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It is known that the direct product of two ideals (both two-sided and one-sided)
in the direct product of two semigroups is an ideal in the direct product of two semi-
groups. However, if we add some other condition, e.g. for maximal ideals or principal
ideals, it need not be so (see [6]). Principal left ideals in the direct product of two
semigroups are studied in [2].

The aim of the paper is to find conditions, under which J(a, b) = J(a) x J(b)
in S; x S,, for (a, b) e S; x S,, where

(1) J(a, b) = (a, b) U (S,a x S,b) U (aS; x bS,) U (S.aS; x S,bS,)
is a principal two-sided ideal, generated by (a, b) e S; x S,, and
(2) J(a) x J(b) = (au S;au aS,; v S,aS;) x (bu S,bu bS, U

U S,bS,) = (a,b) U (a x S,b)u (a x bS,)u (a x S,bS,)u
U (S1a x b)u (Sia x S,b)u (Sia x bS,) U (S1a x S,bS,) U
v (aS; x b)u (aS; x S,b)u (aS; x bS,)u (aS; x S,bS,;)u
U (S;aS; x b)u (S1aS; x S,b) U (S1aS; x bS,) U (5,aS, x S,bS,)
From the relation (1) and (2) we get
Lemma 1. Let ae S,, be S,. Then
J(a, b) = J(a) x J(b).
In some cases J(a, b) = J(a) x J(b), in some other cases J(a, b) = J(a) x J(b).

Example 1. If z, € S, is zero in Sy, z, € S, is zero in S,, then for any a € S|,
besS,,
J(zy, b) = J(z,) x J(b) and J(a, z,) = J(a) x J(z;).

It immediately implies from (1) and (2).

Lemma 2. Let a€e S,, be S, be nonzero elements and at least for one of them
a¢(S,avaS,u SaS,), b¢(S,bu bS, U S,bS,). Then

J(a, b) = J(a) x J(b).
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Proof. Let for ae S; be a ¢(S,au aS; U 8,aS,). Then in J(a, b) there is the
only element having the first component a, namely (a, b). However, in J(a) x J(b)
there are certainly more of such elements, namely (a x S,b),(a x bS,),(a x S,bS,)
(as b is nonzero element).

Corollary. Let ae S, be S,. A necessary condition for that J(a,b) = J(a) x
x J(b)in S; x S, is that at least one of the folowing conditions holds:
1. S,a = aS, = {a}
2. S,b = bS, = {b)
3. ae(Sya v aS; U S,aS,) and be(S,buU bS, U S,bS,).
Remark 1. If at least one of a € Sy, b € S, is zero, then
J(a, b) = J(a) x J(b),

as we have seen in Example 1.
If we want to find all cases, when J(a, b) = J(a) x J(b) in S; x S,, then it is
necessary to consider all possibilities in which the condition 3 of Corollary holds.
The investigation will be devided into two cases:

I. ae(S,auaS,; U S1aS,) and be(S,b U bS, U S,bS,), but
(a, b) ¢{(Sya x S,b) U (aS; x bS,)u (S,aS, x S,bS,)}
IL. (a, b)e{(S;a x S,b)u (aS; x bS,) U (S,aS, x S,bS,)}.
Example 2. Let S, = {ay, a,, a3, a,}, S, = {by, by, by, b,}. The associative
binary operations in S; and in S, are given by means of the following tables:

! a; a; 4as a l b, b, by b,
a, a, a; a; a b, b, b, by b,
a, a, a, a; a, b, b, b, by b,
a; a, a, a, as bs b, b, b, b,
a a, a; a, a, b, b, b, by b,

J(ay) = {ay, a3}, J(bs) = {by, b3}, ay€(S1a3 U a3, U S;a;S,) and by €
€(Syb3 U b3S, U S,b3S,), but (as, by) ¢ {(Syas x Syb3) U (a3S; x b3S,) U
U (S,a3S; x S,b3S,)}. However, J(as, bs) = J(az) x J(b3).

