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It is shown, that if a topology ¢ contains the topology of pointwise convergence
and it is splitting on the set C(Y, Z) of continuous maps, then the specialization order
of t coincides with the pointwise order induced on C(Y, Z) by the specialization order
of Z.

This result is used to prove that when there exists the coarsest jointly continuous
topology on C(Y, Z), where Z is an injective T, topological space, then this topology
is the Scott topology a(C(Y, Z)), which is determined by the pointwise order induced
on C(Y, Z) by the specialization order of Z.

1. INTRODUCTION

With the following two known propositions the Isbell topology and the bounded-
open topology on the set C(Y, Z) are compared with the Scott-topology.

Proposition 1.1. (Proposition 2.10 of [7]). If Y is a corecompact space and Z is an
injective T, space, then the Isbell topology T, coincides with the Scott topology
o(C(Y, Z)), which is determined by the pointwise order induced on C(Y, Z) by the
specialization order of Z.

Proposition 1.2. (Proposition 2.12 of [5]). If Y is a locally bounded space and Z
is an injective Ts-space, then the bounded-open topology T,, coincides with the
Scott topology o(C(Y, Z)), which is determined by the pointwise order induced
on C(Y, Z) by the specialization order of Z.

In this paper we prove that when there exists the coarsest jointly continuous
topology on C(Y, Z), where Z is an injective T, space, then this topology is the Scott
topology o(C(Y, Z)).

1y This paper has been communicated at the Fourth International Conference ‘‘Topology
and it Applications” (Dubrovnik, Yugoslavia, Sep. 30-Oct. 5, 1985).
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Obviously the two propositions mentioned above are corollaries of our result. As
a matter of fact, when Y'is corecompact the Isbell topology T, is the coarsest jointly
continuous topology on C(Y, Z) [5] and when Y is locally bounded and Z regular,
the bounded-open topology is the coarsest jointly continuous topology on C(Y, Z) [4].

The worth of the above result relies on the fact that useful property of the Scott
topology was found, while a method of comparison of the Scott topology with other
topologies is presented. We further note that the considered Scott topology on the set
C(Y, Z)is defined by a partial order depending only on the topology of the range space
Z.This is attained using Proposition 3.2 in the sequel according to which, if a topology
tis splitting on C(Y, Z), where Z is Ty, and contains the topology of pointwise con-
vergence, then the specialization order of ¢ coincides with the pointwise order induced
on C(Y, Z) by the specialization order of Z. Notice that all the commonly used
topologies on C(Y, Z) satisfy these conditions.

2. PRELIMINARIES

The Scott topology on a complete lattice (L, <) is defined as follows: A subset U
of Lis Scott-open if and only if satisfies the following conditions:

(i) U=1U = {yeL:x <y for some xe U}

(ii) for every directed set D = L, sup D e U implies D n U * 0.

A T, space Z is called injective if and only if every continuous map f: X — Z
extends continuously to any space Y containing X as a subspace.

The partial order < defined on a T, space X by x < y if and only if x € y is called
the specialization order of X.

If X is an injective Ty, space, then (X, <) is a continuous lattice (with respect to the
specialization order) and the Scott topology of this lattice coincides with the topology
of X.

The pointwise order <* induced on C(Y, Z) by the specialization order of Z
(with Z a T, space) is defined as follows: f <* g < f(y) e g(y). Vy e Y.

All the above can be found in [2].

A topology ¢ is said to be splitting on C(Y, Z), whenever for every space X the
continuity of a function f: X x Y — Z implies that of its adjoint function f: X —
- C(Y, Z), where f(x)(y) = f(x, y) for all x,y i.e. if the exponential injection
Exyz: C(X x Y, Z) > C(X, C[(Y, Z)), where Eyy,(f) = fis well defined.

A topology t is said to be jointly continuous on C(Y, Z), if for every space X the
continuity of f: X — C,(Y, Z) implies that of f: X x Y— Z or equivalently if the
evaluation function: e: C(Y,Z) x Y— Z, where e(g,y) = g(v), VYge C(Y,Z),
Vy € Y, is continuous.

There exists at most one topology ¢ on the set C(Y, Z) that is both splitting and
jointly continuous.
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The coarsest jointly continuous topology on C(Y, Z) if it exists, is also (the finest)
splitting [6].

Any jointly continuous topology is finer that any splitting one.

