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ON MULTIPLICATIVE BASES IN ABELIAN GROUPS 

VLADiMÍR Puš, Praha 

(Received May 11, 1989) 

1. INTRODUCTION 

Suppose that S = (X, •) is a commutative semigroup, M is a subset of X and 
k ^ 2 is an integer. Denote by Card the class of all cardinals and define thefunction 
/м,к: X ~* Card as follows: fM,k(x) is the number of expressions ofx in the form 
x = m1 . m2 mk, where mi є M for i = 1, 2, ... , k. (Two expressions x = 
= m1 mk and x = m\ mk of x as a product of k, not necessarily 
distinct, elements of M are considered to hz identical iff they differ only in the 
order of members. 

We say that M is an asymptotic multiplicative basis of order k iffM,k{x) > 0 
for all but finitely many x e X. 

Let k ^ 2 be an integer. We say that a commutative semigroup S = ( X •) has 
property E(k) if for every asymptotic multiplicative basis M Ç X of order k and for 
every positive integer p there exists x є X such that/M>fc(x) > p. 

In [2], P. Erdös and P. Turán set the following conjecture: The semigroup (A>', + ) 
of all positive integers with the usual addition has property E(2). 

This conjecture is still open, nonetheless, some semigroups fulfilling property 
£(2) are known at this time. Namely, in [ l ] , P. Erdös proved that the semigroup 
(N, •) of all positive integers with the usual multiplication has property £(2). A very 
simple proof of this result based on the theorem of Ramsey was given by Nešetřil 
and Rödl in [4]. Moreover, in [4] it is proved that the semigroup (A/, •) has property 
E(k) for every k ^ 2. 

In [3], M. B. Nathanson gave some generalizations ofresults from [4] and proved 
among other that the semigroup (A/, LCM), where LCM is the least common multiple, 
has property E(k) for every k ^ 2. Other generalizations of results from [4] are 
given in [5] and in [6]. Let us state some ofthese generalizations. 

Definition 1. Let S = (X, •) be a commutative semigroup. 
We say that x is a divisor of y, where x, y e X, if there is an element z є X such 

that y = x . z. 
We say that j e X is a unit in S ifj is a divisor of the identity element in S. 
We say that elements x, у, є X are associated, and we write x ~ y, ifthere is a uni t / 

such that x = y . j . 
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Let S = (X, •) be a commutative semigroup and let F = {x1? x2,..., xk} be a finite 
subset of X. We denote by f ] F the product 

1 • 2 к 
of the elements of F. 

Further we put Yi 0 = 1, where 1 is the identity element. 
Definition 2. We say that a set P £ X is a prime set if it contains no unit, if no two 

different elements of P are associated and if for every finite (non-empty) set F £ P 
the following condition holds: if f | F = xt . x2 then there exist sets Fl9 F2 ^ F 
(possibly empty) such that Fx u F2 = F, x1 ~ fl ^i anc^ x2 ~ П ^2-

Definition 3. The commutative semigroup is said to be a prime semigroup if it 
contains an infinite prime set and if it has only finitely many units. 

The following theorem is proved in [6] (see also [5]). 

Theorem 1. Every prime semigroup has property E(k) for every k ^ 2. 
Let us notice that all the results mentioned above can be proved as corollaries of 

Theorem 1. In paper [5], Theorem 1 is used to prove that the direct, cartesian and 
strong products of finite simple graphs possess property E(k) for every k ^ 2. 

In the present paper we show that, in contrast with Theorem 1, for infinite Abelian 
groups with the property that every equation xr = a, r ^ 2, has only finitely many 
solutions, the behaviour of the functions fMk is in substance in no way restricted. 

Let us remark that in Abelian groups every element is a unit and thus no Abelian 
group contains a non-empty prime set. 

2. RESULTS 

Notation. The cardinality of a set X will be denoted by \X\. If m, n are integers 
and m ^ n, then [m, n\ denotes the set of all integers x such that m ^ x ^ n 

Theorem 2. Let к ^ 2 be an integer. Suppose that G = (X, *) is an infinite 
Abelian group such that: 

(1) \X\ = x is a regular cardinal and 

(2) |{x; xr = a}\ < x for every a eX and re [2, 2k] . 

Then for every function f: X ~> x \ {0} there is a set M я X such thatfM>k = / . 

Remark 1. Condition (2) is clearly equivalent to the following condition (2'): 

(2') |{x; xp = a) | < x for every a e X and for every prime number 
P є [2, 2fe] . 

Proof of Theorem 2. Let us denote X = {xa; a < x). We construct by recursion 
a chain of sets Ma, a < x, such that for every a < x the following conditions 
(0 ) - (4)ho ld : 

(0) M 0 = 0, 
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(1) M„ £ Mx for ß < a , 

(2) K | < x , 
(3) every element x є X can be expressed in at most one way as a product 

of less than k elements (not necessarily distinct) of Ma, and 
(4) every element xß for ß ^ a сап be expressed in at most one way as a prod­

uct of k elements (not necessarily distinct) of Ma. 
Moreover, we perform the construction ofthe chain {Ma; a < x} in such a way that 
the union of the chain satisfies the following condition (5). 

