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General geometric conditions on an open set G = R™ with a compact boundary dG
are known which permit to represent the solution of the Dirichlet problem with
a prescribed boundary condition g€ C(0G) by means of double layer potential
with a continuous momentum density fe C(0G). This problem reduces to the
equation
(1) I+T)f=h
for the unknown f e C(0G), where h = 2g and T is the Neumann operator of the
arithmetical mean acting on C(0G). Similarly, the solution of the Neumann problem
for the complementary domain, where the prescribed normal derivative on 0G

is weakly characterized by a signed measure p, can be represented by a single layer
potential of a signed measure v satisfying

(2) (I+T)v=2u,

where the dual operator (I 4+ T)' acts on the space C'(0G) of all signed measure sup-
ported by dG (cf. [KI]). Historically the Neumann series occurred in connection
with attempts to invert the operators I + T, (I + T)  in the case when G or its
complement is convex the operator of the arithmetical mean, considered on the
factorspace C(0G) modulo the subspace of constant functions on G, has the spectral
radius less than 1. Further development led to the Riesz-Schauder theory of the dual
equations (1), (2) for the case that T'is a compact linear operator acting on a Banach
space X. It was shown much later in [S] that in this case the Neumann series

> (~1y T

converges to a solution fe X of the equation (1) if and only if the sequence T"h
tends to zero in X as n — oo. Unfortunately, potential-theoretic boundary value
problems lead to equations (1), (2) with a compact T only if the boundary 4G is
sufficiently smooth. As observed already by J. Radon ([R]), in order to allow non-
smooth boundaries it is useful to consider the equations (1), (2) for more general
operators T such that (T) < 1, where o(T) denotes the distance of T from the
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subspace of all compact linear operators. (For the Neumann operator T of the
arithmetical mean, w(T) can be evaluated in geometric terms in dependence on the
structure of 0G; simple examples in [AKK], [KW] show that it is often useful to
introduce a new norm in C(@G) inducing the same topology of uniform convergence
in order to achieve o(T) < 1.)

It is the aim of the present paper to show that the results established in [S] for
compact T remain in force if o(T) < 1.

Lemma 1. Let X be a Banach space, let U, K be bounded linear operators on X, K
compact, |U| < 1/2. Denote by o(U + K) the spectrum of the operator K + U.
Then there exists d € (0, 1) such that o(K + U) n {1; [i| > d} is a finite set.

Proof. Denote r = |U|. Choose de(2r,1), pe(2r/d, 1). Suppose that there
exists a simple sequence {4;} = o(K + U) n {4; || > d}. For every natural number
i, 2; does not lie in the essential spectrum of the operator (U + K) and accordig
to [Sch], Chapter 7, Theorem 5.4 (4, — U — K) is a Fredholm operator with
index 0 (where 1 is the identical operator) and thus 4; is an eigenvalue of the operator
(U + K). The null spaces N(4,] — U — K) of the operators (4,] — U — K) have
finite dimensions and therefore they are closed subspaces of X. Denote by X, the
direct sum of the spaces N(4,] — U — K), ..., N(4,] — U — K). Since X, + X,+,,
there exist unit vectors y,4+1 € X,4; such that dist (y,,H,X,,) > p in view of the
Riesz lemma (see [T], Theorem 3.12-E). Since for y,+ there exist x;e N(A,] — K —
—U),i=1,...,n+ 1, such that

n+1

Yn+1 = z Xis
i=1
we have
n+1

(’ln+11 -U - K) Yn+1 = Z(An+1 - /l,.)x,-eX,,.
i=1
If n > m then

1
”(K + U)}— yn— (K + U)liym

n m

1 1
Yn _|:ym— l—(iml_ U—K)J’m‘l'}_(}'nl— U-K)y,

B

because [y — (1/2n) (Al — U = K) y,, + (1/4,) (%l = U — K) y,] € X,_,. Thus
1 1
k(L)) -klXy,
(U) <Amy)
1 1
Ul-— n— T Jm
‘ (zny pid )

which contradicts compactness of K.

1

m

>p—._.,
d
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Lemma 2. Let X be a complex Banach space, let U, K be bounded linear operators
on X, K compact, |U|| < 1. Then there is d € (0, 1) such that the set o(K + U) n
N {4; |A| > d} is finite.

Proof. Since |U| < 1 there exists a natural number n such that |[U|" < 1/2.
Since (U +K)" = U"+L, where L is a compact operator on X, by virtue of Lemma 1
there is a number d €(0, 1) such that o(K + U)") n {4; |4| > d} is finite. Since
o((K + Uy') = {"; e o(K + U)} according to [Sch], Chapter 6, Theorem 3.8,
the set o(K + U) n {4; |2] > 3/d} is finite.

Theorem. Let X be a Banach space, let U, K be bounded linear operators on X

such that K is compact and |U| < 1. If xeX, then the series Z(U + K)' x
converges if and only if (U + K)"x = 0 as n — oo.

