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The notion of mixed product of partially ordered groups is a common generaliza-
tion of the notions of direct product and lexicographic product.

To each directed group G there corresponds a lattice L(G) which is constructed
by means of the set of all mixed product decompositions of G (cf. [3]).

By constructing the lattice L(G) the results on isomorphic reffinements of any two
mixed product decompositions are applied. The fundamental theorem on the
existence of such reffinements (in the case of lexicographic decompositions of
a linearly ordered group) were proved by A. I. Maltsev [6]. Generalizations of this
theorem were established by L. Fuchs [2] (for lexicographic product decompositions
of directed groups) and by .the author [3] (for mixed product decompositions with
directed factors of a directed group). For analogous questions concerning directed
grupoids cf. [5].

Roughly speaking, L{G) is the system of all mixed product decompositions of
a directed group G with directed factors (certain pairs of mixed product decomposi-
tions which behave in the same way with respect of forming isomorphic reffinements
are identified); the partial order on L(G) is defined in a natural way by means of
properties of isomorphic reffinements).

If G is a linearly ordered group, then each mixed product decomposition of G is,
in fact, a lexicographic product decomposition of G. In the paper [4] it was proved
that if G is linearly ordered, then the lattice L(G) has the following properties:

(A) Each principal filter of L(G) is a complete lattice.

(B) L(G) is distributive (moreover, each principal filter of L(G) is completely
distributive).

In the present paper it will be shown that the assertion (A) remains valid for directed
groups as well. The notion of regular partition of a partially ordered set will be ap-
plied in the proof.

On the other hand, for the case of directed groups (even for the case of lattice
ordered groups) the assertion (B) fails to be valid in general. In connection with this
negative result the following question arises: does there exist a nontrivial lattice
identity which is satisfied in the lattice L(G) for each directed group G? It will be
proved that the answer is “No”.
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1. PRELIMINARIES

The standard denotations for partially ordered groups will be used (cf. Fuchs [2]).
The group operation will be denoted additively, the commutativity of this operation
will not be assumed. Each subgroup of a partially ordered group is supposed to be
partially ordered by the induced partial order.

We recall the basic notions concerning mixed products of directed groups and we
introduce the relevant denotations.

Let I be a partially ordered set and for each i €I let G, be a directed group. Let A
be the (complete) direct product of the groups G;. For fe A we denote by f(i) the
i-th component of f. We put I(f) = {i e I: f(i) + 0}. Let A, be the set of all elements
of A such that either I(f) = @ or I(f) satisfies the descending chain condition. Then
A, is a subgroup of G.

For fe A, let min I(f) be the set of all minimal elements of I(f). Let f, g € A4;.
We put f < g if f(i) < g(i) is valid for each i € min (f — g). In this way we obtain
a directed group (4,; <) which will be denoted by the symbol I';; G;.

Let G be a directed group and let & bean isomorphism of G onto I';; G;. Then « is
said to be a mixed product representation of G. The partially ordered groups G;
are called factors of G under the representation o.

If I is linearly ordered, then « is said to be a lexicographic product representation
of G. In the case that G is linearly ordered, each mixed product representation of G
is a lexicographic product representation of G.

In what follows we assume that

(i) G is a nonzero directed group;

(ii) all factors of G under consideration are nonzero and directed.

Let o be as above and let I(0) < I. We denote by Gy, the subgroup of G consisting
of all elements g € G such that i e I\I(0) implies a(g) (i) = 0. If 1(0) = {i(0)} is
a one-element set, then we denote Gy = G?(O). Next we set

Gloy=1{geG:iel and i % i(0) implies o(g) (i) = 0},

Gloy=1{ge€G:iel and i % i(0) implies «(g) (i) = 0} .
Let us have another mixed product representation of G

ﬂ: G b d FjEJ GJ .

Without loss of generality we can assume that I n J = Q. The representations « and
will be said to be equivalent if the following conditions are satisfied:

(i) there exists an isomorphism ¢ of the partially ordered set I onto partially
ordered set J;

(ii) for each i €I there exists an isomorphism ¢; of the directed group G, onto the
directed group Gyiy;
(iii) if o; and Byi) are the natural morphisms of G onto G; or onto G,;, respectively,
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then the following diagram
G

ay NP

G; — Gw(:’)

is commutative (i.e., for each g € G and each i e I the relation

2i(*(9) (1)) = Blg) (#(i))

is valid.)

Roughly speaking, equivalent mixed product representations of G cannot be con-
sidered as to be essentially different.

The mixed product representations o« and f are said to be isomorphic if the con-
ditions (i) and (ii) above hold.