This example indicates that J(a, b) = J(a) x J(b) may occur even in the case
if (a, b) ¢ {(S;a x S,b) U (aS; x bS,) U (S,aS; x S,bS,)}.

Considering all possibilities which can occur in the case I. it can be verified that
the following statement is true.

Lemma 3. Let ae(S;avu aS,u S;aS,) and be(S,b U bS, U S,bS,). Then
(a,b) ¢{(S;a x S,b) U (aS; x bS,)uU (S1aS; x S,bS,)} iff, any of the following
conditions is satisfied:

1. [ae S;a A a¢(aS, U S,aS,)] A [bebS, A b¢(S,bu S,bS,)]
2. [aeaS, A a¢(S,au S1aS,)] A [beS,b A b¢(bS,u S,bS,)]
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.[aeaS, A a¢(Syau S,aS;)] A [beS,bS, A b¢(S,bubS,)]
.[aeSia A a¢(aS; U S,aS,)] A [beS,bS; A b¢(S,bu bS,)[
.[aeS,aS; A a¢(S;avaS,)] A [beS,b A b¢(bS, U S,bS,)]
.[a€SaS; A a¢(S,av aS,)] A [bebS, A b¢(S,bu S,bS,)]
.[ae(Sian SaS,) A a¢aS,] A [bebS, A b¢(S,buU S,bS,)]
. [ae(aS; n SiaS,) A a¢ Sia] A [beS,b A b¢(bS,u S,bS,)]
[acaS, A a¢(Syau S,aS,)] A [be(Ssbn S;bS,) A b¢bS,]
10. [a€ Sia A a¢(aS, U S,aS,)] A [be(bS, N S,bS,) A b¢S,b]

N2 TN B R I

In this part we shall investigate the cases 1.—10. and we shall show in which of
them the equality: J(a, b) = J(a) x J(b) may occur and under which conditions.

Remark 2. It can be verified that if Lis a left ideal of S, R is a right ideal of S,
then LA R *+ 0.

And since S;a is a left ideal of S|, aS, is a right ideal of S|, then S;an aS; + 0
and equaly S,b N bS, # 0. For our purposes denote: S;a n aS; = Py, S,bn bS, =
= P,.

Theorem 1. Let [a€ Sya A a ¢ (aS, U S1aS,)] A [bebS, A b¢(S,buU S,bS,)].
Then J(a, b) = J(a) x J(b) iff
(1) [(aS, = S,aS;) A Sya = P, U {a}] A [(S,b = S,bS,) A

A (bS, = P, U {b})].

Proof. a) ae S;a implies aS, < S,aS,. Denote by U = S,aS; — aS;, U’ =
= S;anU, U" = S,aS, — (S;a v aSs,).

bebS, implies S,b < S,bS,. Denote by V= S,bS, — S,b, V' =bS, N7V,
V" = S,bS;, — (S,b U bS,).

Sia=P,0oUVU;, aS; =P, 0U,,
S,aS; =P, 0oU,uU LU".
S;b=P,uV,, bS, =P,V UV,,
S;bS, =P,uViuV UV,
Then
J(a) = Sjav SaS, =P, oU,LU,LU LU",
J(b) = bS, U S,bS, = P,u ViU V,uV UV,

