satisfies

(i) it is oscillatory,

(ii) the characteristic sequence {s,} satisfies s, < 0.

Then the solution (0, 0) of (S) is uniformly stable.

Proof. From (i) and Lemma | we know that (5)—(7) hold. Integrating (S) from ¢’

to ty gives

ﬂwm—FMﬂhf“{qmm— GO (7 <7 < 1)

so by H; we get
(8) Fx(t,)] = F(xo) = G(yo)/4
Integrating (S) from 7’ to t, gives

6[(10)] - 60N = 2 (F{(to)] - FIx(@)]} (¢ < 7 < 10)
a(x))

and again by H; we get
©) GLy(t0)] 2 —BF(xo) + G(»o) -
Using (8) and (9) in (6) and (7) we obtain
F[x(t2041)] < s,[F(x0) = G(yo)[A] = 8,[F(x0) — G(y,)/4]
Gy(t2n)] Z —s,[BF(xo) — G(yo)] Z —(B32/4) [BF(xo) — G(yo)] -
From which it follows that the solution (0, 0) of (S) is uniform stable.

Corollary 3. Suppose that H,, H;, and Hg (or Hg) hold. Then the solution (0, 0)
of (S) is uniformly stable.

To see this consider the auxiliary system
(8) X' =a(t) o(x) ¥a(y), ¥ = b(1) 92(x) Ya(y)
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where ¢,(x), ¥,(y) (i = 1, 2) are defined by
fi(x)  for |x|] <3¢
9i(x) = {/i(9) for x =
fi(=98) for x< -0
gi(y)  for |y <o
Vi(y) =4940)  for y =
gi(=9d) for y< =6
(i=1,2, 6 > 0const.).
Tt is easy to see that the stability of the solution (0, 0) of (S) is equivalent to that of (S")
and to verify that (S’) satisfies H,—Hs. So by Theorem 1 (S’) is oscillatory, and
hence condition (i) of Theorem 3 is satisfied. Furthermore, from H;, Hg (or Hg) and
using Lemma 3 (or the proof of Corollary 2) we can show that condition (ii) of
Theorem 3 is satisfied.

Remark 3. Corollary 3 improves a result of Wong and Burton [11].

3. SYSTEM (LS)

In this section we shall establish necessary and sufficient conditions for all solutions
of (LS) to be periodic, and also show equivalent relations for oscillation, boundedness
and periodicity of (LS). We assume that the solution of any Cauchy problem is
unique. It is easy to see that the origin (0, 0) is the unique singular point and every
orbit of (LS) surrounds the origin.

Theorem 4. Suppose that « > 0 and § > 0. Then every solution is periodic if and
only if H, and Hs hold.

Proof. Necessity: Since every periodic solution of (LS) is bounded, by Theorem
2 we have that H, and Hs hold.

Sufficiency: We consider the function
Vs, ) = B F(x) - 2 G(y),
and taking the derivative of V(x, y) along an orbit of (LS) we get
, x ag,(y
Vo) = 220 160 000 - 290 [ 1) 0a(0] = 0.
fl(x) gz(y)

So from H, and Hy it follows that ¥(x. y) = Cisa closed orbit of (LS) forany C > 0.
This completes the proof.

Remark 4. The sufficient condition of Theorem 4 extends some results of Bhatia
[1] and Utz [9].

Theorem 5. Suppose that o« > 0 and B > 0. Then for all solutions of (LS), there
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exists the following equivalent relation
Oscillation <> Boundedness <> Periodicity.

Proof. Since the characteristic sequence {s,} of oscillatory solution of (LS)
satisfies s, = 1 (n = 1, 2, ...), the conclusion follows from Theorems 1, 2 and 3.

4. ASYMPTOTIC PERIODICITY

In this section we shall give a necessary and sufficient condition for all solutions
of (S) to be asymptotically periodic. This describes the structure of positive sets of
solutions of (S). Furthermore, we also show the equivalence of oscillation,
boundedness and asymptotic periodicity for solutions of (S) under certain as-
sumptions.

A solution of (S) is said to be asymptotically periodic if its orbit approaches
a periodic orbit of (LS) in a spiral manner as t - co. We introduce the following
condition:

Hy: The characteristic sequence {s,} of every oscillatory solution of (S) satisfies:

S, = S, > 0 as n — oo.

Theorem 6. Suppose thatH, is satisfied. Then all solutions of (S) are asymptotically
periodic if and only if Hy, Hs and Hy hold.