(5) every element xß for ß < x can be expressed exactly in f(xß) ways in 
the form m1 . m2 mk, where mi є (J Ma (i.e. fM,k{xß) ~ f(xß) f° r 

M = (J Ma). 
a<x 

Let us define M0 = 0 and Ma = (J Mp provided a is а limit ordinal. (Clearly, if 
ß<a 

the sets Mß, ß < a, satisfy conditions (0)-(4) then Ma satisfies these conditions, 
too. Let us remark that (2) follows from the regularity of x.) 

Now, let the set Ma satisfying conditions (0)-(4) be constructed; we construct 
Ma+i. Denote by X the unique cardinal number such that 

A + /ji.,kW = /(*«) • 

(Clearly/MaJt(xa) є {0, 1} by (4).) If X = 0 then we put Ma + 1 = Ma. Let us suppose 
that X > 0. First we construct a set {a^,y, ß < X &je [1, k — 1]} satisfying the 
following condition (C): 

(C) aßj is not a solution of any equation xr. c = d, where r є [1, 2fc] and 
c, d are products of at most 2k2 elements (not necessarily distinct) ofthe 
set Mau {avl; (v, /) <s (fi,j)} u {xa}, where < is some (e.g. lexicographic) 
well-ordering of the set X x [1, k — 1]. 

(Since \Ma\ < x and X < x, we have \Ma u {avl; (v, /) < {vJ)}\ < x and thus a^Js 
can be constructed by recursion because all equations xr. c = d have less than x 
solutions and the number of equations is less than x.) 

Let us notice that (C) implies in particular that aM>/s do not belong to Ma and 
are pairwise distinct. 

Finally, we define aßk to be an arbitrary (but fixed) solution of the equation 
x -aß,i • aßt2 tf^,fc-i = xa, and put Ma+Í = Mau {aßJ; ju < A&j'e[l,fc]}. 

Clearly, the set Ma+1 satisfies (1) and (2). Let us verify (3). For every xeX we 
put x0 = 1 where 1 is the identity element. Suppose that 

(6) rn, m,.(n<:i) (n<;i) = 
J = 1 J = 1 

= "i Mn<j ) (U<:'j) 
j=i j = i 
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are two products of elements of Ma+U where mu...,mreM„ nu...,nseMa, 
^ , . . . , nt are pairwise distinct, Pij ^ 0, qitj ^ 0, r + £ pitj < k and s + £ glfi < 

i J i,7 

< fc. Substituting я ^ = (ßiti a^,*-j)"1 . xe, where i = 1,..., f, we obtain 

(7) (m, m r. (
f c n < ; r P l t k ) Ш < : Г ' ' к ' * ř P ' , k = 
j = i i = i 

= *i ns. (fia^f^) (ň<jiqt'k) • C '̂'* -
7 = 1 7 = 1 

It follows from this (according to the construction of a^,/s) that, for every і є [1, ř] 
and j e [ l , k - 1], p ř J - jpiík = 4ř>/ - qifk, i.e. pi§</ - qUj = pitk - qitk. In other 
words, for fixed i, the numbers pitj — qtj do not depend on j and thus there is 
a number c{ such that pitj — qitj = C; for every j e [1, fc]. Suppose that сг > 0 for 
some i. Then pitj — qitj + C; > 0 for every je [1, fc] and thus r + £р,-,/ = >̂ 

*.y 
a contradiction. Similarly С; < 0 leads to a contradiction, thus cř = 0 for every ř. 
We find that pitj = qifj for all i,j. Now (6) implies that ml mr = «j ns. 
By the induction hypothesis, the expressions mi mr and n1 ns are identical, 
thus the expressions on the left and on the right hand side of (6) are identical, too. 
This concludes the proof that M a + 1 satisfies condition (3). 

Condition (4) follows from the following two lemmas. 

Lemma 1. If 
к k 

(8) mi m* = *i " s . ( n < ; j ) ( П № ) > 
7 = 1 7 = 1 

where mí,...9mkeMa, n1,...,wseMef, pu...,p,t are pairwise distinct, pitj^0, 
s + £ p ř J = fc and s < k, then mx mk = xa. 

iJ 

Lemma 2. Suppose that 

(9) «i « г . ( П О (n<;:i-) = 
7 = 1 7 = 1 

= "i ^.(n<,7-) (ГКЯ). 
7 = 1 7 = 1 

vv êr̂  m 1 , . . . ,m r eM a , Wj,...,nj6Mj, pu...,pt are pairwise distinct, pitJ^0, 
<lij == 0, r + X^t',7 = s + X t̂,7 = ^ û r î^ r ' 5 < -̂ ^ ^ n ^ expressions on the 

iJ iJ 

left and on the right hand side of(9) are either identical or (9) is an equation of 
the form a^fl aßfk = avl avk, where fi, v < X and p. Ф v. 