and all subsets, expressing both J(a) and J(b) are mutualy disjoint and a € U, and
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a¢(UyuU UU"), beV,and b¢(V,u V' U V"),
J(a) x J(b) = (P,uU,LU,uU LU") x
X (P,uV,UuV,uV' UV =
= (P; x Py)U(P; x V) U (Py x V) U (P, x V')U (P, x V") U
V(U x Py)u(Uy x V) u(Uy x V) u (U x V)u (U, x V")u
U(Uy x P)u (U, x ) U (U, x V) u(U, x V)u (U, x V') U
V(U x P)u(U x V)u (U x V)u(U x V)u (U x V')u
V(U x P)u(U" x V) u(U" x V) u(U" x V)u(U” x V7).
J(a,b) =(a,b)u (P, U, LU) x (P,uV,)u(P,uUU,) x
X (P,uV,UuV)U(PLuU,uU VU") x (P,uV,uV UV =
=(a,b) U (P, x P)u (P, x V))u (U, x P,)u
V(U x V) u(U x P)u(U x V) u (P, x Va)u (P, x V')u
U(Uy x P)u(Uy x 1) U(Uy x VYU (P x VYU (U, x Vy)u
V(U x V) u (U x V)u (U x V")u(U” x P,)u(U" x V;)u
u(U" x V)u(U" x V).
If J(a, b) = J(a) x J(b), then (U, x V,) = (a, b) and
Uy x V) (U, x V) =[U;, x (VuV)]=0
and
(U' X VZ)U(U” x V,) = [(U/u U)x V] =0
AsU;#+0and V, £ 0, then VU V" =0 and U uU” =0, hence U' = U" =
and V'=V"=0. Then U, ={a}, V, ={b}, and [(aS, = S,aS,) A S,a =
= P, u{a}] A [(S,b = 5,bS,) A bS, = P, U {b}].

b) Let (1) be satisfied. Then a € S,a, b € bS, implies:
aS, < 5,aS,, S,b < S,bS, .
J(a) = S;au S,aS; = S;av as,,
J(b) = bS, U S,bS, = S,b U bS, .

Then
J(a) x J(b) = (Sya x S,b) U (Sya x bS,)uU (aS, x S,b)u

O (@S, x bS;) = [(Py o {a}) x S:b] U [(Py 0 {a}) x (P30 {b})]
U (aS, x Syb)u [aS; x (P,u {b})] = (P, x S,b) U ({a} x S,b)u
U (P x P)u(Py x {b})u({a} x P,)u(a,b)u (aS; x S,b)u

U (aS; x Py)u (aS, x {b}) = (aS, x S,b)u ({a} x S,b)u

U (P x {b})u ({a} x Py)u(aS; x {b})U (a,b) =

= (a, b) U ({a} x S,b)u (aS; x {b}) U (aS, x S,b).
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J(a, b) = (a, b) U (S,a x S,b) U (aS; x bS,) U (S,aS,; x S,bS,) =
= (a,b) U [(P; U {a}) x S;b] U [aS; x (P, u {b})u (aS, x S,b) =
= (a, b) U (Py x S,b) U ({a} x S;b)u (aS; x P)u (aS; x {b})u
U (aS; x §;b) = (a, b)u ({a} x S;b) U (aS; x {b})u (aS; x S,b) =
= J(a) x J(b).

Theorem 2. Let [a € aS; A a¢(S1av S,aS;)] A [beS,b A b¢(bS,uU S,bS,)].
Then J(a, b) = J(a) x J(b) iff
2) [(Sia = S,aS,) A (aS; = Pyu {a})] A
A [(bS, = S,bS,) A (S,b = P, U {b})].
Proof. The proof is analogous to that of Theorem 1.