Proof. It suffices to prove that (U + K)" x — 0 implies that the series ) (U + K)" x
converges. Denote 4 = U + K. If X is a real Banach space denote by X =
= {[z1, z,]; z;, z, € X} the complex Banach space for which [z,, z,| + [yy, y2] =
= [z + yi, 22 + o). (01 +iwp) [24, 22] = [042) — @225, 2125 + @p24],

[[z1- z2]| = V(||z1]* + [|z2]?). We embed the space X into X in such a way that
we identify z and [z, 0]. If we define the linear operator 4 on X by A[z,,z,] =
= [Az,, Az,] we may confinc ourselves to the case that X is complex.

Let X be a complex Banach space. By Lemma 2 there is natural number n such
that o(U + K) = {Ay,.... 44} U (o(K + U)n{4; |4| < 1}) and if we denote
0, =0(U + K)n{4; |4 <1},0;, = {4} fori=1,...,n — 1, the sets o, are disjoint

and closed. Choose disjoint open sets Vi, ..., ¥, in the complex plane such that
o;cV; for i=1,...,n For ie{l,...n} we define on U{V;j=1,...,n}
functions

fy) =1 for yeV,
=0 for y¢V,.

Then f,(A) are bounded projections on X such that f;(4) + ... + f,(4) = I, where I
is the identical operator and 4 maps f(A4) (X) into fi(A4) (X) (see [Sch], Chapter 6).
We prove that fi(4)x = 0 for i = 1,...,n — 1. Since

A" f(A)x + ... + A" f(A) x = A"x = f,(A) A"x + ... + f,(A) A"x

and the space X is the direct sum of the subscts f1(4) (X), ..., f,(4) (X), we have
A" f{A) x = f(A) A"x > 0 as m — oo for i€ {l,...,n}. Denote by A, the restric-
tion of the operator A4 to the space fi(4)(X) (i = 1,..., n). According to [Sch],
Chapter 6, Thecrem 4.1, 6(4;) = o, for i =1,...,n

Now fix i € {[1, ..., n — 1]}. Since 4; does not lic in the essential spectrum of the
operator A because |U| < 1, the operator (A, — A) is a Fredholm operator with
index 0 according to [Sch], Chapter 7, Theorem 5.4. Since the space X is the direct
sum of the subspaces f,(4)(X),...,f,(4)(X), the subspace (4, — A)(X) is the
direct sum of the subspaces (4,1 — A,)(fi(X)), ..., (AI — A,) (f(X)). Since
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codim (4,1 — A)(X) < oo, we have codim (4,1 — 4;)(f(X)) < 0. At the same time
(4 — A) (f{X)) = (&I — A)(X) n f(X) is a closed subspace of f{(X). Since the
dimension of the null space of the operator (A,] — A;) is less than or equal to the’
dimension of the null space of the operator (1,1 — A), the operator (4,1 — 4;) is
Fredholm. Since o(A4;) = {4}, the operator AI — A, is Fredholm for each ¢omplex
number A. According to [Sch], Chapter 9, Theorem 2.2 the space fi(4) (X) has a finite
dimension. Since f{(4) (X) is a finite dimensional space and o(4;) = {4;} and ac-
cording to [H], § 58, Theorem 2 there is a natural number m such that (4,1 — 4,)" =
= 0. If f(4) x + 0, then there is a natural number k such that v = (4,1 — 4;)*"".
SdA)x £0, (4 — 4)f(A)x = 0. Since 4'f(A4)x >0 as j— oo, we have
AT f(A)x > 0 for j —» oo and every fixed natural number r. Thus 4%v — 0 as
Jj— . But Av = A and thus |4’ = |2| o 2 [[v], which is a contradiction.
Hence f(4) x = 0. :
Therefore x € f,{A) (X). Since the spectral radius of the operator A4, is less than L
the series

gMe
><

converges.

Note: Let X be a Banach space. Suppose that U, K are bounded linevar'aperators1
on X such that K is compact and |U|| < 1. If x € X then the series ) (U + K)"x
n=0 -

converges if and only if (U + K)" x converges weakly to zero as n — co.

Proof. According to Theorem it suffices to prove that if (U + K)" x converges
weakly to zero then it converges to zero. Suppose the contrary. Then there exist
¢ >0 and a subsequence {n,} such that [|(U + K)™ x| > & for each k. Since
(U + K)" x convergences weakly to zero it is bounded according to [T] Theorem
4.4-D. There is a positive constant M such that

6 JveKpssu

for each natural n. Since |U| < 1 there exists a natural number n, such that
€

6 Ujfre < —.

© o<

According to [ DSch], Chapter VI, § 5, Theorem 4 the operator L= (U + K)™ — U™
is compact. By virtue of (5) there is a subsequence {m;} of {n,} and y € X such that
L(U + K)™™™ x convergences to y. Since (L+ U™)(U + K)™ ™™ x converges
weakly to zero and L(U + K)™ ™" x converges to y, the sequence U™(U + K)™~" y
converges weakly to (— y). Now (5), (6) imply

0 o ek <t
If we consider y and U"°(U + K)™ ™" x as elements of the second dual of X we obtain
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Iyl =

(®)

g/4. Since L{U + K)™ ™™ x converges to y there is m; for which

LU + Ky x| < %

From (7), (8) we conclude

I + Ky x| < 3¢,

which contradicts (U + K)™ x| > .
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