Proof of Lemma 1. Substituting (амЛ адьк_1)~1 . xa for аиик, where i = 
= 1,..., t, equation (8) converts into the form 

« і mk = nt ns. (П<;ГР1'к) ( U<SPt*) • ^í/l,k • 
7 = 1 7 = 1 
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It follows from this (with regard to the construction of a^,/s) that pifj — pik = 0 
for every i є [1, ř] and j e [1, k — 1]. Thus, A:. £ p / f e = £ p f J . Since moreover 

i iJ 

Z ^t',i = ^ ~~ s > ^, w e ш ^ е г ^ a t there exists i0 e [1, ř] such that pi0tk > 0. But 
iJ 
then p I o J > 0 for every je [1, fc] and since 5 + Y,Pi,j = ^' equation (8) has the 

к ' i,j 
form mi mk = Y[ ^^i9j- We conclude that ml mk = xa. 

j = i 

Proof of Lemma 2. Let us convert (9) into (7). Analogously as in the proof of (3) 
we infer that for every i є [1, f\ there is a number cf such that 

Pr,; - 4ui = c, for every j e [ l , fe] . 

We distinguish three cases. 

Case (A). Let Ci = 0 for ever> / e [1, i ] . Then pitj = # ř j for every ř and jf, and 
(9) implies that 

(10) m1 mr = n1 /7S. 

By (3), the expressions on the left and on the right hand side of (10) are identical and 
so the expressions on the left and on the right hand side of (9) are identical, too. 

Case (B). Suppose that there exists ř 0 e [ l , t~\ such that cio > 0. Then pioJ = 
= cio + 4io,j > 0 for every j є [1, fc]. It follows from this and from the assumptions 
of Lemma 2 that r = 0, phJ = 1 for every j , qioJ = 0 for every j9 pitj = 0 for 
everyj and / ф ř0, and C; ^ 0 for every і Ф i0. In particular, the expression on the 
left had side of (9) is 

aPio,i aßi0,k • 

Further, there exists ii Ф i0 such that ch < 0. Otherwise ct = 0 for every і Ф i0f 

i.e. qifj = Pij = 0 for everyj and і Ф /0, and so qitj = 0 for every iJ. This implies 
that s = 5 + £ ^ t J = к, a contradiction. Similarly as above, the assumption ch < 0 

iJ 
implies that the right hand side of (9) is 

аРнЛ aPh,k • 

We conclude that equation (9) has the form 
к k 

Yl<*n.j = n < w 
j=i j=i 

where i0 ф іл. 

Case (C). Suppose that there exists i0 e [1, t] such that cio < 0. Similarly as in 
Case (B) we infer that equation (9) has the form 

к к 

n<w; = EK,.,; 
J = 1 J = 1 

where іл ф ř0. 
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Finally, we show that the chain {Ma}a<x just constructed satisfies condition (5). 
This follows from the following lemma. 

Lemma 3. If xß = m1 mk, where W;elJ Ma, then тьеМр+1 for every 
ie[l,k]. 

Proof of Lemma 3. Suppose that xß = m1 mk where m^eU Ma. Put y = 
OL<X 

= min {oe; {ml9 ..., mk} c M a}. Clearly y = <5 + 1 is a successor ordinal. Our 
purpose is to show that Mß 3 Mô. Let us suppose on the contrary that Mß g Mô. 
Then Mß + i Ç M^. Since Дл^) > 0, there are n1? ..., nkeMß+1 such that л^ = 
= 7Jj nfc. By Lemma 1 applied to the set Mô, the equation n^ nk = 
= m1 mk implies that nx nk = xô. Thus xô = xß and ô = ß, a contra­

diction. 
According to Lemma 3, condition (5) follows from the construction of the set 

Mß + l9 (4) and Lemma 2. B 

Remark 2. Conditions (l) and (2) in Theorem 2 can be clearly replaced by the 
following two conditions: 

(1*) \X\ is a singular cardinal and 

(2*) there is a cardinal x < \X\ such that \{x; xr = a}\ ^ x for every a eX 
and r e [2, 2fc]. 

Finally, we give some examples which illustrate the previous results. 

Example 1. (a) The semigroup (N, •) has property E(k) for every k ^ 2. 
(ß) Let S = (Q, •) where Q is the set of all positive quotients. Then for every 

function/: Q ^ N there is a set M ç Q such t h a t / M = / . 

Example 2. (ot) Let S = (Z, + ) where Z is the set of all integers. Then for every 
function / : Z ^ N there is a set M c Q such that / M = / . 

(ß) An old problem of P. Erdös: Is it true that the semigroup (N, + ) has property 
JB(2)? 
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