Lemma 4. Let [acaS; A a¢(S;av SiaS,)] A [beS,bS, A b¢(S,hbu bS,)].
If J(a,b) = J(a) x J(b), then bS, U {b} = S,bS,.
Proof. aeaS, implies S,a = S,aS,. Debote by U = S,aS, — S;a, U’ =
=aS,nU,U" = S,aS; — (S,a v aS)).
be S,bS, implies S,b = S,bS,, bS, < S,bS,, S,buU bS, = S,bS,. Denote
by Vi = S,b — Py, V, = bS, — P,, V= 8,bS, — (S,bU bS,); S;a=P,0U,,
aS; =P,uU,uU’, S$aS, =P, vU,vU VU" J(a)=aS,u S,aS, = Py
VU, uU,uU VU", J(b) = $,bS, = P,u V, UV,uU V. P;, P, denote the same,
as it was said in Remark 2,a e U,, b € V. Recall that P, U, U,, U’, U” and P,, Vi,
V,, V are mutualy disjoint. Then
J(a) x J(b) =(P,uU;0U,uU LVU") x (P,uV,UV,U V)=
= (P, x P,)u(Py x V) U(Py x V) u(Py x V) U (U, x Py)u
V(U x V) u(Uy x V) u(Uy x V)u (U, x P)u (U, x V) u
VU, x ) u(Uy x V)Uu (U x P)u (U x 1) u (U x Vy)u
V(U x V)u(U" x P,)u(U" x V)u (U x ¥V,)u (U x V).
J(a, b) = (a, b) U (aS, x bS,)uU (S,aS, x S,bS,) =
=(a,b)u(P,uU,uU) x (P,u V,)u(P,UU, LU LU") x
x (P,uVyuV,uV) = (a,b)u(Py x P,)u (P, x V,)u
U Uy x Py)u(Uz x ) U (U x P)u (U x V,)u (P, x Vy)u
VP x V)u(Uy x P)u(Uy x ) u(Uy x V) u(Uy x Vyu
u(U x V)u (U x V)u(U" x Py)u(U" x V)u
v (U x Vy)u(U" x V).
If J(a, b) = J(a) x J(b), then (U, x V) = (a, b) and (U, x V;) = 0, hence U, =
= {a}, V= {b}. However U, # 0, then V; = 0. Then
bS, U {b} = S,bS,
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Theorem 3. Let [a € aS; A a¢(S,a U S1aS,)] A [be S,bS, A b¢(S,bu bS,)].
Then
J(a, b) = J(a) x J(b).

Proof. First we show that #-class J, = {x e S | J(b) = J(x)} contains more than
one element. If b € S,bS,, but b ¢ (S,b U bS,), then there is c € S, such that either
ce S,b and becS,, or ce bS, and b e S,c. It is evident that ¢ + b. Let ce S,b
and b € cS,, then S,cS, = S,bS, and S,bS, < S,c¢S,. It implies S,cS, = S,bS,.
So, J(b) = S,bS, = S,cS, = J(c), therefore ce J,, ¢ + b. From Lemma 4 we
have that if J(a, b) = J(a) x J(b), then necessarily: bS, u {b} = S,bS,. From
there we have: for c € J,, J(¢) = ¢S, U {¢} = S,cS, = 5,bS, = bS, U {b} = J(b).
It implies ¢S, U {c¢} = bS, U {b}. The last equality may occur if

l.c=b, or

2. ¢+ b. Then ce bS, and becS,. It implies ¢S, < bS, A bS, < ¢S,. Then

¢S, = bS,.

Since b € ¢S, = bS,, it implies b € bS,, but it is contradicting with the hypothesis,
as b ¢ (bS, U S,b).

Remark 3. Similarly, as we have shown in Lemma 4 what is a necessary condition
for that J(a, b) = J(a) x J(b) in the case 3 of Lemma 3, then in a similar way we
can show that a necessary condition for that J(a, b) = J(a) x J(b) in cases 4, 5, 6,
of Lemma 3 is that the following conditions are satisfied:

S,bu {b} = S,bS,,
Siau {a} = S;aS,,
aS;u {a} = S,aS, .
And similarly as in Theorem 3 we can prove that in the cases 4, 5, 6, of Lemma 3
J(a, b) = J(a) x J(b).
Lemma 5. Let [ae(S;an S;aS,) A a¢aS,| A [bebS, A b¢(S,bu S,bS,)].
If J(a, b) = J(a) x J(b) then
aSy v {a} = S,aS, .

Proof. The proof is similar to that of Lemma 4.

Theorem 4. Let [a € (S,a n SyaS,) A a¢aS;] A [bebS, A b¢(S,bu S,bS,)].
Then
J(a, b) = J(a) x J(b).
Proof. The proof is similar to that of Theorem 3.
Remark 4. And similarly as in Lemma 4 we can show that a necessary condition

for that J(a, b) = J(a) x J(b) in the cases 8, 9, 10, is that the the following con-
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ditions are satisfied:
S,au {a} = S;aS,,
bS, U {b} = S,bS,,
S,b U {b} = S,bS, .