Proof. Sufficiency: By Theorem 4 we know that all orbits of (LS) are closed.
By Theorems 1 and 2, every solution M(t) = (x(t), y(t)) of (S) is oscillatory and
bounded, and so Lemma 1 holds. Letting n — oo in (6) and (7) and using H,, Hy and
(5) we obtain

(10) lim F[x(t3,41)] = s F[x(t,)],

n-— o

(11) lim G[y(2,)] = sL,G[¥(to)] ,

where s, = Bs,, a(t,) o b(ze) > 0.
Letting n — oo in (4) and using (10) and (11) give
Bs F[x(t)] = —as,,G[¥(t,)] = C, > 0.
Now consider the periodic orbit of (LS)
(1)) V(wy) = BF() — 26 = C,

It is clear that V(x, y) = C, intersects the x-axis at (x,,0) and (x;,0), and the
y-axis at (0, y,) and (0, y,). Without loss of generality we can assume that x, > 0,
x, <0, y, >0 and y, <0, and x(t4,-3) > 0, x(t4,-1) <O, y(tsn-,) > 0 and
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¥(t4,) < 0. From (10), (11) and (12) it follows that
x(t4n—3) - X, x(t4n-1) - X3,
y(t4n—2)_’}’1, y(tm.)_’yz as n— .

We now prove that for arbitrary ¢ > 0, there exists t* > 7 such that M(t) < A(e)
for all t = t*, where

Ale) = {(x,y):Cy —e < V(x,y) < Cy + &} .

In fact, suppose the contrary. Then from the boundedness of M(t) it follows that
there exists a sequence {}, ; - o0 as j — oo such that M(t}) ¢ A(e) for each j and

M(t)) > M = (X,7) as j— .

Clearly, M ¢ A(¢). Without loss of generality we can assume that X > 0 and 7 > 0.
So we have t,, _; < tj < 14, _, for j large enough. Integrating (S) from t,, _; to ¢
we obtain

() M) i) - O] = 2 ()
(t4n_,-—3 < T4n,-3 < tj) .

Letting j — oo in (13) and using H, and (10), we have
- — Sw
P v = 6(7) = B2 Fx(0)].

From this it follows that V(X, j) = C,. This is impossible. The sufficiency is proved.

Necessity: By assumption we know that any solution of (S) is oscillatory and
bounded, and hence by Theorem 2 H, and Hs hold.

As in the proof of sufficiency, we can assume that x(4,-3) = x; > 0, x(t4,~,) =
— X, < 0as n— o and V(x;, 0) = V(x,,0) = C; > 0. Therefore, it follows that

(14) F(xy) = F(x;) = C,{/>0.

On the other hand, from (6) we get
(15) So—2 = F[x(ta-3)][F[x(t,)] (k=2,3,..),
(16) sak—1 = F[x(ta—0)][F[x(1))] (k=1,2,..).

Letting k — oo in (15) and (16), and using (14) we obtain
k“m Sak-2 = F(x,)[F[x(t))] = C.[{BF[x(t,)]} ,
klim sae—1 = F(x,)[F[x(t;)] = C,[{BF[x(t,)]} -
From this it follows that Hy is valid. This completes the proof of Theorem 6.

Corollary 4. Suppose that H, and Hg hold. Then all solutions of (S) are
asymptotically periodic if and only if Hy and Hy hold.
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In fact, by Lemma 3 Hg implies Hy. So Corollary 4 follows directly from Theorem 6.

Theorem 7. Suppose that H, and Hy are satisfied. Then for all solutions of (S),
there exists the following equivalent statement:

(1_7) Oscillation <> Boundedness <> Asymptotic periodicity .
In fact, relation (17) can be deduced from Theorems 1, 2 and 6.

Corollary 5. Suppose that Hy and Hg hold. Then for all solutions of (S), relation
(17) holds.

Remark 5. Letting a(t) = 1, f;(x) = 1 and g,(y) = y in (S). Theorem 6 reduces
to Theorem 4 of Liang [7]. The sufficient condition of Corollary 4 improves and
extends theorems 5 and 6 of Wong and Burton [11].

5. ALMOST ASYMPTOTIC PERIODICITY

In this section we shall establish a sufficient condition for all solutions of (S) to be
almost asymptotically periodic.

