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ON A MAXIMAL DISTANCE BETWEEN GRAPHS 

MiCHAL ŠABO, Bratislava 

(Received January 25, 1989) 

In [ l ] , [2] some type of a metric for graphs was introduced. This type of a metric 
is based on the notion of maximal common subgraph (MCS). It is convenient e.g. 
for mathematical modelling of organic chemistry. This paper deals with the problem 
of a maximal distance between graphs in a given family of graphs. At the end ofthe 
paper, some problems ofthis theory are listed. 

1. PRELIMINARIES 

A graph G = (V, E) consists of a non-empty finite vertex set V and edge set E. 
The graphs considered here are undirected without loops and multiple edges. A sub­
graph H of the graph G is a graph obtained from G by deleting some edges and 
vertices, H ç G. Every edge x e E can be written by x = (u, v), where u, v є Fare 
vertices connected by the edge x. Two graphs Gx = (Kb Et) and G2 = (V2, E2) are 
isomorphic ifT there exists 1 — 1 correspondence / : V1 ^ V2 such that (u, v) є Ex 

if and only if {f{u)J{v)) є E2, d £ G2. 
A graph G is the common subgraph of the graphs G l5 G2 ifT there exist Hu H2 

$uch that Я х c G l5 Я 2 Ç G2 and Hx s G, Я 2 s G. A maximal common subgraph 
(MCS) is the common subgraph which contains the maximal number of edges. 

The distance of the graphs Gt = (Vu Et) and G2 = (K2, E2) is defined by 

J(G l 9 G2) = | ^ | + |£ 2 | - 2\El>2\ + | |7 i | - \V2\ | , 

where | ^ | , \E2\, |Ki|, |F2 | are cardinalities ofthe edge sets and vertex sets respectively 
and |£ i , 2 | is t n e number ofedges of MCS. 

Let ^p,q be the family of all graphs with p vertices and q edges. It is clear that for 
G l5 G2 є ЗРрл 

à{Gu G2) = 2q - 2\Eít2\ . 

If we identify the isomorphic graphs then &ѵл with the distance d is a metric space. 
Without loss of generality we can suppose that all graphs in ^Ptq have the same 

vertex set V. 
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2. DIAMETER OF A FAMILY OF GRAPHS 

We define 
diam SFp%q = max {d(G, Я); G, H є ^ ^ } . 

Evidently, diam ^Pt0 = diam #* р 1 = 0. We shall try to find out or to estimate 
diam 3Fpq for arbitrary p, q. We remark that 

0*,i(jj. 
Theorem 1. Let Gi9 G2 є &PtV where q ^ 1. Then 

d(Gi9G2) й 2q - 2 . 
Proof. MCS ofthe graphs G t and G2 contains at least one edge. 
The consequence of this theorem is: diam ^Ptq g 2q — 2. 

Theorem 2. Let q ^ 1. Then diam &рл = 2g - 2 / ^ g ^ i p . 
Proof. Let g ^ 2-p and V= {vl9 v2, ..., ťp}. We construct Gt = (V, Ex)9 G2 = 

= (K, £2) , where 

^ i = {(vl9v2)9(vl9v3)9...9(vl9vq+1)} , 

E2 = {(t^i, t>2), ("з, < b - . - , ( ^2a - i ^ ) j • 

MCS of of these graphs consist of one edge only. Therefore d(Gi9 G2) = 2q — 2. 
Using Theorem 1 we have diam &рл = 2q — 2. Conversely, let diam &ѵл = 2q — 2 
and iet q > \p. Then for any Gl9 G2 є ^%>ÍZ we have £ d e g vt = 2g > p, where 
deg t̂  is number ofedges incident with the vertex vt. It implies the existence ofvertices 
u, u such that deg u ^ 2 in Gx and deg D ^ 2 in G2. Then MCS of the graphs Gi9 G2 

contains at least two edges. Therefore d(Gl9 G2) ^ 2g — 4 for any G l9 G2 є ^%,q. 
It contradicts the assumption. 