And similarly, as in Theorem 3 we can prove that in the cases 8, 9, 10, of Lemma 3

J(a, b) = J(a) x J(b).
II.

In this part we shall consider the case that (a, b) € S; x S, satisfies the condition:
(a,b) e [(Sys x Syb)u (aS; x bS,) U (S,aS; x S,bS,)]. It includes several pos-
sibilities:

a) (a, b) is contained in any component

b) (a, b) is contained just in two components

c) (a, b) is contained just in one component.

Lemma 6. If (a, b)e(Sya x S,b) N (aS; x bS,) then (a, b)e(S,aS; x S,bS,).

Proof. Let (a,b)e(S;a x S,b)n (aS; x bS,). Then (aeS;a A aeaS,) A
A (be S,b A bebS,). It implies aS; < S;aS, and bS, < S,bS,. And because
aeaS,, bebS, we have a € S;aS;, be S,bS,, therefore (a, b) € (S;aS, x S,bS,).

Theorem 5. If (a, b) € (S,aS, x S,bS,), then J(a, b) = J(a) x J(b).
Proof. If (a, b) € (S;aS; x S,bS,), then J(a, b) = (5,aS, x S,bS,) and at the
same time a € S,aS,, b € S,bS,. It implies J(a) = S,aS; and J(b) = S,bS,, hence
J(a, b) = (S,aS; x S,bS,) = J(a) x J(b).
Before we shall proceed, let us consider one example more.

Example 3. Let S; = {ay, a5, a3, a4}, S; = {by, b, by, by} be two semigroups,
whose an associative operation is given by means of the following tables:

 a; a, a; a4 I b, b, by by
a, ' a, a, a; a T b, b, b, b; b,
a; a ap a; a b, by b, by b
ay | a; a, az ag b, b, b, by by
a, ' a, a, a; a, by | by b, by b,

a, € Syay, by € S;b,,50 (a3, by) € (Sya, x S,b,), (a5, by) ¢(arS; x b,S,),(ay, b,) ¢
¢(S1a,8, x 5,b,8,). J(az) = {ay, a,}, J(b;) = {by, b,). J(az) x J(by) =

= {(ay, by), (ay, by), (a3, by), (az, by)}. J(az, by) = (Sa, x S,by) U

U (5,a,8; x 8,b,8;) = {ay, a,} x {b,} u{a,} x {by, by} =

= {(ay, by), (ay, b2), (az, by)} = J(ay) x J(b,).
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It remains only to find conditions, under which J(a, b) = J(a) x J(b), if

(i) (a, b)e(Sya x S;b) A (a, b) ¢[(aS, x bS;) U (S,aS, x $,bS,)],
or

(ii) (a, b) € (aS; x bS,;) A (a,b)¢[(S1a x S,b) U (S,aS, x §,bS,)].

Let (i) hold. The relation: (a, b) ¢ [(aS, x bS,) U (S,aS; x S,bS,)] includes the
following possibilities:

1. [a ¢ (aS, U S,aS,)] A [be(bS, N S,bS,)]

2. [ae(aS;n SiaS;)] A [b¢(bS,u S,bS,)]

3. [a¢(aS; v S1aS;)] A [b¢(bS, U S,bS,)]

4. [aeaS, A a¢SaS;| A [bé¢bS, A beS,bS,]

5.[a¢aS; A aeS;aS,] A [bebS, A b¢S,bS,]

4. and 5. cannot occur, as (a, b) € (S;a x S,b) and 4.: a € aS, imply S,a < S,aS,.
However, a € S;a < S,aS, implies a € S;aS, and it is contradicting with a ¢ S,aS,.
Similarly 5 can be verified.

Combining (a, b) € (S;a x S,b) with each of 1., 2., 3., we get the following three
possibilities:

() [a€Sia A ag¢(aS, U S,a8,)] A [be(S,bn bS, N S,bS,)]

(B) [a€(S;anaS; n S;aS,)] A [beS,b A b¢(bS, U S,bS,)]

(Y) [a€Sia A a¢(aS;u S,aS,)] A [beS,b A b¢(bS,u S,bS,)]

Theorem 6. Let [aeS,a A a¢(aS, U S;aS,)] A [be(S,bn bS, N S,bS,)].
Then

J(a, b) = J(a) X J(b) iff S,b=S,bS,.