A solution M(r) = (x(1), y(1)) is said to be almost asymptotically periodic if
there exists a constant T > 0 such that for arbitrary ¢ > 0, there is a 7’ = t so that

[M(t + T) — M(1)] <& forall =1

Theorem 8. Suppose that Hy, Hy, Hs and Hy are satisfied. Then all solutions
of (S) are almost asymptotically periodic.

Proof. As in the proof of Theorem 6, we can assume that x(t4,_3) > x; > 0
X(tan-1) = X2 < 0, ¥(t4,-2) = ¥y > 0 and y(ty,) > v, < Oasn - oo.

It is easy to verify that M(t + t4,-3) = (x(t + t4,-3), ¥(t + t4,-3)) is a solution
of the Cauchy problem:
u' xfl(u)gl(l’) +
+ [—a + a(t + tau—3) ] fi[x(t + 140-3)] 9:(¥(t + 14,-3)]

" = B fa(u) gx(v) +
+[-B+ b(r + ’4n~3)]f2[x(’ + t4n~3)] gz[y(’ + ’4.,—3)] R
M(O) = X(’4,,_3) )
v(0) = 0.
Let M*(t) = (x*(1), y*(1)) be a solution of the Cauchy problem (LS) with x(0) = x,,
¥(0) = 0. By Theorem 4 we know M*(t) is periodic solution (periodic T> 0). Using
Yoshizawa’s method (see [15, § 13]), it is easy to prove that M(t + t4,_3) converges

to M*(t) uniformly in t € [0, 3T] as n — co. Thus for each ¢ > 0 there is an integer
N >0 such that fy,s;)-3 — tan-3 < 2T and |M(t + t4,_3) — M*(1)| < ¢/2 for

|
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n = N and 1€ [0, 3T]. From this it follows that
'M(t + t4n—3 + T) - M(t + t4n—3)‘ é
SM(t + tyy-y + T) = M*(t + T)| + [M*(t) = M(t + t4,-3)| < ¢

for 1€[0,2T]. So we have [M(t + T) — M(1)| < & for t 2 tyy_5. This completes
the proof of Theorem 8.

Corollary 6. Suppose that Hy, Hy, Hs and Hg hold. Then all solutions of (S)
are almost asymptotically periodic.

Remark 6. Corollary 6 improves and extends Theorem 7 of Wong and Burton
[11]. If a(2) = 1, f1(x) = 1, g,(y) = y in (S), then Theorem 8 reduces to Theorem 5
of Liang [7]. However, almost asymptotic periodicity is an open question.

6. ASYMPTOTIC STABILITY

In this section we shall establish a necessary and sufficient condition for all solutions
of (S) to approach zero as t = co. We need the following hypotheses.
H,o: (S) is oscillatory and the characteristic sequence {s,} of every solution of (S)
satisfies s, > 0 as n — oo.
H,,: There exists a & > 0 such that [b(T)/a(T)][b(T")a(T’)] ' <6 for any
Tz2Tz=r.

Theorem 9. Suppose that H,, H, and H, | are valid. Then every solution (x(t), y(t))
of (S) satisfies

(18) limx(f) =0 and lim é) Gly(1)] =0
t—= t— oo
if and only if H,, holds.

Proof. Sufficiency: By H,, and Lemma 1 we know that (x(t), y(t)) is oscillatory
and (6) holds. From (6) and H , it follows that the first part of (18) is valid. We shall
next show that the second part of (18) holds. In fact, integrating (S) from t,,_, to
t€[tzy-1, t2,] We have

GLy(1)] = ”(”" ';{F[xon = st )]} -

Multiplying the two sides of the above equation by a(r)/b() we get

a(1) _ b(tha—a) [B() ]!

(19) GLy()] = {F[x()] = F[x(t20-1)} -
b(t) a(ty,-1) La(1)

Letting t — oo in (19) which implies n — oo, and by H,,; and x(t) - 0 as t - o

we know that the second part of (18) is valid. So the sufficiency is proved.

Necessity: By the assumption, all solutions of (S) are bounded. Therefore,
from H, and H, and by Lemma 3 we know that (S) is oscillatory, and so Lemma 1
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holds. Let {s,} be a characteristic sequence of any solution (x(¢), y()) of (S). Using

(6) gives
o = F[x(t2,4)][F[x(t))] (n=1,2,..),

it follows that s, - 0 as n = co. Thus H, is valid. This completes the proof of
Theorem 9. ‘

Remark 7. Letting a(t) = L, f,(x) = 1, g,(y) = y in (S), Theorem 9 reduces to
Theorem 4.2 of Liang [8].
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