Theorem 3. Let \p < q ^ p - 1. Then diam &p%q = 2g - 4. 
Proof. Theorem 2 implies that diam ^pq < 2q — 2. We construct Gi = (K £i ) , 

G2 = (K,£2) such that 

Ey = {(vl9 v2)9 (vl9 v3)9..., (vl9 vq+ j)} , 

^2 = {(vl9V2)y{v29V3)9 ...9(vq9Vq+1)} . 

Then Gj, G2 є J^pq and their MCS contains two edges only. Therefore d(Gl9 G2) = 
= 2q — 4. It implies 2q — 4 ^ diam 3?РЛ. It proves that diam SFPtq = 2g — 4. 

A complement of the graph G = (K, £j is a giaph G = (K, £) which contains just 
the edges which don't belong t o £ . l t is clear that |£ | + |£ | = ip(p — 1). In [3], 
it was proved: 

Theorem 4. For arbitrary graphs G, H with the same number of vertices the 
following holds: d(G, H) = d(G9 Я). 
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Theorem 5. If we denote q = \p (p - 1) - q then 

diam ^Pfq = diam $FpÄ 

Theorem 6. Let q ̂  i p (p - 2). Then 

diam ^рл = p(p - 1) - 2q - 2 . 

P r o o f . l f q g i p ( p - 2)then 

5 = | (p - 1) - ^ ^ | (p - 1) - § = f-

Using Theorem 2 and Theorem 5 we get 

diam J%,, = diam &pA = 2q - 2 = p{p - *) - 2 4 - 2 • 

Theorem 7. Let 

(';')*,<ifr-2). 
Then 

diam J%,g = p(p - 1) - 2^ - 4 . 

Proof. Theinequality 

('I>.<ffr-*) 
follows i p < g ^ p — 1. Then 

diam J%>(| = diam &рЛ = 2q - 4 = p(p - 1) - 2q - 4 . 

PROBLEMS 

It would be interesting to solve some problems connected with the notion of 
distance and diameter. We found out 

diam $РѴЛ for q ^ p — 1 or q ^ 

It implies that we know all diam &ѵл for p ^ 4. 

Problem 1. How to find out or estimate diam &рл for 

4 < P S , < ( V > 
The next problems are connected with the problems of distance between graphs 

with the sanme number of vertices and different number of edges. 

Problem 2. If Gx є &рл, G2 e &PA2, ql9 q2 ^ 1 then 

d{GuG2)u «i + ^ 2 - 2 . 

Under which conditions the equality holds? 

ГЛ 
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Problem 3. Obviously, 

diam (J%)ťZl u &РАг) ^ max (diam Уѵ^ diam J%><Z2). 

For which p, qu q2 

a) diam (^p>qi u J % , J > max (diam ^p>qi, diam J % , J , 
b) diam (J%><Zl u J % , J = max (diam J%,gi, diam &рл$1 

Problem 4. Is any relation between diam (&Ptqi u ^p>qz) and diam J%>gi + 
+ diam ^p,dJ Are there any non-trivial p, ql9 q2 such that these numbers are the 
same? 

Problem 5. Prove or reject the conjecture: If 

e i S i a S ^ f r - l ) 
then diam 3FpAv й diam ^p,q2 . 

The last problem deals with the distance of graphs which have different numbers 
of vertices and edges. It is clear 

d(Gl9 G2) й <7i + q2 + \px - P2\ ~ 2 

for GxeFpuqv G2e^P2iq2, ql9q2 ^ 1. 

Problem 6. Under which conditions 
a) d(G^ G2) = qt + g2 + |p, - p2\ - 2 , 
b) d(Gl9 G2) = ^i + ^2 + | P l - p2\ - 4 hold? 

Remark. B. Zelinka [4] solved the problem of diam 8Fp9 where 3Fp = (J ŠFPtq is 
Q. 

the family of all graphs with p vertices. He proved that diam 3Fp = \p (p — 1). 
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