Proof. a) P;, P, denote the same as it was said in Remark 2. a € S,a implies
aS; € S,aS,. Denote by U, =aS; — P;, SyaS; —aS, =U, S;anU =U,
Sia — (PyuU') =U,, SaS; —(aS,uU’)=U" And V, = S,b — P,, V, =
= bS, — P,, V= 5,bS, — (S,b U bS,).aeU,, beP,.

J(a) = S;au S;aS, = P,uU, LU, LU LU",

J(b) = S,bS, =P, uV,uV,UV.

J(@) x J(b) = (P,uU,uU,uU LU") x (PuV,UV,UV)=
= (P; x P)U (P, x V})u(Py x V)u (U, x Py)u(P; x V,)u
(U, x V)u(Uy x V) u(U; x V)u (U, x Py)u (U, x V;)u
VU, x ) u (U, x V) U (U x P)u (U x V) u (U x Vy)u
U(U x V)U(U" x P)U(U" x V) u(U” x V) u(U”" x V).
J(a, b) = (S;a x S,b) U (SyaS; x S,bS;) = (P, U U, L U') x

X (P,uV)u(Py,uU,uVU' LU") x (P,uV,uV,0V) =
=(Py x P)u(Py x V))u(U; x P,)u(U; x V) u (U’ x Py)u
V(U x V) U(Py x V,)u(Py x V)u (U, x P))u (U, x Vy)u
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V(Uy x B)u (U, x V)u (U’ x ¥,)u (U x V)u(U” x P)u
V(U x V) u(U" x V) u(U" x V).
If J(a) x J(b) = J(a,b), then (U, x V,)U (U, x V) = U, x (VauV)=0. As
Uy # 0, then V, U V= 0, hence V, = V' = . Then from the expression: J(b) =
= 5,bS, = P,u ViU Vyu Vweget S,bS, = P,u V, = S,b, therefore
S,bS, = S,b .
b) Let (a) be satisfied and S,bS, = S,b. Then a € S,a implies aS, < S,aS,,
be S,b implies bS, < $,bS, = S,b. Then J(a) = S;a U S,aS,, J(b) = S,b, and
J(a) x J(b) = (Sja L S,aS,) x S,b = (S1a x S;b) U (S,aS; x S,b),
J(a, b) = (S1a x S,b) U (S,aS, x S,bS,) =
= (Sya x S,b) U (5,aS; x S,b) = J(a) x J(b).
Theorem 7. Let [a€(S;anaS;n SaS,)] A [beS,b A b¢(bS, U S,bS,)].

Then
J(a, b) = J(a) x J(b) iff S,a = S,aS,.

Proof. The proof is similar to that of Theorem 6.
Theorem 8. Let [a€ S;a A a¢ (aS; U S1aS,)] A [beS,b A b ¢ (bS, U S,bS,)].

Then
J(a, b) = J(a) x J(b) iff

(aSl < Slasl e Sla) A (bS2 = SZbSZ < Szb).
Proof. a) a € S;a implies aS, < S,aS, and J(a) = S,au S,aS; be S,b implies
bS, < S,bS, and J(b) = S,b U S,bS,. Denote by U, = aS, — P,,U = S,aS, —
—aS;, U =S8,anlU, U =S8a~-(PuU),U" = SaS, — (aS,; U U').
Vy=bS, — Py, V=SbS,—bS,, V' =S,bnV.
V, = S,b — (P, U V),
V' = S,bS, —(bS, U V).