Let M, be the class of all mixed product representations of G. Let « and f§ be

arbitrary elements of M,. We put « = B, if for each i € I there exists j € J such that
(1) G! = G} = G} = G} .
From the relation G; * {0} it follows that the element j is uniquely determined by
the element i. It is easy to verify that < is a quasiorder on the class M,,. For a € M,
we denote by o~ the class of all «; € M, such that o < «; and oy < . If «™ and f~
are distinct, «; and a, belong to «, f; and f, belong to B and if «, < B, then
o, < B,.If y,d € M, and if y is equivalent to §, then y~ = §~. For « and f in M,
we put o~ < B if a < B. Then the class My = {a”: o€ M,} is partially ordered
by the relation <.

An element o of M, will be said to be a mixed product decomposition of G if the
following conditions are valid:

(i) for each i eI, G, is a subgroup of G;

(ii) whenever iel and g e G;, then a(g)(i) = g and ofg)(i(1)) = O for each
i(1) eI\ {i}.

We denote by M the set of all mixed product decompositions of G. We put

L(G) = {a” n M:axeM,}.

For each a € M, there exists @, € M such that «, is equivalent to «. In fact, let «
be as above. Consider the mixed product I',, G! = H. Then G? is a subgroup of G
foreachiel. Let g € G. We put

al(g) = <’ hb "'>isl ’

where h;e G) and «(h;) (i) = «(g) (i). Then a;: G - I';; G? is a mixed product
representation of G satisfying the condition (ii) above. Hence a; € M. It is easy to
verify that «, is equivalent to a.

We denote a* = &~ n M. For a*, f* € L(G) we set a* < p* if « < . Then L(G)
is a partially ordered set; moreover, in view of the relation between « and «; mentioned
above we obtain that the partially ordered class My is isomorphic to the partially
ordered set L(G).
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2. REFFINEMENTS OF MIXED PRODUCT DECOMPOSITIONS

Let o be as above and let X be a subgroup of G. For each i e I we put X(G;) =
= {a(x) (i): x € X}. The mapping a induces an isomorphism of X into I',; X(G,);
this mapping will be denoted by the same symbol «. Let us remark that some X(G;)
can be zero groups; these can be omitted from the consideration.

Let « and f be elements of M. Suppose that for each j e J there exists a subset
I(j) of I such that

(i) o is an isomorphism of G; into I',; G;(G,);

(ii) if i € I(j), then G(G,) = G

(iii) if i e IN1(j), then G,(G;) = {0}.

Under these assumptions o is said to be a reffinement of f.

Now let « and f8 be arbitrary elements of M. For each (i, j)el x J put G;; =
= (G} n G))(G}). We denote by K the set of all pairs (i,j) e I x J such that G,; +
+ {0}. Let k, = (iy, j;) and k, = (i, j,) be elements of K. We put k, < k, if
either j, < j,, orj; = j, and i; < i,. Let y be a mapping of G into I',.x G, which is
defined by putting (for each g € G and each k = (i, j) € K)

(1(9)) (k) = «[(B(g)) ()] (i) -

We shall write also f(x, ) instead of 7.

The following result (in a slightly different formulation) is contained in [3],
Theorem 4.10; it is a generalization of a theorem of Maltsev [6} (concerning lexico-
graphic product decompositions of linearly ordered groups) and of a theorem of
Fuchs [5] (concerning lexicographic product decompositions of directed groups).

2.1. Theorem. Let o and § be mixed product decomposition of G. Then
(i) f(a, B) is @ mixed product decomposition of G;
(ii) the mixed product decompositions f(a, B) and f(B, o) are isomorphic;
(iii) f(e. B) is a reffinement of o« and f(B, o) is a reffinement of .
From the definition of f(a, B) we also obtain that if «, a;, # and B, are elements
of M such that o* = o and p* = BY, then f(o, B)* = f(ay, By)*.

2.2. Corollary. Let o and f be elements of M. Assume that o is equivalent to f.
Then o is isomorphic to f.

Next we have (cf. [3], Theorem 6.4):

2.3. Proposition. The partially ordered set L(G) is a lattice. For each a* and f*
from L(G) we have a* A p* = f(a, B)*.

A constructive description of the operation V of the lattice L(G) is given in [3],
Section 6.

Let P be a partially ordered set. An equivalence relation ¢ on-P will be said to be
regular if it satisfies the following condition (r) and the condition (r') dual to (r).
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(r) Let py> P2 and p; be elements of P such that p; ¢ P> and p; < p;. Assume that
the relation p; ¢ p; does not hold. Then p, < p;.

If ¢ is a regular equivalence relation on P, then the partition of P corresponding
to the equivalence ¢ will also be called regular.

Let E(P) be the lattice of all equivalence relations on P and let R(P) be the set of
all regular equivalence relations on P.