The sets of the form (H, P) = {fe C(Y, Z): f~'(P)e H}, where He Q(Y) (2(Y)
is the lattice of open sets of ¥ with the Day-Kelly-Scott topology [1]) and P is open
in Z, generate the Isbell topology T;, on C(Y, Z), which is always splitting and contains
the compact-open topology T,,, [5]

3. MAIN RESULTS

Let us introduce a topology t* on the set C(Y, Z) as follows: The subbasic neigh-
borhoods of each fe C(Y,Z) are of the form {f,P) = {ge ((Y,Z):f"'(P) =
< g~ '(P)}, where P e O(Z) (O(Z) denotes the lattice of open sets of Z).

The proof of the following lemma is obvious and therefore it is ommited.
Lemma 3.1. The topology t* is jointly continuous on the set C(Y, Z).

Proposition 3.2. If a topology t on the set C(Y, Z), where Z is a T, space, is splitting
on C(Y, Z) and contains the topology of pointwise convergence T,, then the special-
ization order of t coincides with the pointwise order induced on C(Y,Z) by the
specialization order of Z.

Proof. Firstly, we notice that the specialization order of t can be defined. Indeed,
from the hypothesis that the topology ¢ contains the topology T,, C(Y,Z) is a T,
space. Let f <* g in the pointwise order i.e. for each y e Y,f(y)eg_(f). Then, for
every Pe O(Z), f~'(P) = g~ '(P) (1). We choose an arbitrary Tet as well as an
arbitrary fe C(Y, Z), such that fe T. Since t < t*, because t is splitting and t* is

jointly continuous, there exist P; € O(Z), such thatfe ﬂ (P =
ﬂ {h:f~'(P;) = h"'(P;)} = T. By virtue of (1), it follows that,

ge ﬂ {h:f~Y(P;) = h"'(P;)} = T thus g e T. Hence every f-open neighborhood T
i=1

of f contains also g. That means f belongs to t-closure of g (i.e. f < g in the special-
ization order of t).

Now let fe g* (i.e. f < g in the specialization order of t). We will prove that for
every ye Y, f(y)eg(y) (ie. f <*g). We take an arbitrary ye Y as well as an
arbitrary P e O(Z), such that f(y)e P. Since t o T,, it follows that fe(y, P)et
However f € g implies that g € (y, P) and consequently g(y) € P. Hence f(y) € g(»).
This completes the proof.

Corollary 3.3. Let Y be an arbitrary topological space and Z a T, space. Then,
the specialization order of the below topologies coincides with the pointwise order
induced on C(Y, Z) by the specialization order of Z:
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(i) topology of pointwise convergence T,
(ii) compact-open topology T,
(iii) Isbell topology T,,.
Proof. All these topologies are splitting on C(Y,Z)and T, = T, = T,.

Theorem 3.4. If the coarsest jointly continuous topology on the set C(Y, Z) exists,
where Z is an injective T, topological space, then this is the Scott topology, which
is determined by the pointwise order induced on C(Y, Z) by the specialization order
of Z.

Proof. We suppose that the coarsest jointly continuous topology ¢t on the set
C(Y, Z) exists. This topology will also be the finest splitting and thus the exponential
function Exyz: C(X x Y, Z) - C(X, C,(Y, Z)) will be a bijection for every space X.
Let X’ be a subspace of a space X and let g: X’ — C,(Y, Z) be a continuous function.
By the previous exponential law there is a unique continuous function g: X’ x Y —» Z
whose adjoint § is the given function g. Since Z is injective, § extends continuously
to G: X x Y — Z. Then, again, the exponential law guarantees the continuity of the
adjoint G: X - C,(Y, Z), which is the required continuous extension of the given
function g. So C,(Y, Z) is an injective space. Because ¢ is jointly continuous we get
t > T, (because T, is splitting) and thus C/(Y, Z) is T;, space. Hence, C/(Y, Z) is
continuous lattice in the specialization order of ¢, which coincides with the Scott
topology of this lattice. Finally, by the previous Proposition, we conclude that ¢
coincides with the Scott topology of this lattice, which is determined by the pointwise
order induced on C(Y, Z) by the specialization order of Z.

A space Yis corecompact if for every point y € Yand each open set V containing y
there is some open set W bounded in V containing y, [3].

Corollary 3.5. If the coarsest jointly continuous topology exists on the set C(Y, 2),
where 2 is the Sierpinski space, then Y is corecompact.

Proof. The Sierpinski space 2 is an injective T, space [2]. By applying the above
Theorem we conclude that this topology is the Scott topology, which coincides with
Isbell topology [7], so Y is corecompact [5, Theorem 2.2].

This corollary is known from the fact that the exponential objects in TOP are
precisely the corecompact spaces, [8].
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