Then J(a) = P, U, v U,u U vU", J(b)=P,uV, UV, UV UV" and
J(@) x J(b) = (P,U U, LU, LU L U") x
X (PuV, UV, UV UV =
=(Py x Py) U(P; x V))u (P, x V) u (P, x VYU (P, x V") U
V(U x P)u(U; x V) u(Uy x V,)u (U, x Vyu(Uy x V") u
U(Uz X PZ)U(UZ X '/1)U(U2 X VZ)U(UZ X V/)U(Uz X V”)U
V(U x P (U x V) u(U x V) u(U x VYU (U x V)u
U(U" x P) U(U" x K)U(U" x 1)U (U" x V) o (U x V7).
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J(a, b) = (S1a x S;b) U (S,aS, x §,bS,) = (P, VU LU’) x
x (PyuViv V’)U(PnuUzuU’uU”) x (Pyu Va0V uV’) =
= (P, x P2)U(Py x V) U (P, x V')u (U, x P;)u(Uy x V1)U
VU, x VYU (U x P)u (U x V) u (U x V')u (P x Va)u
U (P, x V") U (Uy x P)u (U, x V,)u (U, x V)U
VU, x V)U(U x V) u (U x V")u (U x P)u(U" x V;)u
u(U” x V)u (U x V),
If J(a) x J(b) = J(a, b), then
Uy x )uUy x V) =U, x (V,uV")=0, and
(U x O (U" x V) = (U,uU") x ¥, = 0.
As aeU,; # 0 and beV, + 0, then U,uU" =0, and V,u V" =9, so, U, =
=U"=0,andV, = V" =0.Then S;a = P,uU,u U, S;aS; = P,uU’,aS, =
= P,, S;b=P,uV, 0V, S;bS, = P,u V', bS, = P,. Therefore
(aS, < S,aS; = S,a) A (bS, = S,bS, < S,b).

b) Let (y) be satisfied and (aS, < S,aS; = S,a) A (bS, = S,bS, = S,b). Then
J(a) = Sya, J(b) = S,b, J(a) x J(b) = (S,a x S,b).

J(a, b) = (S;a x S,b) = J(a) x J(b).

Let (ii) hold: (a, b) e (aS, x bS;) A (a,b) ¢[(S,a x S,b) v (SsaS, X SZbS%)].
The relation (a, b)¢[(S;a x S,b) U (S,aS, x S,bS,)] includes the following
possibilities:

1. [a¢(Siau SaS,)] A [be(S,bn S,bS,)]

2. [ae(Syan SaS,)] A [bé¢(S;bu 5,bS,)]

3. [a¢(S,au SaS,)] A [b¢(S:bu S,bS,)]

4. [aeS,a na¢SaS;] A [b¢S,b A besS,bS,]

5. [a¢Sa naeSaS] A [beS,b A b¢S,bS,]

And similarly as in (i) we can show that 4. and 5. cannot occur. -

Combining (a, b) e (aS, x bS,) with each of 1., 2., 3., we get these possibilities
in the following form:

(@) [aeaS, A ag¢(S,au S,aS)] A [be(S,bn bS, N S,bS,)]

(B") [ae(S1anaS, nS,as,)] A [bebS, a b¢(S,bu S:bS,)]

(v) [acaS; A a¢(S;au S,aS)] A [bebS, n bé(S:bu S,bS,)].

As (@), ('), (v') are similar to () (B), (v), we can state the corresponding state-
ments.

Theorem 9. Let [aeaS, A a¢(S1a0 S,aS,)] A [be(S;bnbS: 0 S,bS))].
Then

J(a, b) = J(a) x J(b) iff bS, = S,bS,.
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Proof. The proof is similar to that of Theorem 6.

Theorem 10. Let [a€(S;an aS;n SaS)] A [bebS, n b¢(S,bu S,bS,)].
Then

J(a, b) = J(a) x J(b) iff aS, = S,aS, .

Theorem 11. Let [a € aS; A a¢(S;au S,aS;)] A [bebS, A b¢(S,bu S,bS,)].
Then

J(a, b) = J(a) x J(b) iff 7

(Sia = S,aS, = aS;) A (S,b = S,bS, < bS,).

Proof. The proof is similar to that of Theorem 8.
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