2.4. Lemma. R(P) is a closed sublattice of E(P).

Proof. The lattice operations in E(P) will be denoted by A -and v. Let g,(te T)
be elements of R(P). Then clearly A ,.r ¢, also belongs to R(P). Put ¢ = V 1 0,.
Let p;, p, and p, be elements of P such that p, ¢ p,, p; < p;. Assume that p; ¢ p3
‘does not hold. We have to verify that p, < p; is valid.

There exist elements 4o, 41, 4> --., 4, in P and (1), #(2), ..., t(n) in T such that
do = P1> 4, = P, and ¢q,,—, t(m) g, is valid for m = 1,2, ..., n. Because p, ¢ p;
fails to hold, g, ¢(1) p5 does not hold. Since g, ¢(1) g, and (1) is regular, we infer
that ¢, < p,. By induction we obtain g, < p;. Hence ¢ satisfies the condition (r).
Analogously we can verify that ¢ satisfies the condition (r’).

Let o and f be elements of M such that o < 8. For j € J let I,(j) be the set of all
i € I such that the relation (1) from Section 1 is valid. Next, for i(1) and i(2) from I
we put i(1) g i(2) if there is j € J such that i(1) and i(2) belong to I(j).

The following lemma is easy to verify; the proof will be omitted.

2.5. Lemma. Under the above denotation, ¢z is a regular equivalence relation
onl.

Let ¢ be a regular equivalence relation on I and let P be the corresponding regular
partition of I. For p, and p, from P we put p, < p, if either p; = p,, or p; * p,
and i, <i, whenever i, € p; and i, € p,. Then P is a partially ordered set under <.

Let p e P. In accordance with the denotation introduced above we denote by G,
the set of all g € G such that «(g) (i) = 0 whenever i does not belong to p. Then G,
is subgroup of G. Let y be the mapping of G into I',, G, such that for each g € G
and each pe P we have

1(9) (p) = G @(9) (i), o+ Dicp -

2.6. Lemma. Under the above denotation, y is a mixed product decomposition
of G and o is a reffinement of y. Moreover, the partition of I corresponding to g, is P.

The proof will be omitted.

3. PRINCIPAL FILTERS OF L(G)
For o* € L(G) we denote by [a*] the principal filter of L(G) generated by a*. Let

us remark that L(G) has a greatest element a, where «, is the trivial mixed product
decomposition of G (&, possesses only one factor).
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3.1. Lemma. Let o and 8 be elements of M such that o < B. Then there exists f,
in M such that BT = B* and « is a reffinement of ;.

Proof. Let g, be the regular equivalence on I corresponding to f8 (cf. Lemma 2.5).
Next let P(g;) = K be the regular partition of I corresponding to g and let f; =
be the element of M constructed as in Lemma 2.6. Then we have 7 = * and «
is a reffinement of f,.

In view of 2.4, the system R(I) of all regular equivalence relations on I is a complete
lattice. For * € [«*] we denote ¢,(8*) = g;. Then ¢, is a correctly defined injective
mapping of the set [«*] into R(I). If BT < B3, then ¢(BY) < ¢(B3). If 0 € R(I), then
let y be as in Lemma 2.6; we have y* € [«*] and ¢,(y*) = . Let ¢;, ¢, € R(I) and
suppose that y; corresponds to ; (i = 1, 2) in the above manner. Then from ¢, < g,
we obtain yf < y%. Thus ¢, is an isomorphism of the partially ordered set [a*] onto
the complete lattice R(I). Therefore we have

3.2. Theorem. Each principal filter of L(G) is a complete lattice.

3.3. Proposition. Let f,(x,...,x,) and f,(x,,...,x,) be lattice polynomials.
Assume that for each directed group G and for each o* € L(G) the lattice [a*]
satisfies the identity f,(BY, ..., Bx) = f2(BY, ..., By). Then the identity f(x,, ..., x,) =
= fo(xy, ..., x,,) holds in each lattice.

Proof. By means of contradiction, assume that there exists a lattice L, such that

(1) f(xgs oo X)) = faxgs 005 X,)

fails to be an identity in L,. Then in view of the well-known theorem of Whitman
[7] (cf. also Birkhoff [1], Chap. IV, § 9) there exists set I such that the lattice E(I)
does not fulfil the identity (1). Assume that < is the trivial partial order on I (i.e.,
for i, and i, from I we have i; < i, if and only if i; =i,). Foreach i eI let G, be
a nonzero linearly ordered group; put G = I',; G;. Then G is, in fact, the direct
product G = [ ], G;. Let a be the identity on G; hence « € M. We have R(I) = E(I),
thus R(I) does not satisfy the identity (1). We have verified above, that ¢, is an
isomorphism of [«*] onto R(I). Hence [a*] does not satisfy the identity (1), which is
a contradiction.

The above proof also shows that in 3.3 “directed group” can be replaced by “lattice
ordered group”.
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